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 The Aynak copper deposit is the most important strata-bound copper reserve in 
Afghanistan. The main purpose of this work is the ore deposit boundary modification 
and reserve estimation of the Aynak central copper deposit using the geostatistical 
methods. The ordinary kiging (OK), indicator kriging (IK) and sequential indicator 
simulation (SIS) methods were used to modify the optimum ore deposit boundary and 
ore reserve estimation. Then the results, accuracy and efficiency of these three 
methods are compared. Before the ore reserve estimation, the pre-processing,  
statistical and geostatistical analysis of the sampled data are performed. For a precise 
estimation process, it is necessary to modify the optimum ore body boundary as an 
estimation space. Therefore, the IK and SIS methods are applied to revise the 
conventional ore deposit boundary and estimation space. At the first stage, the ore 
body wireframe and solid model are obtained using the conventional cross-section 
method. The block model is created covering the mineralization space of the ore body, 
and firstly constrained by the conventional model (solid model). Consequently, the ore 
body model is adapted and bounded using the IK and SIS geostatistical methods. 
Finally, the log-kriging method that is basically unbiased and guarantees the minimum 
estimation error is used to estimate the Cu concentration in each block, and after back-
transformation, the grade-tonnage curves are plotted. The total tonnage of the deposit 
is calculated based on different cut-off grades. Assuming the cut-off grade of 0.2% for 
Cu, the tonnage of ore reserve based on the conventional OK method, IK method, and 
SIS constrained ore body model are estimated as 453.4, 459.1, and 467.7 million tons 
with an average grade of 1.077%, 1.08%, and 1.05%, respectively. The proximity of 
the obtained reserve estimation results using different implemented methodologies is 
due to the low-grade variability and genetical regularity in the Aynak staratabound 
copper deposit and guarantees the accuracy of the results obtained in the ore reserve 
evaluation. 
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1. Introduction  

The ore deposit boundary modeling and the 
reserve estimation are the important goals of mining 
exploration operations, and only after this stage, we 
can consider the ore reserves as the technical and 
economic issues. Among these, determining the ore 
deposit boundary and estimating the quantity and 
quality of reserves are the most important issues and 
problems frequently facing the geologists and 
mining engineers due to the geological complexities 

of ore body formation. Therefore, estimation of ore 
reserves is one of the most critical aspects of mining 
geology [1].  

Evaluating the geological properties of a mineral 
deposit is a fundamental task for mine planning and 
it requires an assessment of the reserve parameters 
such as the thickness and grade. With the 
exploration progress, the reserve estimation is 
required from time to time in order to quantify the 
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thickness and grade contained in the deposit. There 
are some techniques in the literature for modeling 
the reserve parameters thickness, tonnage, and 
grade. The geo-statistical methods are based on the 
random functions, and consider the spatial 
relationship of the sample data. Even though the 
geo-statistical methods have a high modeling 
capacity, these method has some limitations. The 
most important limitation of the geo-statistical 
approaches is the number of data points. In the case 
of small deposits, the number of boreholes is not 
sufficient for the calculation and modeling of an 
acceptable variogram [2]. 

There are various methods for calculating the 
volume and tonnage of ore reserves that can be used 
according to the types of reserves and the amount of 
depth information, calculation algorithm, accuracy, 
speed, ore deposit status, and characteristics of the 
deposit exploration works. Due to the effects of 
estimation error on increasing the investment risk, it 
is necessary to use the most accurate reserve 
estimation that can guarantee the minimum 
estimation error [3-6], and the estimation error must 
be known at any point of the ore deposit to 
categorize the reserve. 

Unlike to conventional methods and/or classical 
statistics of ore deposit estimations, which are 
typically associated with a systematic error, the geo-
statistical methods provide quick and reliable 
estimates with a minimum variance [7]. Therefore, 
it is possible to achieve the error distribution 
function. Among the geo-statistical methods, 
kriging provides estimation with a minimum 
variance and error at an unsampled location [7-9]. 

