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 In this work, an effective methodology is introduced for modeling the fatigue crack 
propagation in linear elastic brittle media. The displacement discontinuity method is 
used to accomplish the analysis, and the boundaries are discretized with quadratic 
elements in order to predict the stress intensity factors near the crack tips. This 
procedure is implemented through 2D linear elastic fracture mechanics. The normal 
and shear displacement discontinuity around the crack tip is applied to compute the 
mixed-mode stress intensity factors. The crack growth is incremental, and for each 
increment of extension, there is no need to use a re-meshing procedure. This method 
has benefits over the finite element method due to its simplicity in meshing. The crack 
growth direction is assessed using the maximum principal stress theory. In these 
analyses, a repetition method is used in order to estimate the correct path of crack 
propagation. Therefore, the different lengths of incremental growth do not affect the 
crack growth path analysis. The results are exhibited for several examples with 
different geometries to demonstrate the efficiency of the approach for analyzing the 
fatigue crack growth. The accuracy represents that this formulation is ideal for 
describing the fatigue crack growth problems under the mixed-mode conditions. 
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1. Introduction 

In the analysis of rock engineering and the 
construction process, which involves the rock 
material, there is not only static loading but also the 
rocks are frequently subjected to repeated and 
dynamic loading, especially in the highway and 
railway projects [1–3]. These resulting cyclic 
stresses can lead to a microscopic damage to the 
material involved [4]. Even at the stresses well 
below a rock's ultimate strength, this microscopic 
damage can accumulate, and lead to failure [5]. 
This process of damage due to cyclic loading is 
called the fatigue of rock. Due to the long-term 
impact of cyclic loading, the strength of rock is 
steadily reduced. Therefore, the safety of structures 
is affected [6]. 

There are three special techniques for examining 
and designing averse to fatigue failures. The 
traditional stress-based technique is according to 
stress. Another technique is the strain-based 
technique, which utilizes localized yielding criteria 
that may happen during cyclic loading. Besides, 
there is the fracture mechanics technique, which 
investigates crack propagation by the fracture 
mechanics principles [7]. The natural rock mass 
includes numerous flaws and defects such as cracks 
and joints. Due to the brittleness and elastic 
behavior of most rock materials, the fracture 
mechanics technique can be effectively used to 
study the fatigue mechanism in these materials [8, 
9]. Indeed, the presence of a crack can significantly 
reduce the strength of the material due to brittle 
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fracture, and crack growth can be caused by cyclic 
loading, which is called the fatigue crack growth 
behavior [10, 11]. 

 The numerical method has a high precision in 
modeling the fatigue procedures based on the 
fracture mechanics principle. The restrictions of 
the analytical and empirical methods in realistic 
and intricate issues, particularly in fracture 
mechanics, have caused the fast development of the 
numerical methods in this field [12, 13]. The 
domain-based methods have critical restrictions in 
explaining the solid mechanics problems 
associated with a continuous alteration in geometry 
[14]. The crack propagation phenomenon is an 
example in which the application of these methods 
needs a re-meshing procedure to illustrate the ideal 
growth path [15, 16]. This procedure makes 
numerical methods difficult and often causes 
decreases in the precision and convolution of 
computer programing. In the meantime, the 
boundary element method has been demonstrated 
to be a powerful numerical approach, which has 
essential superiorities to domain-based techniques. 
The significant characteristic of this method is that 
it requires just a discretization of the boundaries. 
Different formulations of the boundary integral 
methods have been extended for the elastic fracture 
mechanic problems. These techniques utilize 
various approaches when encountering 
singularities of stress close to crack tips [17]. Cen 
and Maier (1992) have simulated crack 
propagation in concrete with BEM [18]. Ingraffea 
et al. (1987) and Grestle (1986) have  introduced 
the mixed-mode crack propagation situations with 
the BEM for two- and three-dimensional problems 
[19, 20]. They applied the multi-region technique 
with the maximum circumferential stress criterion 
to estimate the crack growth path. Doblare et al. 
(1990) have utilized the multi-region technique 
with the quarter-point element to simulate crack 
propagation in the orthotropic substances [21]. In 
the incremental propagation of the crack, the 
artificial boundaries of the multi-region technique 
must be frequently presented for each increment of 
growth [22]. These boundaries, which are used to 
separate the domains, are not unique, and they 
cannot be easily performed in automatic processes 
[23]. Accordingly, the Dual Boundary Element 
Method (DBEM) with a single region technique 
has been introduced for the two- and three-
dimensional crack problems, respectively, by 
Portela et al. (1993) [24] and Mi and Aliabadi, 
1994, 1995 [25, 26]. The crack growth procedure 
can be modeled using the new element in this 
method. Aliabadi (2002) has presented a general 

