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 The mechanisms of deformation and failure of the structures in and on the jointed 

rock masses are often governed by the characteristics of the geometrical properties of 

joints. Since the joint geometry properties have a range of values, it is helpful to 
understand the distribution of these values in order to predict how the extreme values 

may be compared with the values obtained from a small sample. This work studies 

three datasets of joint systems (1652 joint data) from nine outcrops of igneous, 

sedimentary, and metamorphic rocks in order to determine the probability distribution 

function of the rock joint geometry properties. Consequently, the goodness-of-fit 

(GOF) tests are applied to obtain the data. According to these GOF tests, the 

Lognormal is the best probability distribution function representing the joint spacing, 

aperture, and trace length. The Cauchy is the best probability distribution function for 

the joint dip angle. It is found that the Cauchy distribution function is the best 

probability distribution function to represent the joint dip direction of igneous rocks, 

and the Burr distribution function is the best probability distribution function to define 
the joint dip direction of the sedimentary and metamorphic rocks. 
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1. Introduction 

The engineering properties of rock masses are 

controlled by the characteristics of the 

discontinuities and intact rocks [1]. In order to 

predict the behavior of the structures in and on such 
jointed rock masses, it is necessary to characterize 

the geomechanical properties of the joints and 

intact rocks. A joint is defined as a fracture in the 
mesoscale dimension for which no shear offset or 

dilation is detectable in the field [1, 2], which are 

found in all the component rocks within about 1 km 
of the Earth’s surface, at all orientations and sizes 

ranging from a few millimeters to several hundred 

meters [3]. Conclusively, we apply “joints” as a 

field term to the mesoscale fractures that either 
show tensile opening, and tensile surface features 

(e.g., plumes) or do not have any evidence for the 

shear/normal displacements observable in a single 
continuous exposure. The joint systems in rock 

masses are geometrically complex. The effect of 

joint geometry properties to control the fluid-

mechanical behavior and stability of the 

constructed structures in and on jointed rock 

masses has been extensively reported in the 

literature [4-27]. Therefore, the joint geometry 
properties must be measured precisely.  

In rock engineering, determining the geo-

mechanical properties of jointed rock masses is 
crucial, which restricts the project design, 

construction, and operation decisions. However, 

the statistical simulation is even more powerful. As 
a result, the probabilistic simulation helps the 

engineers develop more robust and economic 

designs and solutions [28]. Thus, the properties of 

joints typically vary over a wide range, and their 
nature of random characteristics is required to be 

appropriately described in the preliminary design 

investigations [29]. Since the natural phenomena 
occur with such variation, a definition of stochastic 

rather than a deterministic system is more realistic 

[30]. However, it is possible to consider the full 
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range of data concerning the specific random 

characteristic in a stochastic estimation. This can 

be easily achieved with probability distributions 

that give both the range of values that the variable 
could take and the relative frequency of each value 

within the range [31]. Consequently, the joint 

geometry property distributions are directly 
obtained from the sample histogram of the received 

data from joint surveys. This work intends to 

determine the distribution function of the joint 
geometry properties. 

2. A Review of Research on Geometric 

Properties of Rock Joints 

The rock joints most commonly measuring the 
geometric properties are spacing (or density), trace 

length, aperture, and orientation. Based on the 

results obtained by many researchers, the statistical 
distributions of the joint properties are described in 

the following. 

2.1. Joint spacing  

Joint spacing is a measure of jointing intensity in 

a rock mass, i.e., the number of joints per unit 

distance normal to the orientation of the set. It is 

taken as the perpendicular distance between the 
adjacent joints [32]. This paper used the 

intersection length (length along the scanline to the 

intersection point with the joint) to describe the 
joint spacing. Although the mean discontinuity 

spacing provides a direct measure of the rock 

quality, several researchers have found it 

instructive to investigate the distribution of 
discontinuity spacing by plotting the histograms of 

the sampled values of the total spacing. The joint 

spacing often follows an exponential distribution 
based on the field measurements and the 

distribution of the maximum discontinuity spacing 

for various igneous, sedimentary, and metamorphic 
rocks [33, 45]. Also, the field surveys using 

window and scanline sampling have reported that 

joint spacing follows lognormal distributions [32, 

38, 40, 45, 46], even though Gama distributions 
and bimodal distributions have also been reported 

[39, 45, 47]. 

2.2. Joint aperture 

The mechanical aperture or opening of a 

discontinuity is the distance between the opposing 

interfaces measured along the mean normal to the 
discontinuity surface [3, 48]. Also the apertures of 

natural discontinuities are likely to vary widely 

over the extent of the joint [49]. Once the gap has 

been created, it can be increased naturally by the 

physical and chemical erosion processes induced 

by the flow of water along the fracture. In certain 

circumstances, the development of local tensile 

stresses in a rock mass can lead to a dramatic 
opening of fracture apertures to values exceeding 1 

m in some cases, although the opening of fractures 

in this way is usually limited to the zone of de-
stressed rock immediately adjacent to a free 

surface. It can occur at depth due to the stresses 

induced during hydraulic fracturing. Discontinuity 
apertures in the stone immediately adjacent to a 