Kriging, as a group of geostatistical  methods, is 
an interpolation technique that considers both the 
distance and the degree of variation between the 
known data points when estimating the values in 
unknown areas [10-12]. The main disadvantage of 
kriging is referred to smoothing, which leads to 
some reduction in variability. Smoothing causes 
overestimating of the low values and 
underestimating of the high values [13, 14]. 

The most common type of kriging that is used in 
the linear reserve estimation methods is ordinary 
kriging (OK). In this method, based on the available 
data, the most accurate possible estimate for the 
grade of the extracted blocks is calculated with the 
error related to the grade value of each block. 
Among the non-linear kriging methods, the 
indicator kriging (IK) method is the most used in the 
ore deposit boundary modification and ore reserve 
estimation. When the variable distributions of 
interest have a near-normal shape, a linear estimator 
is ideal. However, when the variable distribution of 

interest is highly skewed or contains a mixture of 
population, the ordinary estimation methods can be 
erroneous. In these case, the non-linear estimation 
method can more appropriately handle these more 
complex distributions such as log-kriging [12]. 

The first step in the ore reserve estimation is to 
determine the boundary of ore deposit or ore/waste 
contacts [1]. Generally, for low grade deposits in 
which the boundaries are highly dependent on the 
cut-off grade, it is vitally important to determine the 
ore-waste bound of a block. A number of techniques 
exist for boundary modeling, and some 
developments for reducing the uncertainty near 
boundaries have currently been applied [15]. 

Any estimation made by OK is only invaluable 
from the extraction view point when the estimated 
block is entirely extracted out. However, the 
conventional OK is unable to give a method for a 
selective extraction of the estimated block in erratic, 
complex boundaries, and low grade deposits 
because the ore/waste bound is not obvious, and is 
located inside the blocks. Likewise, in order to 
control the estimation process, it is necessary to 
define a specific space or search  space, which has a 
significant impact on the outcome of the kriging 
estimate [16] based on the ore deposit boundary and 
to estimate that space using the data gathered from 
the deposit.  

In case all the data including those of both ore and 
waste are used to estimate the estimation space, 
because of the smoothing effect of kriging, the data 
related to waste materials has  a tendency to 
decrease the overall grade of the deposit while the 
data of ore is vice versa [17, 18]. This might result 
in the overestimation of tonnage and 
underestimation of grade, and finally distracts the 
ore–waste relationship from what it really is [18]. 

When it is required to separate the estimation 
blocks in an ore reserve, it is so helpful to apply IK  
and Sequential Indicator Simulation (SIS). IK and 
SIS are used in the ore deposit boundary 
modification and ore reserve estimation widely. The 
algorithm of SIS is similar to that of Sequential 
Gaussian Simulation (SGS), a widely used 
technique for the categorical and continuous 
variable models [19, 20]. IK and SIS are also able 
to help the user to draw the probability map for any 
grade to have the probability of happening equal to 
or greater than an arbitrary cut-off grade. If this cut-
off grade is the same as the economic grade, then 
the drawn map shows the ore deposit boundary too. 

The main purpose of this work is to determine the 
optimum ore deposit boundary using the IK and SIS 
geo-statistical methods and compare them with the 
solid model obtained by the conventional method. 
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In this work, the accuracy and efficiency of linear 
(Ok), non-linear (IK) kriging, and SIS  geo-
statistical methods are investigated in the ore 
deposit boundary modification and ore reserve 
estimation in the Aynak central copper deposit. 

2. Case study: Aynak copper deposit 

Aynak is the largest know copper deposit in 
Afghanistan, and is comparable to those in the 
Zambian Copper belt in grade and tonnage [21, 22]. 
The Ayanak copper deposit is located about 30 km 
south and SE of the Kabul city, Kabul tectonic 
block. The center of the deposit is located at 

longitude 69�h 18´ 18�Ž latitude 34�h 15´ 58�Ž 
approximately (Figure 1) [23, 24].  

