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 The surface settlement is an essential parameter in the operation of mechanized 
tunneling that should be determined before excavation. The surface settlement 
analysis caused by mechanized tunneling is a geo-technical problem characterized by 
various sources of uncertainty. Unlike the deterministic methods, the reliability 
analysis can take into account the uncertainties for the surface settlement assessment. 
In this work, the reliability analysis methods (second-order reliability method 
(SORM), Monte Carlo simulation (MCS), and first-order reliability method (FORM)) 
based on the genetic algorithm (GA) are utilized to build models for the reliability 
analysis of the surface settlement. Specifically, for large-scale projects, the limit state 
function (LSF) is non-linear and hard to apply based on the reliability methods. In 
order to resolve this problem, the GMDH (group method of data handling) neural 
network can estimate LSF without the need for additional assumptions about the 
function form. In this work, the GMDH neural network is adapted to obtain LSF. In 
the GMDH neural network, the tail void grouting pressure, groundwater level from 
tunnel invert, depth, average penetrate rate, distance from shaft, pitching angle, 
average face pressure, and percent tail void grout filling are used as the input 
parameters. At the same time, the surface settlement is the output parameter. The 
field data from the Bangkok subway is used in order to illustrate the capabilities of 
the proposed reliability methods. 
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1. Introduction 
The surface settlement, particularly in big cities, 

is one of the most dangerous parameters in the 
subways and other excavations [1,2]. The ground 
settlements due to the construction of tunnels can 
cause a significant damage to the buildings (see 
Figure 1). Thus before the excavation, a 
theoretical prediction of the surface settlement is 
often conducted. Any tunnel eventually disturbs 
the initial stress field, which contributes to the 
settlement. The ground motions may be broad 
enough to disturb the neighboring structures. In 
urban areas, it is necessary to protect the existing 
buildings from the problems caused by tunneling 
[3]. Efforts have been made in the recent decades 
in order to develop some solutions for settlement 
caused by tunneling. For example, Atkinson, Potts 

[4] have studied the effect of the burial depth on 
the surface settlement above shallow excavations 
driven in the sand and clay. Hamza et al. [5] have 
presented a methodology for estimation of the 
surface settlement in the Cairo Metro. Chi et al. 
[6] have proposed empirical relations in order to 
forecast the tunneling-induced ground movement 
in the silty sand and silty clay. In the study of 
analytical solutions, Chou, Bobet [7] have utilized 
some tunnels in order to assess estimations for 
shallow tunnels in the saturated soil from a 
practical explanation. Also for deep and shallow 
tunnels in clays, Park [8] has employed elastic 
solutions in order to estimate the tunneling-
induced undrained ground movements. Ocak, 
Seker [9] have applied different methods 
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including the Gaussian processes (GP), support 
vector machines (SVM), and artificial neural 
network (ANN) to predict settlement due to tunnel 
construction. Mohammadi et al. [10] have 
employed multiple regression and ANN to 
estimate surface settlement in a subway tunnel in 
Iran. Hasanipanah et al. [1] have presented a 
hybrid model of ANN improved by particle 
swarm optimization (PSO) to estimate maximum 
settlement due to tunnel construction. Pourtaghi, 
Lotfollahi-Yaghin [3] have proposed a method of 
settlement estimation, which is based on coupling 
ANN and wavelet (Wavenet). Neaupane, Adhikari 
[11] have presented a way to estimate ground 
movement around tunnels with the help of input 
parameters, horizontal ground movement, and 
surface settlement. Yao et al. [12] have presented 
a model based on SVM for estimation of the 
tunnel surrounding rock displacement. Wang et al. 
[13] have suggested a deformation estimation 
model based on the least square SVM, genetic 
algorithm, and Markova theory. Santos Jr, 
Celestino [14] have developed an ANN model for 
the prediction of surface settlement in the São 
Paulo subway. Suwansawat, Einstein [15] have 
proposed an ANN model to forecast the 