free surface are also particularly susceptible to 

opening due to blast-induced vibrations, erosion, 

and the washing out of infill [3]. A research work 
shows that aperture depends on the stress history, 

normal displacement, shear displacement, and 

study scale [50].  
The above observations suggest that the physical 

measurement of the discontinuity apertures at 

exposed rock faces can provide, at best, only a 
general guide to the mechanical apertures within 

the rock mass [3]. Numerous studies at various 

problem scales and in different geological settings 

have shown that a widescale over-scale a wide 
range since the variation in apertures can result 

from the mechanical misfits of fracture walls and 

chemical change action dissolution, mineral filling, 
and normal stresses. Fracture apertures are 

measured by various methods including direct 

measurements in cores or outcrops and deduction 

from flow data, and therefore, show wide scatters.  
Power law distribution function of apertures has 

been used in some applications [12, 47, 51, 52], as 

confirmed by field measurements using the 
techniques such as micro-scanner logs, borehole 

televiewer, and direct measuring of outcrops [53 -

58]. In the literature, the fracture transmissivity, 
which is related to the hydraulic aperture through 

the cubic law, is usually found to follow either 

lognormal or power-law distributions [59, 66], 

even though normal distributions [40, 48, 65, 67, 
50] and bimodal distributions [68] have also been 

reported. It is now generally recognized that the 

resolution and finite-size effects on a power-law 
population can also result in distributions that 

appear to be exponential or lognormal. It has been 

reported that mapping the resolution effects 
(known as truncation) imposed on a power-law 

population can result in a lognormal distribution 

since the aperture fractures with aperture values 

smaller than the distribution mode are 
incompletely sampled [69, 73]. Therefore, some 

researchers have assumed that aperture distribution 

in the fractured rocks follows a lognormal 
distribution, as reported in the literature [16, 59, 52, 
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63, 64, 66, 74]. Even though the previous 

researchers have conducted aperture measurement 

and its distribution analysis, the researchers have 

not introduced a clear distribution function. This 
study aims to determine, visualize, and interpret 

aperture distribution under different sites of 

various rock types. 

2.3. Joint orientation 

Joint orientation describes the attitude of the joint 

in space. The plane of a joint in space is defined by 
the dip of the line of steepest declination measured 

from horizontal and by the dip direction measured 

clockwise from true north. In the outset research, it 

has been found that the joint orientation follows a 
normal distribution [32, 75]. However, the 

literature has recently reported that joint 

orientation distribution in fractured rock masses 
follows a Fisher distribution [16]. 

2.4. Joint trace length 

As observed in an exposure, joint length is a 
distance from the intersection point on the scanline 

to the end of the joint trace. There will be two semi-

trace lengths associated with each discontinuity: 

one to the left and one to the right of a scanline 
along the maximum dip line of the face. It can be 

helpful to keep a record of the nature of the 

termination of each semi-trace. 1: The 
discontinuity trace terminates in the intact rock 

material, 2: termination at another discontinuity, 3: 

termination is obscured. A trace can be obscured 

by block rocks, scree, soil, vegetation or extend 
beyond the exposure limits [3]. Several biases exist 

in the sampling trace lengths and inferring joint 

size. These have been discussed in [42, 76], and 
will not be repeated here. The question of 

censoring involves the joint traces that are not 

entirely observable. The most common reason a 
joint trace is not wholly observable is that it runs 

off the outcrop or into a wall (Figure 1). Thus one 

knows only that the actual trace length is longer 

than observed for that observation. Since more 
extended traces are more likely to be censored than 

the shorter ones, these incomplete observations 

cannot be ignored [33]. 
The stated distributions of joint trace length are 

less reliable than those for other geometrical 

properties, perhaps partly due to solid biases 
implicit in many standard sampling plans and 

partly due to the way the data is grouped into 

histograms before analysis, although the physical 

processes that control the other joint properties are 
relatively easy to understand compared to the 

physical mechanisms that control the joint length. 

In theory, the differences in the observed 

distribution of joint sizes result from differences in 

the mechanical processes creating the joints; for 
example, [73] argues that a uniform stress 

distribution would lead to exponential 

distributions, while the multiplicity processes such 
as breakage may lead to a lognormal distribution. 

Perhaps the most frequently reported distribution 

functions are lognormal and exponential.  
The joint trace length is often found to follow a 

lognormal distribution [17, 18, 32–36, 42–46, 73-

81]. Also field surveys using the techniques such 

as window and scanline sampling have reported 
that joint trace length follows exponential 

distributions [33, 36, 40, 45, 82, 83, 84] and power-

law distribution [16, 59-66]. However, some 
investigations have reported Gama distributions 

[39, 45]. 