review of the DBEM applications [17]. The fatigue 
crack propagation of anti-symmetric cracks has 
been analyzed using DBEM and FEM [27].  Leonel 
and Venturini have utilized DBEM for the multiple 
crack propagation analyses [28]. Besides, the 
indirect boundary element method is another 
technique that utilizes the superposition principles. 
This kind of BEM includes the Fictitious Load 
Method (FLM) and the Displacement 
Discontinuity Method (DDM) [29]. DDM has been 
introduced by Crouch and Starfield (1983) [30]. 
The constant form of this method is simple, and 
widely used in the engineering analysis [31–34]. 
DDM has been developed for the static and 
dynamic 2D/3D problems [35–37]. This technique 
has been widely utilized for a range of engineering 
problems such as explosive fracturing, rock 
cutting, hydraulic fracturing, and rock stability 
[38–42].  

In this work, a methodology for analyzes of 
fatigue crack growth in linear elastic regions is 
presented. As explained in the following section, 
this technique utilizes the displacement 
discontinuity of quadratic elements in order to 
compute the range of stress intensity factor 
distributions for each crack in the domain. This 
parameter is then applied to predict the crack 
propagation rates. The constant cyclic loading is 
applied considering the mixed-mode condition. 
Besides, an incremental crack growth scheme is 
proposed to model the crack length increment at 
each progressive step of the domain with different 
crack growth rates.  

The more fundamental fracture criteria have been 
introduced to implement the fatigue propagation 
path based on the fracture mechanic principle. 
Some of these criteria are based on the stress 
approach, and others are established on the energy 
approach. The minimum strain energy density 
criterion ( ܵ  criterion) [43], maximum 
circumferential stress criterion (ߪ criterion) [44], 
and maximum strain energy release rate criterion 
 are the most popular theories to [45] (criterion ܩ)
use in brittle materials. The ߪ theory demonstrates 
that the crack growth is accomplished when the 
maximum tangential stress achieves its critical 
value in the substance. Due to the simplicity of this 
procedure, the stress theory has been evaluated as 
the easiest criteria to understand and apply [46]. 
This criterion has been widely applied in the 
fracture mechanic problems [46, 47]. Therefore, in 
this research work, the propagation path of a 
fatigue crack is determined through the maximum 
circumferential stress criterion. Besides, a 
repetition algorithm is also used to predict the 
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correct direction. This algorithm makes it possible 
to obtain a single crack path using the growth 
increments with different lengths. 

2. Description of numerical method 
The displacement discontinuity method is 

developed through analytical solutions like another 
BEM. This numerical method constructs a discrete 
approximation of a continuous distribution of 
displacement discontinuity (DD) along a segment 
[48]. A general DD distribution is exhibited along 
the x-axis in Figure 1a. This technique considers 
DD as normal, and parallels to the segment surface 
(indeed, deformation resulting from the opening 
and shearing modes of fracturing). Crouch and 
Starfield (1983) have defined the primary format of 
this technique [30]. In their template, the 
displacement discontinuity tolerates a constant 
specified change when crossing from one side to 
the other side. Accordingly, DD (ܦ௫ & ௬ ) can be 
written as follows (Figure 1b): 

ቊ
௫ܦ = ,ݔ)௫ݑ 0ି) − ,ݔ)௫ݑ 0ା)
௬ܦ = ,ݔ)௬ݑ 0ି) ,ݔ)௬ݑ− 0ା) (1) 

The analytical integration of quadratic shape 
functions over linear displacement discontinuity 
elements is the quadratic element basis [49]. 
Therefore,  the displacement discontinuity function 
can be written in a general form as: 

(ߝ)௜ܦ = ଵܰ(ߝ)ܦ௜ଵ + ଶܰ(ߝ)ܦ௜ଶ + ଷܰ(ߝ)ܦ௜ଷ      

݅ =  (2) (ݕ,ݔ)

where ܦ௜ଵ ௜ଶܦ , , and ܦ௜ଷ  are the quadratic nodal 
displacement discontinuities, and: 

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵܰ(ߝ) =

ߝ)ߝ − 2ܽଷ)
8ܽଷଶ

   

ଶܰ(ߝ) = −
ଶߝ) − 2ܽଷଶ)

4ܽଷଶ

ଷܰ(ߝ) =
ߝ)ߝ − 2ܽଷ)

