Document Type : Original Research Paper
Authors
Department of mining engineering, Imam Khomeini international university, Qazvin, Iran
Abstract
Concrete is among the widely used materials in all industries and mineral and civil activities worldwide, highlighting its significance. Most natural and non-natural phenomena can influence the concrete's physical and mechanical properties, causing many irreparable damages. Acid rain is a natural inevitable phenomenon, particularly in industrial zones with high pollution percentages.
This work investigates the effect of acid rain on the concrete specimens containing micro-silica and limestone powder. To this end, the concrete specimens are divided into six groups. Throughout this paper, CN represents the concrete without micro-silica and limestone powder under no-rain conditions, CO is the concrete without micro-silica and limestone powder under normal rain conditions, CA is the concrete without micro-silica and limestone powder under acid rain conditions, CMLN is the concrete containing micro-silica and limestone powder under no-rain conditions, CMLO is the concrete containing micro-silica and limestone powder under normal rain conditions, and CMLA shows the concrete containing micro-silica and limestone powder under acid rain conditions. The measured physical properties are the effective porosity, dry density, water absorption, and velocity of longitudinal waves. The mechanical properties including the Brazilian tensile strength, uniaxial compressive strength, triaxial compressive strength, cohesion, and internal friction angle are also measured. For the samples of CN and CMLN, they are tested under no rainfall conditions, whereas the samples of CA and CMLA are tested after 20 cycles of acid rain (pH = 2). The samples of CO and CMLO are also tested after undergoing 20 normal rain cycles (urban water with pH = 7). In each test cycle, there is 1 hour of rain and 1 hour of no rain. The results obtained show that adding micro-silica and limestone powder improves its properties so that the decrease in the effective porosity, longitudinal wave velocity, dry unit weight, water absorption, Brazilian tensile strength, uniaxial compressive strength, cohesion, and internal friction angle of the specimens of CMLA is less than those for the specimens of CA.
Keywords