Trace length indicates the size joint plane. It can 
be approximately measured by detecting the joint 

trace lengths on the surface exposures [85]. Often 

rock exposures are small compared to the area or 

length of joints, and the actual length can only be 
guessed. This study introduces a new technique for 

joint trace length estimation. The new approach 

uses the support vector machine (SVM). SVM is an 
excellent kernel-based tool for binary data 

classification and regression [86-89]. This learning 

strategy introduced by [90] is a moral and 

compelling method in machine learning 
algorithms. It may be possible to record other 

geometrical properties of exposed joints 

accurately, and, at this moment, a trained SVM 
model can estimate the trace length. We prepared 

three datasets that included 1652 joints from the 

igneous, sedimentary, and metamorphic rocks in 
order to achieve the purpose of this study. The joint 

properties such as intersection distance of the joint 

on the scanline, aperture, orientation (dip and dip 

direction), roughness, Schmidt rebound of the 
joint’s wall, and sets a number of the joint that 

could be measured accurately, and the surveyed 

location of the exposure were used as an input para, 
and joint trace length predicted as an output meter 

parameter. The datasets were randomly divided 

into the training and testing datasets. In each 
model, 70% of datasets were considered for 

training, and the rest was kept for testing the 

models. Finally, obscured prepared was for each 

rock type predicted joint trace length. The details 
of this method to estimate the joint trace length are 

explained by [77]. 
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3. Description of data collection 

The geometric properties of jointing are inferred 

primarily from the observations in outcrops and 

openings. While advances in the statistical 
techniques for inferring fracture patterns from drill 

cores are made, these are yet found application 

from a practical viewpoint. The observations made 
in the outcrop are joint traces, i.e. of the 

intersections of joint planes with the outcrop [91]. 

Joint surveys are an essential section of site 
description studies in rock engineering. The 

strength, deformation, and flow behavior of jointed 

rock masses are strongly influenced by rock mass 

joints' geometry and engineering properties [33]. 
Measuring the joint geometry parameters is 

commonly determined by conducting surveys 

along the exposed rock faces using line-sampling 
or window-sampling techniques [83]. Both 

methods have the disadvantage of mapping only 

exposed surfaces. Thus they cannot determine the 
structural behavior behind the exposed surface. In 

scanline mapping, less judgment is required during 

the actual data collection; hence not much 

geological mapping experience is required. 

Although more data is collected over larger areas 

in window mapping, the data from scanline 

mapping represents more detailed information per 
specific location [78]. The collected data reported 

in this paper was obtained from the scanline 

mapping technique only. The scanline mapping 
technique has been described in more detail by 

[92]. It involves a relatively simple, reproducible, 

and systematic method for discontinuity mapping 
on more prominent exposed rock faces (e.g. quarry 

or road cuts). The technique enables the orientation 

data, joint frequency, spacing, trace length, and 

fracture termination estimates to be made and 
treated statistically [93]. A measuring tape is 

usually used as a scanline, and the properties of 

only those joints that cross the tape are recorded. 
Figure 1 shows the scanline sampling and the type 

of joint terminations. The qualities and quantities 

of the measured data of geometric properties 
obtained from field mapping on outcrops of limited 

areas and borehole logging of narrow borehole 

diameters and depths contain significant 

uncertainty. 

 
Figure 1. Scanline sampling and description of joint terminations [77]. 

In order to obtain a fracture system more 

realistically, a clean, approximately planar rock 

face is selected that is large relative to the size and 

spacing discontinuities exposed [3]. Also the 
sample zone should contain 150 to 350 joints, 

about 50% of which should have at least one end 

visible. Thus the outcrops of Sarshiw andesites 
located 40 km from the Marivan city in the 

Kurdistan province, west of Iran for igneous and 

metamorphic rocks, and Tazare coal mine located 

70 km from Shahrood city, Semnan province, 

north-east of Iran for sedimentary rocks were 

selected for the research work, although the most 

existing joints in the selected outcrops have one 
end visible. Figure 2 shows a three-view of selected 

outcrops of all surveyed rock types. In addition, the 

summary of the conducted joint surveys and 
statistical overview of the joint geometry 

properties are shown in Table 1 and Table 2, 

respectively. 
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Figure 2. Views of rock exposures: (a) Sarshiw andesite, (b) Sarshiw metamorphic, and (c) Sedimentary rock of 

Tazare coal mine. 

The inability to discriminate the joints smaller 
than the detection limits of the measurement is a 

form of sampling bias known as truncation. The 

upper bound of the joint trace length distribution is 

affected by the exposure conditions. This 
phenomenon represents another sampling bias 

called censoring [69, 73]. In order to have a view 

of the type of the joint trace length termination in 
the outcrop, suppose the numbers to three types of 

traces be p, m, and n for joints with both of the 

traces censored, one end of trace censored, and 

both ends of the trace observable, respectively (all 
types are shown in Figure 1) [39]. Then R0, R1, and 

R2 are defined as Equations 1a, 1b, and 1c. 



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For all joints of three rock types, R0, R1, and R2 were 

calculated and shown in Table 1. 

Table 1. Summary of conducted joint surveys. 

Rock type Site 
Number 

of joints 

Number of 

joint sets 

Type of termination 

R0 R1 R2 

Igneous 

SI1 195 5 0.12 0.21 0.67 

SI2 201 4 0.20 0.23 0.57 

SI3 160 3 0.13 0.18 0.69 

Metamorphic 

SM1 165 3 0.40 0.17 0.43 

SM2 210 3 0.37 0.21 0.42 

SM3 143 4 0.34 0.10 0.56 

Sedimentary 

SS1 173 4 0.27 0.17 0.56 

SS2 224 3 0.23 0.25 0.52 

SS3 181 4 0.19 0.19 0.62 
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Table 2. Statistical summary of joint geometry properties. 