settlement caused by mechanized tunneling. Xu, 
Xu [16] have presented the grey correlation 
methods to calculate the possibility of metro-
caused soil settlement. With the development of 
numerical methods and computer hardware, the 
finite element (FE) is a common technique used 
for estimation of surface settlement due to a 
tunnel construction [17]. In using tunneling 
simulation, FE can often compute any stress 
redistributions and deformations without 
constructing real tunnels [3]. Limitations of 
numerical approaches lie in the absence of 
uncertainty in the variables including support 
structure parameters and rock/soil strength [18]. 
In this paper, in order to address the above 
limitations, the probabilistic methods were 
developed for reliability analysis of settlement 
induced by mechanized tunneling. Also with the 
computational intelligence development, the 
methods employed to estimate the limit state 
function (LSF) and compute the failure 
probability (PF) in reliability approaches include 
the first-order reliability method (FORM), 
response surface method, Monte Carlo simulation 
(MCS), second-order reliability method (SORM), 
etc [19-23].  

 
Figure 1. Ground settlement due to tunnel construction. 

In this work, a new methodology that combines 
the merits of the genetic algorithm (GA) and 
GMDH (group data handling method) neural 
network-based FORM, SORM, and MCS methods 
for reliability analysis of surface settlement 
caused by mechanized tunneling are proposed. In 
this research work, the GMDH neural network is 
used to approximate LSF without more 
assumption of the function form. The field data 
from the Bangkok subway project in Thailand is 

used to illustrate the capabilities of the reliability 
methods.  

2. Basic Theory 

Several techniques applied in this paper include 
the GMDH neural network, GA, and reliability 
methods (FORM, SORM, and MCS). A brief 
overview of these techniques is presented here. 
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2.1. Reliability methods 
2.1.1. FORM and SORM 

The reliability issues are commonly defined by 
LSF (g(x)).  1 2, ,..., nX X X X  is a random 
vector that include the simple random parameters 
that describe loads, rock/soil properties, 
geometrical quantities, etc. The function  g x  is 
laid down as follows: 

 
0
0

for the safe state
g x

for the failure state


 
 (1) 

The hyperplane   0g x   is named LSF. The 
function can be written as follows (in the 
settlement analysis): 

   max 1 2, ,..., ng x u U X X X   (2) 

where U is the surface settlement of a given 
point induced by a collection of arbitrary 
parameters 1 2, ,..., nX X X  such as the 
subsoil/rock model parameters, geometrical 
properties, and loads, and umax stands for a 
maximal permissible settlement. In this case, 
  0g x   (failure) means the excess of the umax 

specified. PF is utilized in the following equation: 

  0

( ) .F x
g x

p f x dx


   (3) 

where xf indicates a multi-dimensional joint 
PDF (probability density function). In the special 
case, if X (random vector) is a Gaussian random 
vector, a coordinate system transformation is 
defined as the standardization: 

  , 1,..., .i i
i

X i

x E X
y i n




   (4) 

where  iE X  is the expected value of Xi and 

X i is the standard deviation. Mapping the LSF 

  0g x  accordingly is as follows: 

( ) ( ( )) 0G y g x y   (5) 

  
0 0

0

( ) ( ),F
G y

p y dy 


    (6) 

where 0  is the one-dimensional standard 
Gaussian probability cumulative function (PCF), 
  is the hyperplane ( ) 0G y   distance, and 0  is 
the n-dimensional standard Gaussian PDF. 

The pF value is hardly reached in the most 
fundamentally exciting situations, where either 
non-Gaussian PDFs or non-linear LSFs appear. 
Then an approximate technique is required to be 
utilized. Among these techniques, SORM and 
FORM are most usual in utilizing [24-26]. Some 
mapping methods of the coordinate system must 
be used instead of Equation 4. In this mapping, X 
is changed into the Y: 

( ).Y Y X  (7) 

Therefore, PF equals: 

  
0

0

( ) ,F
G y

p y dy


   (8) 

In FORM, LSF in the standard normal space is 
substituted with *( ) 0G y y    (tangent 

hyperplane) at *y (the so-named design point) 
with the minimum distance from the origin (see 
Figure 2), and PF is estimated as: 

 *
0 0

( ) 0

( ) ( ),F
G y y

p y dy 
  

    
(9) 

where  is the reliability index and 0  is 
similar to Eq. (6).  