8ܽଷଶ
  

 (3) 

are the shape function for the equal sub-elements 
(ܽଵ = ܽଶ = ܽଷ ). The displacements and stresses 
for a crack in a body along the axis, considering the 
single harmonic functions (݂(ݕ,ݔ)  and ݃(ݕ,ݔ)), 
are given based on Eq. (4) and Eq. (5) [49]: 
௫ݑ = ൣ2(1− (ߴ ,݂௬ ݕ− ,݂௫௫൧ + ൣ−(1− (ߴ2 ,݃௫ − ݕ ,݃௫௬ ൧
௬ݑ = ൣ2(1 − (ߴ ,݂௫ ݕ− ,݂௫௬൧+ (ߴ−1)2ൣ ,݃௬ − ݕ ,݃௬௬൧   

  (4) 

and: 

௫௫ߪ = 2ൣܩ2 ,݂௫௬ + ݕ ,݂௫௬௬൧ + ௬௬,݃ൣܩ2 + ݕ ,݃௬௬௬൧
௬௬ߪ = ݕ−ൣܩ2 ,݂௫௬௬൧ + ௬௬,݃ൣܩ2 −            ௬௬௬൧,݃ݕ
௫௬ߪ = 2ൣܩ2 ,݂௬௬ + ݕ ,݂௬௬௬൧ + ݕ−ൣܩ2 ,݃௫௬௬൧          

 (5) 

where G is the shear modulus, ν is the Poisson’s 
ratio, and ,݃௫௬௬ , ,݂௫௬௬ , ,݂௬ , ,݃௬௬  … are the partial 
derivatives of the harmonic functions (݂ ܽ݊݀ ݃). 
The potential functions for a quadratic element are 
obtained by [50]. 

 
Figure 1. a) General displacement discontinuity distribution of constant element b) Components of constant 

displacement discontinuity (࢟ & ࢞ࡰ). 
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(ݕ,ݔ)݂ = ିଵ
ସగ(ଵିణ)

∑ ௫ܦ
௝ଷ

௝ୀଵ  (௜ܫ)௝ܨ

(ݕ,ݔ)݃ = ିଵ
ସగ(ଵିణ)

∑ ௬ܦ
௝ଷ

௝ୀଵ (௜ܫ)௝ܨ
      

(6) 

݅ =  (3 ݋ݐ 0)

in which the function Fj is specified as: 

,଴ܫ)௝ܨ ଵܫ , (ଶܫ = ∫ ௝ܰ(ߝ) ln[(ݔ − (ߝ + ଶ]଴.ହݕ   ߝ݀
(7) 

 ݆ =  3 ݋ݐ 1

The integrals ܫ௜(݅ = (2 ݋ݐ 0  are defined 
according to Eqs. (8) to (10). 

 
 

(ݕ,ݔ)଴ܫ = ∫ ݔ)]݈݊ − ଶ(ߝ + ߝଶ]଴.ହ݀ݕ = ଵݍ)ݕ − (ଶݍ − ݔ) − ܽ) (ଵݎ)݈݊ + ݔ) + ܽ) −(ଶݎ)݈݊ 2ܽା௔
ି௔   (8) 

(ݕ,ݔ)ଵܫ = ∫ ݔ)]݈݊ߝ − ଶ(ߝ + ߝଶ]଴.ହ݀ݕ = ଵݍ)ݕݔ − (ଶݍ + ଵ
ଶ

ଶݕ) − ଶݔ + ܽଶ) ݈݊ ௥భ
௥మ
− ା௔ݔܽ

ି௔   (9) 

(ݕ,ݔ)ଶܫ = ∫ ݔ)]ଶ݈݊ߝ − ଶ(ߝ + ߝଶ]଴.ହ݀ݕ = ௬
ଷ

ଶݔ3) − ଵݍ)(ଶݕ − (ଶݍ + ଵ
ଷ

ଶݕݔ3) − ଷݔ +ା௔
ି௔

ܽଷ) (ଵݎ)݈݊ +  ଵ
ଷ

ଶݕݔ3) − ଷݔ − ܽଷ) −(ଶݎ)݈݊ ଶ௔
ଷ
ቀݔଶ − ଶݕ + ௔మ

ଷ
ቁ  

(10) 

 
The phrases ݍଵ ଶݍ , ଵݎ , , and ݎଶ  are defined as 

follow: 

ଵݍ = ଵି݊ܽݐ ቀ
ݕ

ݔ − ܽ
ቁ  

ଶݍ = ଵି݊ܽݐ ቀ
ݕ

ݔ + ܽ
ቁ  

 (11) 

ଵݎ = ݔ)] − ܽ)ଶ + ଶ]଴.ହݕ

ଵݎ = ݔ)] + ܽ)ଶ +  ଶ]଴.ହ (12)ݕ

The partial derivatives of these integrals have 
been presented in the literature [51]. The high-
stress concentration adjacent to the tip in the brittle 
material causes severe changes in the stress and 
displacement. Therefore, distributions of these 
parameters in these regions are different from the 
other area. Owing to the singularity variations of 
the stresses and displacements in the proximity of 
the crack tip, the precision of the method reduces. 