Site 

joint geometry properties 

Spacing (m) 
Aperture 

(mm) 

Orientation Trace length (m) 
SRH*** 

Dip (degree) 
Dip direction 

(degree) 
Obs.* SVM** 

Ave. 
St. 

dev 
Ave. 

St. 

dev 
Ave. 

St. 

dev 
Ave. St. dev Ave. 

St. 

dev 
Ave. 

St. 

dev 
Ave. 

St. 

dev 

SI1 0.79 0.83 6.43 9.52 66 23.0 194 100.0 2.59 1.65 3.82 3.91 60 11.0 

SI2 0.74 0.97 3.99 6.11 65 24.5 181 93.44 2.24 1.88 3.28 4.56 66 8.11 

SI3 1.41 1.09 124.3 153.1 69 16.1 179 83.10 5.15 6.90 5.58 6.90 50 7.50 

SM1 1.61 1.26 173.9 156.7 73 8.80 155 76.40 7.59 7.40 8.02 7.50 35 6.00 

SM2 1.19 1.34 183.8 326.6 66 18.5 108 47.90 5.09 8.20 7.15 13.3 42 10.6 

SM3 1.21 0.95 50.4 48.36 63 11.60 128 69.29 2.96 4.04 3.08 4.14 39 8.23 

SS1 0.48 0.33 22.8 20.37 70 14.40 136 79.65 3.37 2.62 3.63 3.03 30 6.40 

SS2 0.27 0.26 5.2 8.91 77 9.64 235 101.84 1.13 1.00 2.21 4.40 28 9.20 

SS3 0.32 0.29 14.21 11.25 72 15.20 141 81.43 2.45 2.11 3.51 5.15 31 8.15 
*Observation trace length 
**Estimation trace length using SVM models (This method will be explained later.) 
***Schmidt Hammer Rebound 

 

4. Goodness-of-Fit (GOF) Tests  

The GoF tests measure the compatibility of a 

random sample with a theoretical probability 

distribution function. In other words, these tests 
show how well the selected distribution fits the 

measured data. In this work, three GoF tests, 

namely Kolmogorov-Smirnov test, Anderson-

Darling test, and Chi-Squared test, were used to 
evaluate the probability distribution of the rock 

joint geometry properties data obtained in nine 

outcrops of three rock type surveys.  
The Kolmogorov-Smirnov test is used to decide 

if a sample comes from a hypothesized continuous 

distribution. It is based on the Empirical 
Cumulative Distribution Function (ECDF). 

Assume a random sample x1, ..., xn from some 

distribution with CDF F(x). The empirical CDF is 

denoted by Equation 1. 

 
1

( ) .nF x Number of observation x
n

   (2) 

The Kolmogorov-Smirnov statistic (D) is based 

on the largest vertical difference between the 

theoretical and empirical cumulative distribution 
function, as shown in Equation 2. 












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)(,
1

)(max
1

ii
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n

i

n

i
xFD  (3) 

The Anderson-Darling procedure is a general 
test for comparing the fit of an observed 

cumulative distribution function with an expected 

cumulative distribution function. This test gives 
more weight to the tails than the Kolmogorov-

Smirnov test. The Anderson-Darling statistic (A2) 

is defined as Equation 3. 

 



n

ni

ini xFxFi
n

nA ))(1ln()(ln).12(
1

1

2  (4) 

The Chi-Squared test is used to determine if a 

sample comes from a population with a specific 
distribution. This test is applied to the binned data, 

so the value of the test statistic depends on how the 

data is binned. The Chi-Squared statistic is defined 
as Equation 4. 

,
)(

1

2
2 






k

i i

ii

E

EO
x

 
(5) 

where Oi is the observed frequency for bin I, and 

Ei is the expected frequency calculated by Equation 

5. 

),()( 12 xFxFEi   (6) 

where F(x) is the CDF of the probability 

distribution being tested, and x1 and x2 are the 

limits for bin I [94].  

The hypothesis regarding the distributional form 

is rejected at the chosen significance level ( ) if 

the tests statistic, D, A2, and x2 for Kolmogorov-
Smirnov test, Anderson-Darling test, and Chi-

Squared test, is greater than their obtained critical 

value. The fixed values of   (0.01, 0.05, etc.) are 

generally used to evaluate the null hypothesis (H0) 

at various significant levels. A value of 0.05 is 
typically used for most applications. Therefore, the 

0.05 value was used in this work.  

The GoF tests statistics of the Kolmogorov-
Smirnov, Anderson-Darling, and Chi-Squared tests 

of related probability distribution functions of each 

joint geometry properties will be calculated. If each 

value is smaller than its critical value, it is the best 
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probability distribution function to represent that 

joint geometry properties distribution function. 

