Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

3 Department of Mining Engineering, Sarcheshmeh copper mine, National Iranian Copper Industries Co. (NICICo), Rafsanjan, Iran

4 Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

5 Technical office, Eastern Alborz Coal Company, Shahrood, Iran

Abstract

This research work aims to discuss the methodology of using the drone-based data in the initial steps of the exploration program for the dimension stone deposits. A high-resolution imaging is performed by a low-cost commercial drone at the Emperador marble quarry, Kerman province, Iran. A ground resolution of 3 cm/pix is achieved by imaging at an altitude of 70 m in order to ensure the precise lithological and structural mapping. An accuracy of less than 5 cm is promised for the 3D photogrammetric products. Hence, the flight is performed with an 80% front and a 70% lateral image overlap. Furthermore, 18 ground control points (GCPs) are used in order to meet the required accuracy. Photogrammetric processing is done by the Agisoft PhotoScan software. The geology map is prepared through the visual geo-interpretation of the orthophoto image. The faults and fractures are delineated using the high-resolution orthophoto and hill-shade model in the ArcGIS software. Accordingly, the density map of fractures is produced, and the deposit is divided into five structural zones. The 3D deposit model with an accuracy of 2.8 cm is reconstructed based on the digital elevation model (DEM). A primary block model is generated using the 3D deposit model in the Datamine software in order to determine the resource for each structural zone. Finally, considering the amount of resource and situation of fractures, the priority of exploration for developing activities and appropriate methods is defined for each structural zone. The research work results have convinced us to include drone-based imagery in the initial steps of dimension stone exploration to consume the time and cost of the operation.

