Document Type : Original Research Paper

Authors

1 Caddi Ayyad University, FST Marrakech, Moroccan

2 Reminex reaserch Center, Moroccan

Abstract

This work aims to define an efficient and innovative tool in order to make early metallurgical predictions of the Tizert deposit in western Anti-Atlas-Morocco. To do this, the mineralogical approach is used as a tool of gometallurgical prediction using a combination of the lithological field observations on representative drill cores, microscopic characterization performed on 54 thin sections, and automated quantitative mineralogy (AQM) conducted on five composite samples. The metallurgical prediction of the Tizert ore is based on the liberation data, notably on the copper content locked in the gangue and on unrecoverable copper buried as a solid matrix in the gangue minerals (refractory copper). In order to ensure the validity of the proposed method, the results of mineralogical prediction are compared with the flotation test work performance. As a result, the predicted copper recovery results from the mineralogical data are practically the same as those obtained through the flotation tests, showing a maximum difference of 2.02%, an R2 value of 0.96, and a Root Mean Square Error of 1.64%. These results indicate that using the AQM data, the copper recovery could be predicted accurately for the Tizert ore. Furthermore, an early prediction of the flotation performance is very useful in the geo-metallurgical model conception. In addition, such an approach ensures visibility throughout the life of the mine, and provides quick and cost-effective data for processing the performance. On an industrial scale, the applicability of this method can be expanded further by integrating the mineralogical approach into all steady-state processes in order to cover the possible mineralogical variety during the operations, and ensure an industrial process control.