Accordingly, it is necessary to utilize the crack tip 
element in the analyses. A particular crack tip 
element that has been already introduced in [30] is 
applied in the proposed algorithm. Thus the 
variations of displacement discontinuity along with 
a crack tip element with a length of 2a are exhibited 
as [50] (Figure 2). 

(ߝ)௫ܦ = (ܽ)௫ܦ ቀ
ߝ
ܽ
ቁ
଴.ହ

(ߝ)௬ܦ = ௬(ܽ)ቀܦ
ߝ
ܽ
ቁ
଴.ହ (13) 

Dx(a) and Dy(a) are the opening and shearing 
displacement discontinuities at the center of the 
crack tip element, and ε is the distance from the tip. 
The potential functions ௖݂(ݕ,ݔ) and ௖݃(ݕ,ݔ)  for 
the crack tip element are specified as: 

 

௖݂(ݕ,ݔ) = ିଵ
ସగ(ଵିణ) ∫

஽ೣ(௔)
௔బ.ఱ

ା௔
ି௔ ଴.ହߝ ݔ))݈݊ − ଶ(ߝ + ଶ)଴.ହݕ   ߝ݀

௖݃(ݕ,ݔ) = ିଵ
ସగ(ଵିణ)∫

஽೤(௔)

௔బ.ఱ
ା௔
ି௔ ଴.ହߝ ln((ݔ − ଶ(ߝ + ଶ)଴.ହݕ dε  

(14) 

 
By considering the typical elements i and j along 

the boundary of the problem, moreover, by 
substituting Equations 6, 14, and other related 
equations of them in displacement and stress 
equations, the general solution is determined (Eq. 
(15)). Finally, the normal and shear boundary 
conditions are defined according to the 
displacement discontinuity, and influence the 
coefficients (ܵܵܥ(݅, ݆), ,݅)݊݊ܥ ݆), … ).  

⎩
⎪
⎨

⎪
⎧ܾ௦௜ = ෍ܥௌௌ(݅, ௦ܦ(݆

௝
ே

௝ୀଵ

+ ෍ܥௌ௡(݅, ௡ܦ(݆
௝

ே

௝ୀଵ

ܾ௡௜ = ෍ܥ௡ௌ(݅, ௦ܦ(݆
௝

ே

௝ୀଵ

+෍ܥ௡௡(݅, ௡ܦ(݆
௝

ே

௝ୀଵ

 
(15)  

݅ =  ܰ ݋ݐ 1
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Figure 2. Displacement discontinuity distribution of 

a particular crack tip element. 

3. Fatigue crack growth considering linear 
elastic fracture mechanics 

The solution process for the fatigue crack growth 
problem starts with the evaluation of the entire 
boundary element discretization using DDM. For 
each load of constant amplitude cyclic loading 
(maximum and minimum), a mechanical response 
is determined through the system. Consequently, 
the stress intensity factors for mode-I and mode-II 
are easily computed based on the normal and shear 
displacement discontinuity of each crack tip 
element [49] (Eqs. (16) and (17)). 

ூܭ =
ܩ

4(1 (ߴ− ൬
ߨ2
ܽ
൰
଴.ହ

 ௬(ܽ) (16)ܦ

ூூܭ =
ܩ

4(1− ൬(ߴ
ߨ2
ܽ
൰
଴.ହ

 ௫(ܽ) (17)ܦ

In the DDM analysis, the crack growth is 
simulated by successive linear increments. 
Therefore, the propagation path and the size of 
increments must be specified. Various techniques 
have been established in the research works for 
determining the crack growth in the mixed-mode 
conditions. Due to the simplicity and capability of 
preparing a precise estimation, the maximum 
circumferential stress theory is employed in the 
present investigation (ߪ -criterion). Erdogan and 
Sih have expressed that in the case of plane strain 
or generalized plane stress where the brittle 
material contains a crack, the stresses in the 
proximity of the crack tip are written considering 
LEFM, as follow [44]: 

⎩
⎪
⎨

⎪
ఏߪ⎧ =

1
ݎߨ2√

ݏ݋ܿ
ߠ
2 ൤ܭூܿݏ݋

ଶߠ
2 −

3
ூூܭ2 ݊݅ݏ            ൨ߠ

߬௥ఏ =
1

ݎߨ2√2
ݏ݋ܿ

ߠ
2

+ߠ݊݅ݏூܭ] ߠݏ݋ூூ(3ܿܭ − 1)]
 (18) 