The Kabul block is a north-northeast trending, 
lenticular-shaped sliver about 200 km long and 50 
km wide. The block has a broadly anticlinal 
structure that exposes a core of Precambrian 
metamorphic rocks flanked by Late Paleozoic and 
Mesozoic rocks [24]. The Aynak deposit is hosted 
in rocks of the Loykhar and Gulhamid Formations 
that are folded into a complex asymmetric anticline 
[24]. 

The oldest rocks exposed in the studied area 
belong to the metavolcanic Wellayati Formation, 
composed of gneiss and amphibolite and are 
exposed to core of the anticlined. 

 

 
Figure 1. Tectonic map  of Afghanistan with location of Kabul Block and the the Aynak copper deposit, modified 

from AGS and BGS [22, 23]. 

 
This formation is overlain by the thick 

metasedimentary sequence of the Loy Khar 
Formation, which is the host to the copper 
mineralization. The Loy khar Formation is a 
cyclical sequence of dolomite marble, carbonaceous 
quartz schist and quartz-biotite-dolomite schist, and 
hosts the copper mineralization. The Loy Khar 
Formation is post-dated by basaltic to dacitic 
metavolcanic rocks of the Gulhamid Formation, 
which are also of Vendian-Cambrian age [21-26] 
(Figure 2). 

The upper Permian limestones and dolomites of 
the Khingil Formation occur at Aynak in small 
outcrops in the western and southern part of the 
area. Poorly consolidated coarse fluvial and fluvial-
lacustrine intermountain basin deposits of Neogene 
Lataband Formation infill the valleys and 
depressions in the Aynak area that reaches a 
maximum thicknesses of about 600 m [23-26]. 
 

 
Figure 2. Geological map and cross-section of Aynak 

copper deposit [22]. 



Shafayi and Mohammad Torab Journal of Mining & Environment, Vol. 13, No. 2, 2022 

 

328 

 
Figure 3. Stratigraphic column, showing the major 

rock types and sulphide mineral zonation in the 
Aynak copper deposit [22]. 

The copper mineralization at Aynak is 
stratabound, and characterized by chalcopyrite and 
bornite disseminated in dolomite marble and quartz-
biotite-dolomite schists of Loy Khar formation [22-
26]. The mineralization is mainly concentrated in 
members 3-5 of the Formation, as illustrated in 
Figure 3. The main ore body at Central Aynak is 
characterized predominantly by bornite. 
Chalcopyrite occurs in only minor amounts in the 
middle and lower parts of the orebody. Primary 
mineral zoning is apparent within the deposit. The 
central part of the deposit contains mainly bornite 
grading out to chalcopyrite and the pyrite and 
pyrrhotite. [23-26]. 

3. Methodology 
3.1. Dataset  

In all, the data about 10881 rock somples with 
intervals of 0.1-13.6 m with mean of 1.8 m gathered 
from 132 boreholes and trenches with a total length 
of 42185 m related to the Aynak copper deposit. The 
dataset included collars, lithology, down-hole 
survey, and assay, which are used in this work. In 
general, the drilling grid is irregular, and the 

distance between the two boreholes varies from 20 
m to 100 m. Figure 4 shows a 2D view of the drill 
hole location in the deposit. The drill hole samples 
were prepared and analyzed using Atomic 
Absorption Spectroscopy (AAS) for copper. 

 
Figure 4. Drill hole 2D view in Aynak copper 

deposit. 

3.2. Pre-processing of data 

The sampled data was first pre-processed to use 
the reliable geo-statistical methods. Pre-processing 
of the data includes data validation, censored data, 
and outlier value analysis. In addition to the 
presence or absence of the censored data and outlier 
values, it is possible to have the missing 
information, i llogical data entries, and others such 
as sample interval overlaps [27], which are required 
to be investigated and validated. If there are 
censored data and outlier values, before the 
statistical and geo-statistical analysis and reserve 
estimation, the censored data and outlier values 
should be replaced and corrected. 