In SORM, LSF is fitted with a quadratic plane 
in the nearby y*, and the right-hand side of Eq. (9) 
is multiplied by a factor of certain correction [27], 
affected by ( ) 0G y   at y*. Next, by inverting 
Equation (9), SORM can be calculated by: 

 1
0SORM F SORMp     (10) 

The most significant issue in SORM and FORM 
lies in finding the *y . Therefore, the issue can be 
described as follows: 

2 .
: ( ) 0

TMinimize y y y
subject to G y

  


 (11) 

In this work, GA is utilized to solve the 
optimization problem.  
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Figure 2. Schematic performance of SORM and FORM.  

2.1.2. MCS  
MCS utilizes the randomly created input 

parameter samples, records the time numbers that 
failure occurs, and calculates PF after numerous 
deterministic analysis repetitions. This technique 
is easy, simple, and robust to utilize. Thus the 
method is used in order to evaluate the other 

methods of analysis. Many papers have been 
published on the use of MCS (e.g. [28-32]) that 
how it can be utilized to simulate the issues. In 
MCS, violation of the limit state is expressed by 
the condition 1 2( , , ..., ) 0ng x x x  , and PF is 
described by the following [33]: 

 

 
1 2

1 2

1 2 , ,..., 1 2 1 2
( , ,..., ) 0

( , ,..., ) 0 ( , ,..., ) ...... n
n

F n x x x n n
g x x x

P P g x x x f x x x dx dx dx


       (12) 

 
where 

1 2, ,..., 1 2( , ,..., )
nx x x nf x x x is the joint 

PDF, and 1 2( , , ..., )nx x x is the random 
variables values. 

MCS allows an approximation of PF to be 
calculated, as follows: 

1 2
1

1 ( , ,..., )
N

F
F n

i

NP I x x x
N N

   (13) 

where the total sample number is N, the sample 
number found in the failed state is NF (see Figure 
3), and 1 2( , , ..., )nI x x x  is a function described 
by: 

1 2
1 2

1 2

1 ( , ,..., ) 0
( , ,..., )

0 ( , ,..., ) 0
n

n
n

if g x x x Failure state
I x x x

if g x x x Safe state


  
 (14) 
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Figure 3. A schematic presentation of MCS process [32]. 

2.2. Genetic algorithm for reliability analysis 

GA is a stochastic optimization method 
presented by Holland [34]. GA starts with a 
randomly created population, and uses three 
operators in order to find the best solutions: 
reproduction, mutation, and cross-over [35]. The 
cross-over combines two chromosome features to 
create the off-spring. The mutation generates new 
chromosomes by arbitrarily changing the genes of 
chromosomes. In a large solution domain, GA is 
an active algorithm for searching that converges 
easily to find the best solution.  

In this work, the problem in Eq. (11) is non-
linear, used by GA in order to solve the 
optimization problem. GA fundamentally involves 
three stages:  

1. random variables decoding/coding into strings; 

2. for each solution, calculating the cost/fitness;  

3. using the genetic operators to create a solution 
string for the next generation.  

Based on the reliability index ( ) value, the 
fitness/cost of each string is calculated. A small 
value corresponds to a reasonable cost/fitness. 
Therefore, the fitness/cost function is described as 
1


. The value is penalized if the solution 

violates the constraints. In GA, the searching 
process involving the three genetic operators 
(reproduction, cross-over, and mutation) was 
replicated, and the cycle continued until: 

(1) The v ra e ege  does not indicate a noticeable 
change over the former product (γ can be set to 
0.95): 

( 1)k generation k generation
average average    

(2) The first three separate βminimum of the new 
creation remain the same for the previous creation. 

The potential of applying GA for the reliability 
analysis has been highlighted in many studies. 
Tun et al. [36] have used GA for the reliability 
analysis of several slopes. In this work, a GA was 
developed to solve this optimization problem 
considering the limit equilibrium approach to 
search for several failures. Zeng et al. [37] have 
applied GA and fully specified slip surfaces for 
the reliability analysis of layered soil slopes. In 
this work, the Spencer's technique was utilized to 
calculate the safety factors of trial slip surfaces, 
and FORM was used to efficiently calculate their 
reliability. A custom-designed GA was used to 
search all the representative slip surfaces. Juang, 
Wang [38] have used multi-objective GA for the 
reliability-based robust geotechnical design of 
spread foundations. 