Based on this criterion, the crack extension is 
perpendicular to the direction of maximum 
principal stress of the crack tip. Therefore, 
considering Eq. (18), if  ߬௥ఏ = 0: 
௠ߠ݊݅ݏூܭ + ௠ߠݏ݋ூூ(3ܿܭ − 1) = 0 (19) 

௠ߠ  is the direction of crack propagation. This 
angle is calculated using the stress intensity factor, 
as follows: 

௠ߠ = ଵି݊݅ݏ ൥
ூூܭூܭ − ூூଶܭூூඥ8ܭ3 ଵଶܭ+

ூூଶܭ9 + ூଶܭ
൩ (20) 

This theory is a continuous criterion. In a 
discretized numerical process, it does not consider 
the alteration of the stress field in the crack 
propagation; Consequently, there is no certainty 
that the estimated crack path is unique. Therefore, 
a repetitive-improver plan is used, which considers 
the stress conditions at the developed crack tip. 
This scheme re-estimates the crack growth angle 
until the true path is attained [24]. In this plan, the 
modification angle (߮ ) is applied in order to 
determine the actual propagation direction of the 
crack. The procedure is shown for the nth step of 
crack extension in Figure 3. The modification angle 
(߮) is expressed based on the geometry: 

߮ =
௠(௡ାଵ)ߠ

2
 (21) 

in which, ߠ௠(௡ାଵ) is the crack propagation angle 
for the next increment that is calculated with the ߪ 
criterion. This scheme is repeated until the new 
modification angle is smaller than the previous 
modification angle. Indeed, in determining the 
progress direction of the nth step of extension, an 
iterative process is applied as follows: 

1.  The angle of crack growth (ߠ௠) is estimated in 
the first iteration using the ߪ criterion (Eq. 20.) 

2. The crack is extended in size ݀ܽ to the new tip 
(ܿ௜) along the direction calculated in the previous 
step, and then the new stress intensity factors are 
calculated. 

3. A new crack direction (ߠ௠(௡ାଵ)
௜ ) is predicted 

through the criterion and the new stress intensity 
factors. 

4. Then the modification angle is computed through 
Eq. 21. 

5. The angle of the nth step is modified as: 
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௠(௡ାଵ)ߠ
௜ାଵ = ௠(௡ାଵ)ߠ

௜ + ߮௜  (22) 

6. This procedure is iterated from phase 2 with the 
direction of the modified angle until the 
modification angle is greater than the previous 
modification angle. In this condition, the 
direction is the final propagation angle (ห߮௜ାଵห ≥
ห߮௜ห  ⇒ ௠(௡ାଵ)ߠ

௜ାଵ =  .(௙ߠ

The correction angle is negligible when the 
length of increment tends to zero. Consequently, 
the propagation path has a propensity to the 
direction of the tangent of the continuous track. 
The growth rate of a crack under cyclic loading is 
usually specified as a function of the stress 
intensity factor range (∆K). Many formulate for 
this relationship exist but the Paris-Erdogan laws 
[52] is used here as the earliest and simple 
formulation, which is written as: 
݀ܽ
݀ܰ

=  ௠ (23)(ܭ∆)ܥ

 
Fig 3. Applying the correction angle to improve the 

nth crack propagation increment of extension. 

where c and m are the materials constant, a is the 
crack length, and N is the number of load cycles. 
The range of the stress intensity factor for the 
mixed-mode condition is determined through the 
experimental equation (Eq. 24): 

ܭ∆ = ூସܭ∆) +  ூூଶ)଴.ଶହ (24)ܭ∆4

ூܭ∆  and ∆ܭூூ   is determined through the 
difference between the stress intensity factor of 
each mode, which is computed for a maximum and 
minimum load of a constant amplitude loading. For 
multiple cracks in a structure, the increment for 

each crack is defined based on the maximum 
growth rate, which leads to the following: 

∆ܽ = ∆ܽ௠௔௫
௠ܭ∆ܿ

ቀௗ௔
ௗே
ቁ
௖௥௜௧௜௖௔௟

 (25) 

ቀௗ௔
ௗே
ቁ
௖௥௜௧௜௖௔௟

 is the greatest crack propagation rate 
among all the different crack tips in the simulation. 
∆ܽ௠௔௫  is the maximum crack length increment, 
and it is equal to the reference increment, which is 
determined for each analysis. In a problem with 
various cracks, the life is assessed considering the 
tip with the highest propagation rate. Therefore, the 
fatigue life (in terms of the cycle) for each 
extension step is expressed by: 