There are several methods for identifying the 
outlier values including box plot, Q-Q plot 
diagrams, computational method �:�º = �T+ �5���C, and 
Doerffel diagrams. For this purpose, first the 
censored data is identified, and is replaced using the 
�7

�8
 method for the minor sensitivity limit values. Then 

the box plot of the transformed data (ln(Cu)) is 
plotted and the outlier values are identified, and the 
replacement operation is performed (Figure 5). 

After checking the censored data and outlier 
values, the information collected from the 
exploratory boreholes is inserted in the Excel 
software. Then four files related to the assay, 
geology, collar, and survey information are inserted 
and finally, the database is made relevant to the 
mining software, which is used in the modeling and 
reserve estimation. Figure 6 shows a 3D view of the 
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boreholes and topographic layer of the Aynak 
copper deposit. 
 

 

 
Figure 5. Box plot of ln(Cu) for investigation of 

outlier values; (a) before replacement, and (b) after 
replacement of outlier values. 

Figure 6. A 3D view of boreholes and topographic 
layer on Aynak copper deposit. 

3.3. Statistical analysis 

The statistical study of the data used is the most 
important step towards the correct use of the 
geostatistical methods [28]. The raw data 
distribution function or normal Gaussian 
transformation is one of the most important and 
essential control before the geo-statistical 
estimation that has a significant effect on the 
selection of the appropriate estimators. Many geo-
statistical methods such as ordinary kriging are 
based on the assumption of stationarity [29]. The 
representation of the frequency histogram and the 
cumulative distribution function of the data are one 
of the most common methods in evaluating the 
frequency distribution and also in data 
normalization [10].  

In this work, the data distribution function was 
investigated using the histogram and P-P plot of the 
raw data. It shows that the initial raw data does not 
have a normal distribution, and has a high positive 
skewness, which should be converted to a normal 
distribution with a conversion function. There are 
various methods for transformation of the data 
distribution to normal distribution such as 
logarithmic, three-variable logarithmic, Cox-Box, 
and normal score transformation. In this work, a 
logarithmic transformation was used to transform 
the abnormal distribution to a normal one; then by 
investigation of the statistical parameters and 
diagrams, it was identified that the logarithmic 
distribution of copper adhered to normal 
distribution. Thus the logarithmic transformation 
was used for normalizing the raw data (Figure 7). 

Table 1 shows the statistical parameters of the 
primal raw data and the transformed one. 
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Figure 7. Histogram and P-P plot of primary raw data to investigate data distribution before and after 

logarithmic transformation (a)  histogram of Cu, (b) histogram of ln(Cu), (c) P-P plot of Cu and (d) P-P plot of 
ln(Cu). 

 
Table 1. Statistical parameters of Cu and Ln(Cu) . 

Parameters Cu Ln(Cu)  
No. of data 10881 10881 
Mean 1.1811 -0.5439 
Median 0.61 -0.4943 
Standard Deviation 1.5682 1.3107 
Variance 2.4593 1.7179 
Skewness 4.48 -0.46 
Kurtosis 41.6 0.26 
Minimum 0.0075 -4.8929 
Maximum 24 3.1781 

 
Finally, in order to create the same volume of the 

samples, creating a homogeneous environment, the 
same probability in terms of the size of the samples, 
compositing is carried out. It is very important in 
estimation to work with equal support samples, and 
therefore, the data was composited to equal lengths 
[30]. In other words, the samples taken from the 
drilling cores should be statistically homogeneous 
in length and effect So that they can be used in the 
geo-statistical studies. For this reason, the first step 
in preparing the standard data in doing the geo-
statistical studies is the uniformity of the statistical 
weight and the effect of data or composite 
specimens [10, 28]. In this work, based on the 
plotted histogram of sampling length, for having 
and equal volume of the samples and creating iso-
probability space, all the data was composited into 
2.5 m in length. 