However, in order to recognize the influences of 

each one of these three GoF tests together well, it 
is essential to normalize the difference values of 

critical and statistic values of each test within the 

range [0 1]. This normalization was performed 
using Equation 7. 

critical

statisticcritical

X

XX
valueNormalized


  

(7) 

XCriticaland and Xstatistic are critical, and the 

obtained statistics values. In order to minimize the 

weaknesses and amplify the strength of these three 
methods, we summed the results together. Then 

three normalized values of the three GoF tests for 

each distribution function are calculated. 

Consequently, the distribution function with a 
greater value is the best probability distribution 

function for representing the joint geometry 

properties. 

5. Distribution function of rock joint geometry 

properties 

Since this work deals with the collection and use 

of the joint geometrical properties, it is appropriate 
to graphically show some of the terms relevant to 

this topic. In this research work, due to the 

published reports of the previous researchers, the 

GoF test statistics were calculated for the normal, 

lognormal, gamma, exponential, power function, 

and Weibull distribution functions separately. 
Eventually, the best probability distribution 

function to represent the joint geometry properties 

is determined from the functional form's best fit to 
collect the field data. 

5.1. Joint spacing distribution function 

The calculated GoF test statistics of 
Kolmogorov-Smirnov, Anderson-Darling, and 

Chi-Squared tests of spacing are shown in Table 3. 

Also the comparison views of the summed up 

normalized GoF test statistics values for joint 
spacing of all surveyed exposures are shown in 

Figure 3. According to the calculated GoF test 

statistics, the lognormal distribution was found to 
be the best probability distribution function for 

representing a joint spacing distribution; the 

probability density function for a lognormal 
distribution is defined as Equation 8: 



















 


2
ln

2

1
exp

2

1
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





x
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(8) 

In addition, Figure 4 to Figure 6 show three 
samples of the obtained lognormal distribution of 

joint spacing data. 
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Table 2. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of spacing. 

Site 

Test statistic The best 

probability 

distribution 

function 
Lognormal Exponential Gamma Power Function 

D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S 

SI1 

0
.1

4
 

0
.2

4
 

0
.8

7
 

2
.5

0
 

1
.3

3
 

7
.8

2
 

1
.9

0
 

0
.2

1
 

0
.2

4
 

0
.1

4
 

2
.5

0
 

3
.9

4
 

7
.8

1
 

1
.5

6
 

0
.2

6
 

0
.3

0
 

1
.7
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2
.5
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2
.0

6
 

3
.8

4
 

0
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0
 

0
.2

3
 

0
.1

7
 

5
.0

6
 

2
.5

0
 

1
1
.1

 

7
.8

1
 

-1
.8

 

Lognormal 

SI2 

0
.0

8
 

0
.1

7
 

0
.4

0
 

2
.5

0
 

7
.4

9
 

1
2
.3

 

1
.7

7
 

0
.1

4
 

0
.1

7
 

1
.7

2
 

2
.5

0
 

8
.3

6
 

1
1
.1

 

0
.7

3
 

0
.1

3
 

0
.1

7
 

1
.4

1
 

2
.5

0
 

5
.8

1
 

1
2
.6

 

1
.2

1
 

0
.2

4
 

0
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7
 

9
.0

2
 

2
.5

0
 

N
A

 

N
A

 

N
A

 

Lognormal 
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0
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0
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.5

0
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.8
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2
.6

2
 

0
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6
 

0
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4
 

0
.7

2
 

2
.5

0
 

0
.8

4
 

7
.8
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1
.9
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0
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5
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2
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5
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9
 

0
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6
 

Lognormal 
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0
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0
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0
.4

8
 

2
.5
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2
.4

8
 

7
.8

1
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Figure 3. Comparison views of summed up normalized GoF test statistics values for joint spacing of all surveyed 

exposures. 

 
Figure 4. Lognormal distribution of joint spacing of SI1 outcrops. 

 
Figure 5. Lognormal distribution of joint spacing of SM2 outcrops. 
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Figure 6. Lognormal distribution of joint spacing of SS1 outcrops. 

The result is correct since the rock mass is 

considered soil if the existing joints are too close. 

As seen in Figure 4 to Figure, the relative 
frequency increased by reducing 6, the spacing 

size. Still, the relative frequency was reduced too 

by decreasing the spacing size from a specific 

value. Since we are dealing with rock masses, the 
relative frequency must be increasing until a 

certain amount, which describes the lognormal 

distribution function.  

 

 

4.2. Joint aperture distribution function 

The calculated GoF test statistics of 

Kolmogorov-Smirnov, Anderson-Darling, and 
Chi-Squared tests of aperture are shown in Table 4. 

The comparison views of the summed up 

normalized GoF test statistics values for a joint 

aperture of all surveyed exposures are shown in 
Figure 7. According to the calculated GoF test 

statistics, the lognormal distribution was the best 

probability distribution function for representing a 
joint aperture, established in Equation 8. Also 

Figure 8 to Figure 10 show three samples of the 

obtained lognormal distribution function of the 
joint aperture. 

 
Figure 7. Comparison views of summed up normalized GoF test statistics values for a joint aperture of all 

surveyed exposures. 
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Table 3. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of aperture. 