∆ܰ = න
݀ܽ

௠(௠௔௫ܭ∆)ܥ
∆௔೘ೌೣ

଴
 (26) 

The fatigue growth processes of the proposed 
method take place when the crack propagation rate 
prevails the threshold stress intensity factor range 
௧௛ܭ∆) ); otherwise, propagation does not occur. 
Besides, in the condition that the maximum value 
of ∆ܭ of each extension step is greater than ܭூ௖ of 
material, the impermanent growth happens, which 
is called a material fracture, and the failure and 
process is stopped. The following phases present 
the fatigue crack growth procedure of the proposed 
methodology: 

1. During the displacement discontinuity analysis, 
the values of the stress intensity factor of each 
crack tip are determined through the normal and 
shear displacement discontinuities.  

2. The range of stress intensity factor is calculated 
for all crack tips. 

3. The crack growth rate of each crack tip is 
determined through the range of stress intensity 
factor. 

4. The life of the structure (based on the load 
cycles) required for crack length extension is 
assessed. In a problem involving different cracks, 
the number of load cycles is specified 
considering the crack with the highest growth 
rate. 

The increments of extension for each crack tip are 
determined considering their growth rate.  

5. The crack propagation direction is determined 
based on the ߪ -criterion and according to the 
values of the stress intensity factor of each crack 
tip. 

6. The position of the crack tips is updated 
according to their increment and the propagation 
angle. 
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7. A new DDM analysis is accomplished, and the 
new stress intensity factors and crack 
propagation path for the next progression step are 
calculated. 

8. Using the growth direction of the next step, the 
propagation angle of the nth step is modified. 

9. The growth directions of the cracks are updated, 
and this process is repeated from phase 5 to get 
the most suitable propagation path for all the tips. 

4. Numerical applications for validation of proposed 
method 

In this section, the numerical examples have been 
exhibited that are used as validation and represent 
the application of the method explained in the 
previous section. The first example is about the 
propagation of a single crack under cyclic loading. 
This example investigates the crack growth in the 
mixed mode conditions, and also considers the 
influence of the modified ߪ -criterion in the 
propagation path. The second example examines 
two parallel-interior cracks located at a different 
level. As described in the following, each 
application is developed as a fatigue crack 
propagation problem that predicts the crack growth 
path and domains life based on cycles using the 
proposed method. 

4.1. Propagatioon of single crack under cyclic 
load 

This application includes the fatigue growth of a 
rectangular plate consisting of an inclined crack, 
which is exhibited in Figure 4a. The cyclic load is 
supposed as ݔܽ݉ߪ = ܽܲܯ 172.37  and ratio ܴ =
 0.1  (Figure 4b). The maximum load was 
considered in a way that the radius of the plastic 
area around the crack tip was nearly less than 10% 
of the specimen dimensions. Thus the hypothesis 
of small-scale yielding was utilized. Figure 4 
represents the dimensions and boundary conditions 
of the rectangular specimen. The dimensions 
utilized in the numerical modeling are hight = 
304.8 mm, width = 76.2 mm, and crack length (2a) 
= 14.2 mm. The angle of the inclined crack 
respecting to the horizon is ߛ = 60௢ , and the 
material parameters are assumed as E = 128 GPa 
and ߥ =  0.31. Besides, the material constant for 
the fatigue law is ܥ = 1.5 × 10ିଽ, ݉ = 3.8. 

In order to accomplish the numerical analysis, the 
boundaries was discretized into 46 elements, while 
the plane of the crack was divided into 8 elements; 
two of them were the crack tip elements. Besides, 
a size of increment for crack tip is equal to 0.5 mm, 
which  is utilized to perform the crack propagation 
analysis under cyclic loading.  

 
Figure 4. Details of single crack under cyclic loading (a) Geometry and boundary conditions, (b) Distribution of 

applied cyclic loadin. 

Figure 5. represents the crack propagation path 
for both crack tips through the proposed technique 
during 15 growth increments. These analyses were 

performed for the increments with the length of 0.5 
mm, in which the crack growth direction was based 
on the standard and modified criteria. The data of 
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the experimental test of this specimen is also 
presented in this figure [53]. Due to the symmetry 
conditions of the problem, the results of the 
numerical simulations for both crack tips (left and 
right) are similar, while the empirical data shows a 
partial difference. As it is clear, the results of the 
two criteria (standard and corrected) do not match, 
and after ten increments of growth, these 
differences are entirely clear. Among these results, 
the growth path curve of the modified criterion is 
much more compatible with the data of 
experimental examination. 