2.3. GMDH neural network for reliability 
analysis 

LSF can not be directly represented in the 
reliability analysis of complex engineering 
problems. As mentioned in the previous section, 
GA is employed in order to evaluate the reliability 
of complicated engineering problems, indirectly 
estimating LSF by the numerical techniques such 
as the FE process. Limitations of the numerical 
approaches lie in the absence of uncertainties of 
factors such as cohesion, friction angle, young's 
modulus, in situ stress, and Poisson's ratio of 
rock/soil. It is not possible to utilize these 
methods. In this work, the GMDH neural network 
is used to approximate LSF.  

The GMDH neural network has been proposed 
by Ivakhnenko [39]. In a wide range of areas such 
as rock/soil mechanics, the GMDH neural 
network is utilized for pattern recognition, 
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optimization, and forecasting. A neuron collection 
created by a second-order polynomial is contained 
in the GMDH neural network [40]. The network 
combines neuron-derived second-order 
polynomials, defines the function ˆf with  ŷ
(output)  for  1 2 3, , ,..., nx x x x x  (set  of  
inputs) compared  to  the  measured  output (with  
the  least  error),  and therefore, the  M  data  
including  one output  and n inputs, the actual 
results are presented as follow: 

 1 2 3, , ,..., 1,2,...,i i i i iny f x x x x i M   (15) 

For any given input vector, it is now possible to 
train the GMDH neural network to estimate ˆ iy  
that is: 

 1 2 3
ˆˆ , , ,..., 1,2,...,i i i i iny f x x x x i M   (16) 

The error square between the measured and 
estimated values should be minimized by the 
GMDH neural network: 

 
2

1 2 3
1

ˆ , , ,..., min
M

i i i in i
i

f x x x x y


     (17) 

It is possible to define the relation between the 
output and inputs as follows: 

 
1 1 1 1 1 1

0 ...i i ij i j ijk i j k
n n n n n n

y a a x a x x a x x x        (18) 

  2 2
0 1 2 3 4 5ˆ ,i j i j i j i jy G x x a a x a x a x x a x a x        (19) 

 
By the regression methods, ia  in Eq.  (19)  is  

determined  so  that  the difference y (measured) 
and ŷ (predicted) is reduced for ix and jx (input 
variables). The coefficients are achieved for each 
built neuron (function iG ) in order to minimize 
the overall neuron error. Thus: 

 2

1 min

M

i i
i

y G
E

M



 


 
(20) 

Double combinations are made from n inputs in 
the GMDH neural network, and all the neurons 
coefficients are achieved utilizing the least-
squares technique [41]. Thus: 

 1
2 2
n n n  

 
 

  (21) 

The neurons are built as follows in the second 
layer: 

  , , 1,2,..., & , 1,2,...,i ip iqy x x i M p q M   (22) 

In the following: 

A a Y  (23) 

where A is the unknown coefficients vector of 
the quadratic equation presented in Eq. (19). 

 0 1 2 3 4 5, , , , ,a a a a a a a  (24) 

 1 2 3, , ,..., T
MY y y y y  (25) 

The observation is the outputs. Thus: 
2 2

1 1 1 1 1 1

2 2
2 2 2 2 2 2

2 2

1

1

1

p q p q p q

p q p q p q

Mp Mq Mp Mq Mp Mq

x x x x x x

x x x x x x
A

x x x x x x

 
 
 

  
 
 
 

     
 (27) 

The least-squares method of regression method 
solves the equations as follows: 

  1T Ta A A A Y


  (27) 

A schematic representation of the suggested 
GMDH neural network is shown in Figure 4. 
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Figure 4. A schematic representation of the proposed GMDH neural network. 

3. Approximate LSF using GMDH Neural 
Network 
3.1. Studied area and data 
The dataset used in this work was collected from 
the open source literature [15] in order to evaluate 
the relationship between the output set and the 
inputs. The datasets used to generate the database 
was collected from the Bangkok subway. This 
project was split into two tunnel parts, namely the 

south section and the north section. Each dataset 
contains the variables of pitching angle (PA), 
geology at tunnel invert, distance from shaft (DS), 
average penetrate rate (AP), average face pressure 
(AFP), grouting pressure (G), groundwater level 
from tunnel invert (Invert to WT) (IWT), geology 
at tunnel crown, depth (D), grout filling (GF), and 
measured surface settlement (SS). The descriptive 
statistics of all datasets are shown in Table 1.  