Site 

Test statistic The best 

probability 

distribution 

function 

Lognormal Exponential Gamma Power Function 

D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S 

SI1 

0
.1

1
 

0
.1

7
 

0
.8

5
 

2
.5

0
 

4
.5

3
 

1
1
.1

 

1
.6

0
 

0
.1

9
 

0
.1

7
 

3
.5

0
 

2
.5

0
 

9
.5

6
 

9
.4

9
 

-0
.5

 

0
.2

4
 

0
.1

7
 

2
.9

0
 

2
.5

0
 

6
.8

9
 

1
1
.1

 

-0
.2

 

0
.3

7
 

0
.1

7
 

5
0
.9

 

2
.5

0
 

N
A

 

N
A

 

 Lognormal 

SI2 

0
.1

3
 

0
.1

7
 

0
.8

8
 

2
.5

0
 

4
.3

6
 

1
2
.6

 

1
.5

4
 

0
.2

5
 

0
.1

7
 

5
.8

4
 

2
.5

0
 

1
5
.0

 

1
2
.6

 

-2
.0

 

0
.3

2
 

0
.1

7
 

4
.4

7
 

2
.5

0
 

4
.6

7
 

1
2
.6

 

-1
.0

 

0
.4

0
 

0
.1

7
 

1
0
2
 

2
.5

0
 

N
A

 

N
A

 

 Lognormal 
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0
.1

1
 

0
.2

4
 

0
.3

1
 

2
.5

0
 

0
.0

1
 

7
.8

1
 

2
.4

2
 

0
.1

5
 

0
.2

4
 

0
.5

5
 

2
.5

0
 

0
.0

6
 

7
.8

1
 

2
.1

5
 

0
.1

7
 

0
.2

4
 

1
.3

5
 

2
.5
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1
.9

4
 

7
.8

1
 

1
.5
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0
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.2

4
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0
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0
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0
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Figure 8. Lognormal distribution of joint aperture of SI1 outcrops. 

 
Figure 9. Lognormal distribution of joint aperture of SM3 outcrops. 

 
Figure 10. Lognormal distribution of joint aperture of SS1 outcrops. 
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As explained in the description of the spacing, it 

was concluded that the joint spacing must follow a 

lognormal distribution function. A Large opening 

must have a low frequency, and a small space must 
have a high frequency. From the inherent nature of 

the rock, masses can be concluded that by reducing 

the size of the aperture, the relative frequency 
increased. Still, from a specific value, the relative 

frequency must be reduced by reducing the size of 

the aperture. Since we study the rock mass in macro 
de, if the opening is too s, mall, it cannot be seen as 

opening in macro mode, and are not measured. 

Therefore, the joint aperture must follow the 

lognormal distribution function. 

5.2. Joint orientation distribution function 

The calculated GoF test statistics of 

Kolmogorov-Smirnov, Anderson-Darling, and 
Chi-Squared tests of dip and dip direction are 

shown in Table 5 and Table 6.  In addition, the 

comparison views of summed up normalized GoF 
test statistics values for joint orientation of all 

surveyed exposures are shown in Figure 11 and 

Figure 15. The surveyed sites except for the SM3, 

SS1, and SS2 areas showed the best fit to the 
Cauchy distribution function according to the 

calculated GoF test statistics, and it was also found 

that the Cauchy distribution function was the best 

probability distribution function to represent the 

joint dip direction of igneous rocks whose 

probability density function is defined as Equation 

9. 
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(9) 

where σ is the continuous scale parameter (σ > 0) 

and µ is the continuous location parameter [95]. 
Also the Burr distribution functions are the best 

probability distribution functions to represent the 

joint dip direction of sedimentary and metamorphic 
rocks whose probability density function is defined 

as Equation 10: 
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(10) 

where k and a are the continuous shape parameter 

(k and a > 0), and β is the continuous scale 

parameter (β > 0) [95]. Figure 12, Figure 13, and 

Figure 14 show three samples of the obtained 

Cauchy distribution function of joint dip. In 
addition, Figure 16, Figure 17, and Figure 18 show 

three samples of the obtained Cauchy and Burr 

distribution function of dip direction. 

 
Figure 11. Comparison views of summed up normalized GoF test statistics values for a joint dip of all surveyed 

exposures. 
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Table 4. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of dip. 