3.4. Geological modeling 

Prior to grade estimation, it is necessary to 
construct the geological model of the constraints 
and border of the mineralization zones. Usually 3D 
representation of the volume of mineralization must 
be constructed [9, 15, 31]. A 3D geological 
modeling can reflect the result and properties of the 
ore deposit, enabling the geologists to have a more 
intuitive and clear understanding of the ore deposit. 
The purpose of a geological model construction is 
to determine the grade, boundaries, and geological 
structures of an ore deposit. The first step in 
geologic modeling is to plot the cross-sections with 
the geologic data of each drill hole on sections [32].  

Therefore, in order to know the status of geometry 
of mineralization and ore grade distribution in the 
Aynak copper deposit and finally to estimate the ore 
reserve, 23 northwest-southeast cross-sections were 
plotted using and exploratory borehole information. 
Then in each section, the mineralization zones were 
identified, and the sections were connected to each 
other manually, and finally, the volumetric model of 
the mineralization domain was prepared for the 
usual ordinary kriging (Figure 8).  
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Figure 8. Exploration cross-sections and geological 

model of ore deposit domain in Aynak copper 
deposit (a) cross-sections (b) wireframe model. 

3.5. Variogram analysis  

The geo-statistical methodologies are based on the 
theory of regionalized variables [7, 33], which states 
that the attributes within an area exhibit both the 
random and spatially structured properties [34, 35]. 
A semi-variogram is the fundamental tool of geo-
statistical procedures to investigate the spatial 
structure[36]. It is defined as half of the mean square 
difference of a variable for values separated by a 
distance h [1, 7, 12, 13]. In practice, an experimental 
variogram  is computed as [1, 7, 11, 15, 34, 35, 37]: 

�J�Ü (h)= �5

�6 �Ç (�Û)
�Ã [�V (�T�Ü

�Ç ( �Û)
�Ü�@�5 ) F �V (�T�Ü+ �D)]�6 (1) 

where �J�Ü (h) denotes the variogram for an 
interval lag distance class h, N(h) represents the 
number of pairs for an interval lag distance 
class h, and �V (�T�Ü) and �V (�T�Ü+ �D) are the values 
of the regionalized variables of interest at 
locations xi and xi+h, respectively. 

The variogram can be computed in different 
directions to detect any anisotropy of the spatial 
variability [35, 38]. The directional variogram 
model provides a better understanding of the 
deposit and helps in identifying the anisotropy 
[10]. An anisotropy model generally includes 
the geometric anisotropy and zonal anisotropy 
[35, 38]. The former type of anisotropy yields 
the variogram having the same structural shape 
and maximum variability (sill) but a direction-
dependent range for the spatial correlation. The 
latter type, however, is defined by sills varying 
with direction [35]. 

In this work, variographic operations were 
performed to study the structural analysis, 
anisotropy, and geo-statistical estimation with 
respect to the spread of the ore deposit in the 
Aynak copper deposit, and thus the direction of 
the medium and small axes of the anisotropic 
ellipsoid was determined. After computing and 
plotting the experimental variogram, a 
theoretical model should be fitted to the 
obtained experimental variogram. In the current 
work the best theoretical exponential model 
was fitted to find three parameters including the 
nugget effect (C0), the sill (C + C0), and the 
range. The variogram parameters and 
variogram model are illustrated in Table 2 and 
Figure 9.

Table 2. Variogram parameters related to Cu variogram model in Aynak copper deposit. 
Variable Variogram Model Nugget-effect Sill ( C + C0) Range (m) 

Ln(Cu) Directional Exponential 0.1012 1.0262 
Minimum Maximum 

45.66 82.66 
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Figure9. Directional variogram of ln(Cu) in Aynak 
copper deposit (a) dip = -10�h, Azimuth = 110�h (b) dip 
= -29.5�h, Azimuth = 14�h, and (c) dip = 58.5�h, Azimuth 

= 36.7�h 

In order to draw the indicator variogram, the 
first step is to transform the data into the 
indicator values, and the variogram should be 
plotted using the values for the indicators. The 
variogram must be calculated in different 
directions to detect the anisotropy of spatial 
variation [18].  