Table 1 Statistical description of dataset utilized in this paper 
Parameter Average Min Max 

D (m) 22.05 17.89 24.82 
DS (m) 1320.27 33.60 3055.20 
IWT (m) -3.20 -5.97 0.96 
AFP (KPa) 54.73 14.50 131.00 
AP (mm/min) 42.63 20.10 76.85 
PA (deg) 0.05 -1.38 1.43 
G (bar) 2.78 2.30 7.40 
GF (%) 125.96 70.00 224.00 
SS (mm) -28.09 -6.25 -60.5 

 
3.2. Determining continuous probability 
distribution of input variables 

In the stochastic models, a continuous 
probability distribution (CPD) was considered for 
each one of the input variables. In this research 
work, data processing was performed using the 
Easy-Fit software in order to find the suited 
distribution [42]. The Kolmogorov–Smirnov 

method was utilized to choose the best 
distributions. As the result of data processing, four 
best-fitted distributions (gen extreme value, 
gamma, lognormal and, gen pareto) are shown in 
Table 2. Furthermore, in order to have a better 
illustration, the probability distribution functions 
of the input variables utilized in the reliability 
analysis are illustrated in Figure 5. 
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Figure 5. Continuous probability distribution of input variables used in reliability analysis. 
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Table 2. Continuous probability distribution of input variables. 
Parameter (3) Parameter (2) Parameter (1) Distribution Random variable 

21.7 2.17 -0.63 Gen extreme value a D (m) 
- 711.92 1.85 Gamma b DS (m) 

-5.82 3.66 -0.4 Gen pareto a IWT (m) 
- 19.8 2.19 Gamma AFP (KPa) 
- 3.88 10.97 Gamma AP (mm/min) 

-1.39 2.85 -0.98 Gen pareto PA (deg) 
2.46 0.06 0.83 Gen pareto G (bar) 

- 0.19 4.8 Lognormal c GF (%) 
a Parameters of “gen extreme value” and “gen pareto” distribution are k, σ, and μ. 
b Parameters of “gamma” distribution are a and b. 
c Parameters of  “lognormal” distribution are μ and σ. 

 

3.3. Evaluation of GMDH neural network 
performance 

In order to consider the performances of the 
GMDH neural network model, the root mean 
square error (RMSE) and the correlation 
coefficient (R2) were selected to be the measure of 
accuracy [43-49]. RMSE and R2 could be 
described as follows: 

2

1

1 ˆ( )
n

k k
k

RMSE t t
n 

   (28) 

2

2 1

2

2 1

1

ˆ( )
1

ˆ

n

k k
k

n

kn
i

k
k

t t
R

t
t

n








 








 
(29) 

Let tk be the measured (actual) value, k̂t be the 
estimated value, and n be the observations 
number. 

3.4. Explicit formation of approximate LSF  
For the reliability analysis, choosing the LSF 

required in its closed form is preferred. 

Unfortunately, there is always no closed form. In 
this work, the GMDH neural network was applied 
to approximate LSF. Without any expectation of 
the function form being required, the GMDH 
neural network strongly resembles the non-linear 
relationship between the input variables and the 
surface settlement. Therefore, a professional 
GMDH neural network program, GMDH Shell, 
was utilized to run the GMDH neural network. 
This software does not require the initial data 
normalization, and noticeably reduce the 
processing time. The GMDH shell software can 
provide a separate formula based on the input 
variables. For an approximate LSF, a data 
collection containing 49 data points were used, 
while 39 data points (80%) were used for the 
approximate LSF, and the remaining data points 
were used for calculation of the accuracy degree. 
After modeling, LSF by the software is given by 
Eq. (30). The variables utilized in the GMDH 
neural network process is shown in Table 3. Also 
the measurement of errors (provided by the 
GMDH shell software) and the comparison of 
measured with estimated data is presented in 
Table 4 and Figure 6. Also the correlation 
between the measured and estimated values of 
surface settlement is shown in Figure 7. 
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(30) 
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Figure 6. Comparison of measured values with those of GMDH neural network estimates. 

 
Figure 7. Correlation between estimated and measured of surface settlement by GMDH neural network (a) 

training, (b) testing. 

Table 3. Parameters used in GMDH neural network 
process. 