Site 

Test statistic The best 

probability 

distribution 

function 

Normal Cauchy Pert Power Function 

D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S 

SI1 

0
.2

2
 

0
.1

7
 

4
.2

6
 

2
.5

 

2
2
.4

 

7
.8

1
 

-2
.9

 

0
.1

3
 

0
.1

7
 

1
.0

2
 

2
.5

 

3
.5

7
 

9
.5

 

1
.5

 

0
.1

4
 

0
.1

7
 

3
.1

5
 

2
.5

 

7
.7

2
 

9
.4

9
 

0
.1

 

0
.1

2
 

0
.1

7
 

4
.7

2
 

2
.5

 

0
.9

8
 

9
.4

9
 

0
.3

 

Cauchy 

SI2 

0
.2

2
 

0
.1

6
 

4
.1

2
 

2
.5

 

1
7
.2

 

1
1
.1

 

-1
.6

 

0
.1

2
 

0
.1

6
 

0
.7

4
 

2
.5

 

1
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4
 

9
.5

 

1
.8

 

      

N
A
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0
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4
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1
 

2
.5

 

1
3
.2

 

9
.4

9
 

-1
.8
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SI3 

0
.1

7
 

0
.2

4
 

1
.0

7
 

2
.5

 

2
.9

8
 

7
.8

1
 

1
.4

8
 

0
.1

2
 

0
.2

4
 

0
.5

2
 

2
.5

 

0
.1

 

7
.8

 

2
.3

 

0
.1

6
 

0
.2

4
 

2
.9

1
 

2
.5

 

4
.8

8
 

5
.9

9
 

0
.3

4
 

0
.1

4
 

0
.2

4
 

0
.8

7
 

2
.5

 

4
.9

9
 

5
.9

9
 

1
.2

4
 

Cauchy 

SM1 

0
.1

4
 

0
.2

3
 

0
.8

4
 

2
.5

 

4
.3

5
 

7
.8

1
 

1
.5

1
 

0
.1

 

0
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3
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0
.7

8
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.1

9
 

0
.2

3
 

1
.8

6
 

2
.5

 

1
0
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.9
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0
.2

8
 

0
.2

9
 

1
.5

3
 

2
.5

 

1
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1
 

5
.9

9
 

1
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5
 

0
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7
 

0
.2

9
 

0
.8

8
 

2
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1
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6
 

1
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.1
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.6

2
 

2
.5

 

1
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Table 5. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of dip direction. 

Site 

Test statistic The best 

probability 

distribution 

function 

Normal Burr Cauchy Pert 

D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S D Dc A2 A2
c x2

 x2
c S D Dc A2 A2

c x2
 x2

c S 

SI1 

0
.1

7
 

0
.1

7
 

2
.4

1
 

2
.5

 

1
4
.6

 

7
.8

1
 

-0
.8

 

0
.1

7
 

0
.1

7
 

5
.3

5
 

2
.5

 

1
.4

2
 

7
.8

1
 

-0
.3

 

0
.1

1
 

0
.1

7
 

0
.5

3
 

2
.5

 

1
.4

2
 

7
.8

 

1
.9

 

0
.3

1
 

0
.1

7
 

7
.4

6
 

2
.5

 

9
 

7
.8

1
 

-3
 

Cauchy 

SI2 

0
.2

1
 

0
.1

6
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Figure 12. Cauchy distribution of joint dip angle of SI1 outcrops. 

 
Figure 13. Cauchy distribution of joint dip angle of SM1 outcrops. 

 
Figure 14. Cauchy distribution of joint dip angle of SS2 outcrops. 
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Figure 15. Comparison views of summed up normalized GoF test statistics values for joint dip direction of all 

surveyed exposures. 

 
Figure 16. Cauchy distribution of joint dip direction of SI2 outcrops. 

 
Figure 17. Burr distribution of joint dip direction of SM2 outcrops. 
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Figure 18. Burr distribution of joint dip direction of SS1 outcrops. 

5.3. Joint trace length distribution function 

The calculated GoF test statistics of the 
Kolmogorov-Smirnov, Anderson-Darling, and 

Chi-Squared tests of observed trace length and 

estimated trace length by SVM are shown in Table 

7. By comparing the GoF test statistic values for 
the obtained trace length in all sites, it is essential 

to determine which GoF test statistic value of 

estimated trace length by SVM is smaller than the 
observed trace length for the lognormal 

distribution function. The comparison of these 

results shows that if most of the existing joints in 
the exposure are obscured, the distributions will 

not be determined from the best fit of a functional 

form to the observed, collected field data. This 

clearly shows that it is essential to consider the 
trace length prediction by the learning models such 

as SVM when estimating the actual trace length 

distribution function. The comparison views of 

summed up normalized GoF test statistics values 
for joint trace length of all surveyed exposures are 

shown in Figure 19 and Figure 20. 

According to the calculated GOF test statistics, 
the lognormal distribution was the best probability 

distribution to represent a joint trace length 

distribution, shown in Equation 8. Also Figure 21, 
Figure 22, and Figure 23 show three samples of the 

obtained lognormal distribution of estimated joint 

trace length by the SVM model. 

 
Figure 19. Comparison views of summed up normalized GoF test statistics values for joint trace length (obs) of 

all surveyed exposures. 
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Table 6. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of observation trace length. 
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Table 7. Test statistic of Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests of estimated trace length by SVM. 
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Figure 20. Comparison views of summed up normalized GoF test statistics values for joint trace length (SVM) of 

all surveyed exposures. 

 
Figure 21. Lognormal distribution of joint trace length of SI2 outcrops. 

 
Figure 22. Lognormal distribution of joint trace length of SM1 outcrops. 
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Figure 23. Lognormal distribution of joint trace length of SS1 outcrops. 