Figure 6. exhibits the analysis based on the 
increments of 1.25 mm in length. In this scenario, 
the cracks passed the growth path using six 

increments. The progressive step has been 
increased for 2.5 times. Nevertheless, the results of 
the modified criterion still have a high accuracy 
and do not differ much from the experimental 
results. 

For a better comparison, the data for both 
analyzes of the right crack tip are displayed at a 
higher magnification in Figure 7. The figure 
demonstrates that usage of the modified criterion in 
the fatigue crack growth with different sizes of 
increment ultimately leading to a single crack path. 
In the simulations in which the correction 
coefficient was not applied, the higher the length of 
increment, consequently, the higher error in the 
crack growth path.  

 

 
Figure 5. crack trajectory with incremental growth of 0.5 mm implemented by ࣌-criterion, modified ࣌-criterion, 

and experimental tests 

 
Figure 6. Crack trajectory with incremental growth of 1.25 mm implemented by ࣌-criterion, modified ࣌-

criterion, and experimental tests. 
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Figure 7. Comparison of growth trajectory of single crack under cyclic loading with different lengths of 

increment and different criteria for crack propagation. 

Figure 8 displays the life determined by the 
proposed DDM. This curve is based on an 
incremental length of 0.5 mm. Each crack tip 
through the 7300 load cycles extended to the length 
of 14.612 mm. Due to the symmetry of the 
example, the growth rates are also the same for 
both crack tips in the numerical results. This figure 

also exhibits the results determined by the 
empirical tests. The results of the two tips are 
slightly different, in a way that the left crack tip 
extended to 13.972 mm and the right tip extended 
to 13.932 mm. The results acquired from the DDM 
analysis have a good agreement with the 
experimental data. 

 
Figure 8. Life estimation of single crack under cyclic loading-incr of 0.5 mm. 

4.2. Crack propagation in domain with two 
internal cracks 

The second example considers the two internal, 
parallel crack propagation in the rectangular 
specimen. The dimension and boundary condition 

are represented in Figure 9a, and the length of the 
two cracks is 2ܽ =  10 ݉݉ . The horizontal 
spacing between the two cracks is 15 mm, and the 
vertical spacing is 5 mm. A cyclic tensile load with 
a magnitude of 100 MPa is exerted at the upper 
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edge, while the displacements at the lower edge are 
restricted in both directions. This example 
contained four crack tips. Therefore, four crack tip 
elements were used along the crack surfaces 
(Figure 9b). Increments with a length of 2 mm were 
applied to perform the crack growth analysis. The 
material constants for the fatigue crack growth 

analysis are ܥ = 2.0 × 10ି଼  and ݉ =  3.32. The 
elasticity modulus, Poisson’s ratios, fracture 
toughness, and threshold stress are considered as 
74 GPa, 0.3, 60 ܽܲܯ√݉ , and 2 ܽܲܯ√݉ , 
respectively.  

 
Figure 9. a) Tensioned specimen with two internal cracks, b) Magnification in cracks and crack tip element. 

Figure 10. illustrates the crack path along 7 
incremental growth. Each crack surface consists of 
two crack tip elements. Due to the symmetric 
conditions of the problem, the tips of the cracks are 
similar in pairs (T11-T21 and T12-T22). At the 
beginning of the growth process, all four crack tips 
show a similar initial growth rate. These conditions 
are observed in the first increment. After this step, 
the tips T11-T21 developed a higher growth rate 

than the tips T12-T22. Hence, different lengths of 
increment were allocated to both tips of a crack. As 
shown in Figure10, the length of crack 
development for each crack is less than 4 mm in 
one step. After the sixth growth step, the high 
values of the growth rate, and consequently, the 
higher growth increment belong to the crack tips 
T12-T22. 

 
Figure 10. Crack path of  two-internal crack problem. 
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The progress of the stress intensity factor values 
during the crack growth process is demonstrated in 
Figure 11, in which the curves indicated that mode-
I was prevailing. At the initial propagation 
procedure, the ratio |ܭூூ| ⁄ூܭ , which is responsible 
for the crack growth deviations, is in the range of 
0.003-0.02 for all crack tips. Besides, after the third 
increment, the crack tips T11 and T21 began to lean 
towards each other, and the ratio |ܭூூ| ⁄ூܭ  

developed to 0.03-0.2. The increase in this ratio 
also caused the crack deviation. Figure 11 also 
presents the XFEM results [54]. The trend of all 
graphs is the same. The stress intensity factors 
values achieved by the proposed numerical 
approach are in good agreement with the values 
provided by XFEM for the tips T12-T22. Due to 
the deviation, the results of T11-T21 show slight 
differences. 

 
Figure 11. Stress intensity factor variation with crack length for two-internal crack problem. 