Keywords

[1]. Szentpeteri, K., Setiawan, T., and Ismanto, A. (2016). Drones (UAVs) in mining and Exploration. An application example: Pit Mapping and Geological Modelling. Unconventional Exploration Target and new tools in mineral and coal exploration, 45-49.
[2]. Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl, P., Booysen, R., Khodadadzadeh, M., and Gloaguen, R. (2018). Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring. Remote Sensing 10 (9), 1366. doi: 10.3390/rs10091366.
[3]. Carabassa, V., Montero, P., Crespo, M., Padró, J.C., Balagué, J., Alcañiz, J.M., Brotons, L., and Pons, X. (2019). UAS remote sensing products for supporting extraction management and restoration monitoring in open-pit mines. Multi-disciplinary Digital Publishing Institute Proceedings 30 (1), 4. doi:10.3390/proceedings2019030004.
[4]. Shahmoradi, J., Talebi, E., Roghanchi, P., and Hassanalian, M. (2020). A comprehensive review of applications of drone technology in the mining industry. Drones 4 (3), 34. doi: 10.3390/drones4030034.
[5]. Park, S. and Choi, Y. (2020). Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals 10 (8), 663. doi: 10.3390/min10080663.
[6]. Blistan, P., Kovanič, Ľ., Zelizňaková, V., and Palková, J. (2016). Using UAV photogrammetry to document rock outcrops. Acta Montanistica Slovaca 21 (2).
[7]. Parvar, K., Braun, A., Layton-Matthews, D., and Burns, M. (2017). UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems 6 (1), 57-69. doi: 10.1139/juvs-2017-0015.
[8]. Malehmir, A., Dynesius, L., Paulusson, K., Paulusson, A., Johansson, H., Bastani, M., ... and Marsden, P. (2017). The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. The Leading Edge, 36(7), 552-557. doi: 10.1190/tle36070552.1.
[9]. Cunningham, M., Samson, C., Wood, A., and Cook, I. (2018). Aeromagnetic surveying with a rotary-wing unmanned aircraft system: A case study from a zinc deposit in Nash Creek, New Brunswick, Canada. Pure and Applied Geophysics, 175(9), 3145-3158. doi: 10.1007/s00024-017-1736-2.
[10]. Walter, C., Braun, A., and Fotopoulos, G. (2020). High‐resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophysical Prospecting, 68(1-Cost‐Effective and Innovative Mineral Exploration Solutions), 334-349. doi: 10.1111/1365-2478.12914.
[11]. Dujoncquoy, E., Masse, P., Nicol, Y., Putra, A.S., Kenter, J., Russo, S., and Dhont, D. (2019). UAV-based 3D outcrop analog models for oil and gas exploration and production. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, July, 6791-6794. doi: 10.1109/IGARSS.2019.8900176.
[12]. Heincke, B., Jackisch, R., Saartenoja, A., Salmirinne, H., Rapp, S., Zimmermann, R., ... and Middleton, M. (2019). Developing multi-sensor drones for geological mapping and mineral exploration: Setup and first results from the MULSEDRO project. GEUS Bulletin, 43. doi:10.34194/GEUSB-201943-03-02.
[13]. Honarmand, M. and Shahriari, H. (2021). Geological Mapping using Drone-based Photogrammetry: An Application for Exploration of Vein-Type Cu Mineralization. Minerals 11 (6), 585. doi:10.3390/min11060585.
[14]. Freire, G.R. and Cota, R.F. (2017). Capture of images in inaccessible areas in an underground mine using an unmanned aerial vehicle. In Proceedings of the First International Conference on Underground Mining Technology. Australian Centre for Geomechanics. 10.36487/ACG_rep/1710_54_Freire
[15]. Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., and Gloaguen, R. (2018). Drone-borne hyperspectral monitoring of acid mine drainage: An example from the Sokolov lignite district. Remote sensing, 10(3), 385. doi: 10.3390/rs10030385.
[16]. Gil, M. and Frąckiewicz, P. (2019). Optimization of the location of observation network points in open-pit mining’s. GIS Forum.
[17]. Katuruza, M. and Birch, C. (2019). The use of unmanned aircraft system technology for highwall mapping at Isibonelo Colliery, South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 291-295. doi: 10.17159/2411-9717/2019/v119n3a8. 
[18]. Padró, J.C., Muñoz, F.J., Planas, J., and Pons, X. (2019). Comparison of four UAV geo-referencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International journal of applied earth observation and geoinformation, 75, 130-140. doi: 10.1016/j.jag.2018.10.018.
[19]. Mohajjel, M., Fergusson, C.L., and Sahandi, M.R. (2003). Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), 397-412. doi: 10.1016/S1367-9120(02)00035-4.
[20]. Berberian, M. (1977). Three phases of metamorphism in Haji-Abad quadrangle (southern extremity of the Sanandaj-Sirjan structural zone): a palaeotectonic discussion. Contribution to the Seismotectonics of Iran 239-263.
[21]. Eftekharnejad, J. (1981). Tectonic division of Iran with respect to sedimentary basins. Journal of Iranian Petroleum Society 82, 19–28 (in Farsi).
[22]. Ghasemi, A. and Talbot, C.J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences 26 (6), 683-693. doi: 10.1016/j.jseaes.2005.01.003.
[23]. GSI (1996). Geology Map of Orzuieh (Dashtvar), 1:100000. Tehran: Geological Survey of Iran.
[24]. Dai, J., Xue, L., Sang, X., Li, Z., Ma, J., and Sun, H. (2020, August). Research Method for Dyke Swarms based on UAV Remote Sensing in Desert Areas: A Case Study in Beishan, Gansu, China. In IOP Conference Series: Earth and Environmental Science (Vol. 558, No. 3, p. 032040). IOP Publishing.
[25]. Loebich, C., Wueller, D., Klingen, B., and Jaeger, A. (2007, February). Digital camera resolution measurements using sinusoidal Siemens stars. In Digital Photography III (Vol. 6502, p. 65020N). International Society for Optics and Photonics. doi: 10.1117/12.703817.
[26]. Honkavaara, E., Peltoniemi, J., Ahokas, E., Kuittinen, R., Hyyppa, J., Jaakkola, J., ... and Suomalainen, J. (2008). A permanent test field for digital photogrammetric systems. Photogrammetric engineering and remote sensing, 74(1).
[27]. Orych, A. (2015). Review of methods for determining the spatial resolution of UAV sensors. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40. doi: 10.5194/isprsarchives-XL-1-W4-391-2015.
[28]. Stöcker, C., Nex, F.C., Koeva, M.N., and Zevenbergen, J.A. (2018). Data quality assessment of UAV-based products for land tenure recording in East Africa. In NCG symposium 2018.)
[29]. Ashmole, I. and Motloung, M. (2008). Dimension stone: the latest trends in exploration and production technology. In Proceedings of the International Conference on Surface Mining 5, 8.
[30]. Taboada, J., Rivas, T., Saavedra, A., Ordóñez, C., Bastante, F., and Giráldez, E. (2008). Evaluation of the reserve of a granite deposit by fuzzy kriging. Engineering Geology, 99(1-2), 23-30. doi:10.1016/j.enggeo.2008.02.001.
[31]. Kapageridis, I. and Albanopoulos, C. (2016). Reserves estimation of a marble quarry using quality indicators. Bulletin of the Geological Society of Greece, 50(4), 1849-1858. doi: 10.12681/bgsg.11924.
[32]. Exadaktylos, G. and Saratsis, G. (2020). Methodology for the Estimation and classification of white marble reserves. Mining, Metallurgy and Exploration, 37(4), 981-994. doi: 10.1007/s42461-020-00228-3.
[33]. Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F., and Wang, R. (2014). Accuracy evaluation of 3D geometry from low-attitude UAV images: a case study at Zijin mine. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4.
[34]. Chirico, P.G. and DeWitt, J.D. (2017). Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS. Journal of Unmanned Vehicle Systems, 5(3), 69-91. doi: 10.1139/juvs-2017-0002
[35]. Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., and Capra, A. (2017). Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. European Journal of Remote Sensing, 50(1), 211-221.
[36]. Madjid, M.Y.A., Vandeginste, V., Hampson, G., Jordan, C.J., and Booth, A.D. (2018). Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geo-body mapping. Marine and Petroleum Geology, 91, 723-734. doi: 10.1016/j.marpetgeo.2018.02.002.
[37]. Luodes, H., Selonen, O., and Pääkkönen, K. (2000). Evaluation of dimension stone in gneissic rocks-a case history from southern Finland. Engineering Geology, 58(2), 209-223. doi: 10.1016/S0013-7952(00)00059-4.