Parameter Value 
Core algorithm GMDH neural network 
Neuron function Quadratic polynomial 
Max number of layers 3 
Number of neurons 500 
Validation strategy 500 
Reorder observation Odd/even 
Test data (%) 20 

Table 4. Error measurement by GMDH neural 
network software. 

Description Training Testing 
Number of observations 39 10 
Root mean square error 
(RMSE) 6.737 8.411 

Coefficient of 
determination (R2) 0.9535 0.9196 
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3.5. Analysis of sensitivity 
The analysis of sensitivity evaluates the 

influence of each input variable on the output 
variable. In this work, the analysis of sensitivity 
was done using the relevant software. The 
analysis of sensitivity for the GMDH neural 
network model is shown in Figure 8. As it can be 
seen in this figure, the variables PA and GF have 
maximal effects on the output with 16.92%. 

4. Reliability analysis of surface settlement 
caused by mechanized tunneling 

After getting LSF in the previous section, GA-
FORM, GA-SORM and, MCS (based on GMDH 
neural network) were used to evaluate the 
reliability indices β and PF for the surface 
settlement caused by mechanized tunneling. The 
flow chart of the reliability analysis procedures 
(proposed in this work) is shown in Figure 9. It 
should be noted that based on the limiting 
settlement (SSlimit =50 mm) and Eq. (30), it can be 
written as g(x)= SSlimit - SS. In order to verify the 
accuracy of GA-FORM and GA-SORM, the 
calculation results are compared with the MCS 
results; the results of the comparison are shown in 
Table 5. The calculating procedure was repeated 
for ten times for each approach listed in Table 5.  
As presented in Table 5, the reliability indices 
considered by GA-FORM, GA-SORM, and MCS 

(based on GMDH neural network) are almost the 
same, indicating that the proposed GA-FORM and 
GA-SORM are reliable. Hence, in this paper, the 
proposed reliability methods can find the best 
solution of β stably whether the performance 
function is implicit/explicit; however, the 
computing cost of GA-SORM and GA-FORM is 
meaningfully less than MCS. The convergence 
generation numbers are 200 for GA-SORM and 
GA-FORM. Obviously, GA-SORM and GA-
FORM have many merits of efficiency, stability, 
flexibility and, accuracy, and they can be utilized 
for the reliability analysis of surface settlement 
caused by mechanized tunneling. Of course, one 
should keep in mind that in the reliability analysis 
of any conditions, MCS can be utilized. [50], and 
its calculation error is only related to the sample 
number and its variance [51]. In this work, the 
upper and lower limits of sample size for surface 
settlement under different confidence levels were 
forecasted before MCS simulation. Therefore, the 
sample size is 600,000, sufficient for an 
acceptable calculation precision (see Table 6). It 
should be noted that for GA-FORM and GA-
SORM, the GA parameters (see Table 7) are kept 
constant throughout the whole procedure of 
reliability analysis, and the converge process of 
reliability index by GA is illustrated in Figure 10.  

 
Figure 8. Relative importance of variables on output in GMDH neural network. 

Table 5. Results from different reliability methods for surface settlement caused by mechanized tunneling. 
Iteration number PF b βa Design point LSF Method 

600,000 0.0608 - - GMDH neural network MCS 
200 0.06113 1.5455 [20.56 , 33.60 , -3.36 , 33.76 , GMDH neural network GA-FORM 
200 0.05655 1.5455 49.69 , -0.31 , 2.49 , 104.05] GMDH neural network GA-SORM 

a β is reliability index. 
b PF is probability of failure 
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Table 6. PF for 8 different values of sample size in 
MCS. 
Probability of failure 

PF Sample size 

0.0619 100000 
0.0614 200000 
0.0613 300000 
0.0613 400000 
0.0609 500000 
0.0608 600000 
0.0608 700000 
0.0608 800000 

Table 7. Parameters used in GA for reliability 
analysis. 

Parameter Value 
Iterations 200 
Population size 10000 
Cross-over percentage 0.4 
Mutation percentage 0.95 
Gamma 0.05 
Selection pressure 8 
Mutation rate 0.1 

 

 
Figure 9. Procedures of reliability analysis (suggested in this work). 