As mentioned earlier, it was concluded that the 

joints' spacing and aperture due to their inherent 
nature must follow a lognormal distribution 

function. Similar to the spacing and aperture of 

joints, it is clear that a considerable trace length of 

joints must have a low frequency, and a small trace 
length must have a high frequency. Also from the 

inherent nature of the rock masses, it could be 

concluded that by reducing the size of trace length, 
the relative frequency increased. Still, the relative 

frequency must be reduced from a specific value by 

reducing the size of the trace length. Since we study 
the rock mass in the macro mode, if the trace length 

is too small, it cannot be seen as a trace length in 

the macro mode, and they are not measured. 

Therefore, similar to the spacing and aperture, the 
joint trace length must follow a lognormal 

distribution function. 

6. Conclusions 

Since the properties of the joints typically vary 

over a wide range, their nature of random 

characteristics is required to be appropriately 
described in the preliminary design investigations. 

Therefore, due to the existence of vast areas of the 

potential application of probabilistic methods in 

geo-sciences, the natural phenomena occur with 
such a variation that a stochastic rather than a 

deterministic system definition is more realistic. 

However, it is possible to consider the full range of 
data concerning the specific random characteristics 

in a stochastic estimation. This can be easily 

achieved with the probability distributions, which 

give both the range of values that the variable could 
take and the relative frequency of each value within 

the range. 

Due to the inherent statistical nature of the joint 

properties, its geometry should be characterized 
statistically. The joints have short lengths but are 

many, and have not been displaced previously. 

Henceforth, in this work, efforts have been made in 

order to determine the probability distribution 
function of the rock joint geometry properties. 

Thus for this purpose, a scanline sampling was 

surveyed on the rock exposures, and the joint 
geometry properties (spacing, aperture, orientation 

(dip and dip direction), roughness, Schmidt 

rebound of the joint’s wall, type of joint 
termination, joint trace lengths in both sides of the 

scanline and joint sets) was measured. The 

Goodness-of-Fit (GoF) tests were applied on the 

joint geometry properties data obtained in nine 
outcrops of three rock-type surveys. The GoF test 

statistics of the Kolmogorov-Smirnov, Anderson-

Darling, and Chi-Squared tests of the related 
probability distribution functions of each joint 

geometry properties were calculated. In order to 

minimize the weaknesses and amplify the strength 
of these three methods, we summed the results 

together. Then three normalized values of the three 

GoF tests for each distribution function were 

added. Consequently, the distribution function with 
a greater value is the best probability distribution 

function for representing the joint geometry 

properties. According to the conducted analyses, 
the main conclusions of this work are as follow: 

i. It could be concluded that the GoF tests satisfied 

the compatibility of the obtained joint aperture, 

spacing, and trace length data with a theoretical 

lognormal probability distribution. 

ii. If most of the existing joints in the exposure are 

obscured, the observed mean trace length will not 

be a good indicator of the mean trace length of 
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the joints, and the distributions will not be 

determined from the best fit of a functional form 

the observed, collected field data.  

iii. The surveyed sites except for SM3, SS1, and SS2 

showed the best fit to the Cauchy distribution 

function to represent the joint dip distribution 

function. The Cauchy distribution function is the 

best probability distribution function to represent 

the joint dip direction of igneous rocks. The Burr 

distribution functions are the best probability 

distribution function to define the joint dip 
direction of sedimentary metamorphic rocks. 
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 چکیده:

 یهایژگیکه و ییآنجاشود. از یکنترل م هادرزه یهندس یهایژگیوتوسط دار اغلب هدرز هایسنگتوده یها در داخل و روشکل و شکست سازه رییتغ سمیمکان

س ستبه ریبا مقاد زیاد ریمقاد سهیمقا یچگونگ ینیبشیبه منظور پ ریمقاد نیا عیدارند، درک توز ریاز مقاد یفیط هادرزه یهند  دیفنمونه کوچک م کیاز  آمدهد

احتمال  عیتابع توز نییبه منظور تع یو دگرگون یرسوب ن،یآذر یهارخنمون سنگ 9( را از هادرزهداده  1652) هادرزه ستمیکار سه مجموعه داده از س نیا است.

س ست آهای به روی  داده ( برGOF) برازش نیبهتر هایآزمون جه،یدهد. در نتیمورد مطالعه قرار م هادرزه یخواص هند ، هاآزمون نیشود. طبق ایاعمال م مدهد

صله عیتابع توز نیبهترلاگ نرمال  ست که فا شدگی داری،احتمال ا شان م هادرزهو طول  باز شدهدیرا ن  هادرزه بیش هیزاو یاحتمال برا عیتابع توز نیبهتر ی. کو

 عیابع توزت نیبهتربور  عیاست و تابع توز نیآذر یهاسنگ درزه بینشان دادن جهت ش یاحتمال برا عیتابع توز نیبهتر یکوش عیاست. مشخص شد که تابع توز

 .است یو دگرگون یرسوب یهاسنگ درزه بیجهت ش فیتعر یاحتمال برا

 های بهترین برازش.آزمون ،طول ،بازشدگی، داری، فاصلههادرزه یهندس یهایژگیو کلمات کلیدی:

 

 

 

 