Keywords

[1]. Lamberg, P. (2011). Particles-the Bridge between Geology and Metallurgy. In Conference in Minerals Engineering. Luleå.
[2]. Lishchuk V., Lamberg P., and Lund C. (2015). Classification of geometallurgical programs basedon approach and purpose. The 12th Biennial SGA Meeting, Nancy, France. 4pp.
[3]. Lamberg, P.(2013). Building a Geo-metallurgical Model in Iron Ores using a Mineralogical Approach with Liberation Data. The second AUSIMM international geometallurgy conference/ Brisbane, QLD, pp. 317–324.
[4]. Tijsseling, L,T., Dehaine, Q., Rollinson, G,K., and Glass, H,J. (2020). Mineralogical Prediction of Flotation Performance for a Sediment-Hosted Copper–Cobalt Sulphide Ore. Minerals, 10, 474.
[5]. Rincon, J., Gaydardzhiev, S., and Stamenov, L. (2019). Investigation on the flotation recovery of copper sulphosalts through an integrated mineralogical approach. Miner. Eng., 130, 36–47.
[6]. Little, L., Mclennan, Q., Prinsloo, A., Muchima, K., Kaputula, B., and Siame, C. (2018). Relationship between ore mineralogy and copper recovery across di_erent processing circuits at Kansanshi mine. J. S. Afr. Inst. Min. Metall, 118, 1155–1162.
[7]. Pouit, G. (1966). Paleogeographie et repartition des mineralisations stratiformes de cuivre dans l’Anti-Atlas occidental (Maroc), Chron. Rech. Min, 34, 279-289.
[8]. Fauvelet, E. (1971). Réflexion sur une liaison possible entre minéralisation cuprifère et roches plutoniques basiques hercyniennes dans l’Anti-Atlas (Maroc). Colloque scientifique international, Raguin, Paris, Masson 1971. 
[9]. Oummouch, O., Essaifi, A., Zayane, R., Maddi, O., Zouhair, M., and Maacha, L. (2017). Geology and Metallogenesis of the Sediment-Hosted Cu-Ag Deposit of Tizert (Igherm Inlier, Anti-Atlas Copperbelt, Morocco). Hindawi, Vol. 2017, 19pp.
[10]. El Basbas, A., Aissa, M., Ouguir, H., Mahdoudi, M.L., Maddi, A., and Zouhair, M. (2020). Ouansimicopper mineralization (Western Anti-Atlas, Morocco): Paragenetic sequence and circulationof gangue hosted paleofluids., J. Afr. Earth Sci. 162, 103692, 64pp.
[11]. Thomas, R.J., Fekkak, A., Ennih, N., Errami, E., Loughlin, S.C., Gresse, P.G., Chevallier, L. P., and Liégeois, J.P. (2004). A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci. 39 (3–5), 217–226.
[12]. Oudra, M., Beraaouz, H., Ikenne, M., Gasquet, D., and Soulaimani, A. (2005). La tectonique panafricaine du secteur d’Igherm : implication des dômes extensifs tardi à post-orogéniques (Anti-Atlas Occidental, Maroc). Estud. Geol. 61 (3–6), 177–189.
[13]. Hafid, A. (1992). Granites et dolérites protérozoïques de la boutonnière d’Igherm (Anti- Atlas Occidental) (Pétrologie, géochimie et signification géodynamique). PhD Dissertation. Pierre and Marie Curie Université.
[14]. Soulaimani, A. (1998). Interactions socle/couverture dans l’Anti-Atlas Occidental (Maroc): rifting fini-Protérozoïque et orogenèse hercynienne. PhD Dissertation. Caddi Ayyad University, Marrakech-Morocco.
[15]. Choubert, G. and Faure Muret, A. (1973). Nouvelles données sur les massifs précambriens des Ida Ou-Zeddoute et des Ida Ou-Zekri ; NW d’Igherm ; Anti-Atlas (Maroc). C. R. Acad. Sci. Paris 276 (4), 477–480.
[16]. Hefferan, K.P., Karson, J.A., and Saquaque, A. (1992). Proterozoic collisional basins in a Pan-African suture zone, Anti-Atlas Mountains, Morocco. Precambrian Res. 54, 295–319.
[17]. Thomas, R.J., Fekkak, A., Ennih, N., Errami, E., Loughlin, S.C., Gresse, P.G., Chevallier, L.P., and Liégeois, J.P. (2004). A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci, 39, 217–226.
[18]. Gasquet, D., Levresse, G., Cheilletz, A., Azizi-Samir, M.R., and Mouttaqi, A. (2005). Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition. Precambrian Res. 140, 157–182.
[19]. Maloof, A.C., Schrag, D.P., Crowley, J.L., and Bowring, S.A. (2005). An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Can. J. Earth Sci. 2005, 42, 2195–2216.
[20]. Demange, M. (1980.) Stratigraphie, volcanisme et paléogéographie du Précambrien III et de la série de base dans la partie sud de la boutonnière d’Ouaouafenrha (Anti-Atlas occidental). Notes et Mémoires du Service Géologique du Maroc, Vol. 41, pp. 7–23.
[21]. Poot, J.,Verhaert, M., Dekoninck, A.,Oummouch, A.,El Basbas, A., Maacha, L., and Yans, J. (2020). Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals, 10, 620.
[22]. Yasrebi, A.B., Hezarkhani, A., Afzal, P., Karami, R., Eskandarnejad Tehrani, M., and Borumandnia, A. (2020). Application of an Ordinary Kriging-Artificial Neural Network for Elemental Distribution in Kahang Porphyry Deposit, Central Iran. Arabian Journal of Geosciences 13, 748 (1-14).
[23].Benssaou, M. and Hamoumi, N. (2001). L’Anti Atlas occidental du Maroc: étude sédimentologique et reconstitution paléogéographique au Cambrien inférieur. Journal of African Earth Sciences, Vol. 32, pp. 351–372.
[24]. Algouti, A.J. Beauchamp, J., Chbani, B., and Taj-Eddine, K. (2000). Paléogéographie d’une plateforme infracambrienne en dislocation : série de base adoudounienne de la région Waoufengha–Igherm, Anti-Atlas occidental, Maroc. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science, Vol. 330, No. 2, pp. 155–160.
[25]. Anhaeusser, C. R. and Button.A. (1973). A petrographic and mineragraphic study of the copper-bearing formations in the Witvlei area, south West Africa. Economic Geology Research Unit, Univ. of the Witwatersrand, Johannesburg, South Africa. 21pp.
[26]. Sillitoe, R H. and McKee, E H. (1996). Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Economic Geology. Vol.  91, 164-179 pp.
[27]. Becker, M., Harris, P.J., Wiese, J.G., and Bradshaw, D.J. (2009). Mineralogical characterisation of naturally floatable gangue in Merensky Reef ore flotation. Int. J. Miner. Process. 93, 246–255.
[28]. Pillay, K. (2015). Mineralogical effects on the dense medium separation of low grade nickel sulphide ore. PhD Dissertation. University of Cape Town South Africa. 200pp.
[29]. Selley, D., Broughton, D., Scott, R,. Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M, and Pollington N. (2005). A new look at the geology of the Zambian Copperbelt, Economic Geology, pp.965–1000.
[30]. Zhang, J. and Subasinghe, N. (2016). Development of a flotation model incorporating liberation characteristics. Miner. Eng. 98, 1–8.
[31]. Ntlhabane, S., Becker, M., Charikinya, E., Voigt, M., Schouwstra, R., and Bradshaw, D. (2018). Towards the development of an integrated modelling framework underpinned by mineralogy. Miner. Eng. 116, 123–131.