 
Figure 10. Converge process of reliability index by GA. 
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In the following, Table 8 presents the reliability 
index values with the corresponding PF values 
and the auxiliary terminology for the expected 
performance levels to illustrate the standard range 
of   values [52]. According to the results of 
Table 5 and labels for the expected performance 
level in Table 8, the reliability indices of all points 

on the settlement surface is greater than 1.5, 
which satisfies the stability index required for a 
level II (unsatisfactory) that is specified in the 
“US army corps of engineers” standards. 
Therefore, in order to reduce the surface 
settlement, special arrangements must be made. 

Table 8 Labels for expected performance level of geo-technical works [52]. 
Reliability index 

  
Probability of failure 

PF Expected performance level 

1.0 0.16 Hazardous 
1.5 0.07 Unsatisfactory 
2.0 0.023 Poor 
2.5 0.006 Below average 
3.0 0.001 Above average 
4.0 0.00003 Good 
5.0 0.0000003 High 

 
5. Conclusions 

The main conclusions from this work could be 
mentioned as follow: 

1. New time-invariant reliability methods were 
proposed by combining FORM, SORM, and MCS 
with GA and GMDH neural network for the 
reliability analysis of surface settlement caused by 
mechanized tunneling. 

2. The most significant issue in SORM and FORM 
lies in finding the design point. In this work, GA 
was utilized for solving the problem of optimization 
(finding the design point using Eq. 11). 

3. Choosing the LSF necessary for the reliability 
calculations in its closed-form is preferred. 
Unfortunately, the closed form often does not exist. 
In this work, the GMDH neural network was used 
to approximate LSF.  

4. The average of the reliability index of the total 
settlement surface using MCS, GA-SORM, and 
GA- was obtained; GA-SORM and GA-FORM had 
a high calculation accuracy, and the calculation 
process was more concise than that of MCS. 

5. The reliability index on each point of the model 
was calculated by the proposed reliability methods. 
The reliability degree of the tunnel could 
consequently be assessed at the local scale. 

6. According to the “US army corps of engineers” 
standard, β was >1.5, which satisfied the stability 
index required for a level II (unsatisfactory). Hence, 
special arrangements must be made to reduce the 
surface settlement. 
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  چکیده:

سازي مکانیزه است که باید قبل از حفاري مشخص شود. تجزیه و تحلیل نشست سطحی زمین ناشی از نشست سطحی زمین، یک پارامتر مهم در عملیات تونل
تواند عدم میهاي قطعی، تحلیل قابلیت اعتماد شود. برخلاف روشي ژئوتکنیکی است که با منابع مختلف عدم قطعیت مشخص میسازي مکانیزه یک مسئلهتونل

سازي ، شبیه(SORM)هاي آنالیز قابلیت اعتماد (روش قابلیت اعتماد مرتبه دوم در این تحقیق، روشها را براي ارزیابی نشست سطحی در نظر بگیرد. قطعیت
هایی براي تجزیه و تحلیل قابلیت براي ساخت مدل  (GA)بر مبناي الگوریتم ژنتیک (FORM)و روش قابلیت اعتماد مرتبه اول  (MCS)مونت کارلو 

هاي غیر خطی است و براي استفاده از روش (LSF)هاي قابلیت اعتماد، تابع حالت حدي کار گرفته شد. از طرفی، براي روشاعتماد نشست سطحی به
بدون نیاز به فرضیات اضافی در مورد شکل تابع تخمین  را LSFتواند می GMDHقابلیت اعتماد مورد نیاز است. به منظور حل این مشکل، شبکه عصبی 

، فشار تزریق انتهاي چال، سطح آب GMDHبکار گرفته شده است. در شبکه عصبی  LSFبراي به دست آوردن  GMDHبزند. در اینجا، شبکه عصبی 
و درصد پر شدن دوغاب به عنوان پارامترهاي ورودي  کارزیرزمینی تونل، عمق، میانگین نرخ نفوذ، فاصله از چال، زاویه شیب، میانگین فشار جبهه

هاي قابلیت به منظور نشان دادن توانایی روش Bangkokهاي میدانی متروي باشد. دادهاستفاده شده، در عین حال، نشست سطحی پارامتر خروجی می
 اعتماد پیشنهادي، مورد استفاده قرار گرفته است.

 ، الگوریتم ژنتیک.GMDHهاي قابلیت اعتماد، شبکه عصبی سازي مکانیزه، روشنشست سطحی زمین، تونل کلمات کلیدي:
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