Finally, Figure 12 illustrates the life acquired by 
the proposed numerical approach for two values of 
increment length (1 mm and 2 mm). In both results, 
the life of about 6500 load cycles was obtained. 
Good compliance was observed between the results 
of different increment lengths. Besides, Figure 12 
includes the fatigue life curves for both crack tips 
(T11-T21, T12-T22) using XFEM, and life has 
been calculated separately for each crack tip. They 

show more cycles than DDM since the life 
prediction of the proposed method has been 
determined considering the crack tip with the 
highest growth rate at each growth step. This 
example exhibited the capability of the proposed 
numerical approach in simulating the fatigue crack 
growth of domains that included cracks that had 
different growth rates. 

 
Figure 12. Specimen life prediction for two-internal crack problem-DDM, with two lengths of increment (1 

mm and 2 mm), XFEM. 
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5. Conclusions 
This work introduces a computational program 

through the displacement discontinuity method to 
accomplish the incremental crack propagation of 
cracked specimens under cyclic loading. The 
displacement discontinuity was utilized in order to 
evaluate the stress intensity factors. An 
experimental fatigue law was applied to model the 
crack incremental growth for domains that had 
cracked with different growth rates.  

The crack path was determined using the 
maximum circumferential stress criterion. A 
correction procedure was used for this criterion in 
order to improve the crack propagation path. This 
system helps to obtain approximately a single 
growth path in the analysis with different 
incremental lengths. The correction angle depends 
on the increment of extension, and through this 
parameter, the growth angle of increment will be 
tangent to the continuous growth path of the crack. 
Indeed, utilizing this feature has made it possible to 
determine the growth path of crack fatigue more 
accurately. 

Two examples were tested through the proposed 
method, demonstrating the performance in 
simulation of fatigue under cyclic load. The first 
was a case in which a single inclined crack was in 
the mixed-mode loading condition, and the other 
was considered as the two internal, parallel cracks 
that contained tips with different growth rates. This 
technique modeled the propagation of cracks with 
different growth rates in a domain accurately. 
Furthermore, the sensitivity of the results to the 
size of the increment was investigated. In the 
conditions that the modified ߪ -criterion was 
applied, the two lengths of initial increment 
indicated a good correlation in growth paths. Two 
different sizes caused low differences in life and 
crack growth direction. Indeed, this numerical 
technique has provided an accurate estimation of 
life (based on cycles) and mixed-mode fatigue 
cracks growth under cyclic loading by combining 
the DDM principles, fatigue laws, and appropriate 
growth path theory. Despite all the advantages of 
DDM, the limitation of this method must be 
considered in modeling the cracks with a lower 
growth rate. Besides, since the LEFM theory is 
applied for the crack growth process, the 
restrictions of this principle still govern the 
method. These issues can be the basis for a future 
research work.  
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  چکیده:

شود. روش ناپیوستگی جابجایی در تحلیل هاي شکننده الاستیک خطی، معرفی میسازي انتشار ترك خستگی در محیطدر این مطالعه، یک روش موثر جهت مدل
با  گردد. این روندسازي میهاي درجه دوم گسستهاستفاده از المانها با بینی ضرایب شدت تنش مجاور نوك ترك، مرزگیرد و به منظور پیشمورد استفاده قرار می

رمال و نشود. جهت محاسبه ضرایب شدت تنش مود ترکیبی، مقادیر ناپیوستگی جابجایی استفاده از اصول مکانیک شکست الاستیسیته خطی دو بعدي اجرا می
بندي مجدد نیست. این روش به دلیل سادگی و براي هر افزایش رشد، نیازي به فرایند مش گیرد. رشد ترك تدریجی استبرشی نوك ترك، مورد استفاده قرار می

سبه میدر مش صلی محا ستفاده از تئوري حداکثر تنش ا شد ترك با ا سبت به روش المان محدود برتري دارد. جهت ر ها از یک روش گردد. در این تحلیلبندي، ن
هاي مختلف رشد تدریجی، تاثیري بر مسیر رشد ترك ندارد. نتایج چندین مثال با شود. از این رو، طولاستفاده میتکرار، جهت تخمین مسیر صحیح انتشار ترك 

سه شان میهند شان دهد. دقت نتایج ن ستگی ن شد ترك خ ست تا کارایی روش را براي تجزیه و تحلیل ر شده ا سیون براي هاي متفاوت ارائه  دهد که این فرمولا
 خستگی در شرایط بارگذاري مود ترکیبی مناسب است.سازي رشد ترك مدل

  انتشار ترك خستگی، شرایط مود ترکیبی، محدوده ضریب شدت تنش، بارگذاري سیکلی. کلمات کلیدي:
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