In this work, in order to determine the ore 
deposit boundary using the indicator kriging 
method, the indicator variogram was 
calculated and the experimental variogram 
model was obtained. Then on the experimental 
variogram, the appropriate theoretical model 
(here, the exponential model) was fitted. The 
results of this indicator variogram analysis are 
illu strated in Table 3, and Figure 10. 

Figure10. Indicator variogram of Cu in Aynak 
copper deposit (a) dip = -10�h, Azimuth = 110�h (b) dip 
= -29.5�h, Azimuth = 14�h and (c) dip = 58.5�h, Azimuth 

= 36.7�h 

3.6. Cross-validation 

After performing the estimation process using 
each geostatistical method,  validation is performed 
to examine the accuracy of the results [34, 35, 39]. 
In other words, the accuracies of the variogram 
model and the estimation method are determined 
via the validation techniques. In a cross-validation 
procedure or leave-one-out [18, 38], the measured 
data is dropped one at a time and re-estimated from 
some of the remaining neighboring data [13, 34, 
35]. Each datum is replaced in the dataset once it 
has been re-estimated. The two parameters are 
computed as follow [34, 35]. 

KME = 
�5

�Ç
 �Ã [�+�Û�Ç

�Ü�@�5 (�Q�Ü; �V�Þ) F�+(�Q�Ü; �V�Þ)] (2) 

MSSE = 
�5

�Ç
 �Ã

[�Â�Û ( �è�Ô;�í�Ö)�?�Â(�è�Ô;�í�Ö)] �.

�� ( �è�Ô;�í�Ö) �.
�Ç
�Ü�@�5  (3) 

where I*(ui; zk) and I(ui; zk) are the estimated and 
measured values at the location, respectively, N is 
the number of measured data, and �ê(�Q�Ü; �V�Þ)

�6is the 
kriging variance.  

Table 3. Indicator variogram parameters related to Cu variogram model in Aynak copper deposit. 
Variable Cut-off grade Variogram Model Nugget-effect Sill Range (m) 

Cu 0.1 Directional Exponential 0.129 0.594 Min Max 
39.245 72.762 
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The KME (kriging mean error) and MSSE (mean 
square standard error), which are close to zero and 
one, respectively, denote the best fitting models and 
parameters of the variogram. In this work, the 
validity of the variogram models were checked 
using a cross-validation method. 

Based on the results of the variogram validation, 
the amounts of uncertainty and error are determined 
in the sampled data. Ideally, the following 
conditions should be met in the results of comparing 
the estimated data with the initial data. 

1- The mean error should be close to zero 2- The 
variance error should be close to the average kriging 
variance 3- The error histogram should have a 
normal distribution, and approximately 95% of the 
error should be in the range of -2 to +2 of kriging 
variance 4- High correlation between the estimated 
values and the actual values, and 5- There is no 
correlation between the estimated values and the 
error. 

The cross-validation results show that KME and 
MSSE are close to 0 and 1, respectively, indicating 
that the fitted variable function parameters are 
reliable and can be used for ordinary kriging 
estimation. The results are shown in Table 4 and 
Figure 11. 

Table 4. Summary statistics of Kriging error using 
cross-validation. 

Summary statistics of Kriging errors 
Parameters ln(Cu) 
Mean 0.0034 
Variance 0.2557 
STD.Deviation 0.5057 
Skewness -0.1212 
Kurtosis 6.082 
AVG. Krig variance 0.2896 
Two. STD. Deviation 95.65 

 

 
Figure 11. (a) Scatter diagram between estimated 

and residual values (b) correlation diagram of kriged 
values and initial values. 

3.7. Indicator Kriging  

Indicator Kriging, as introduced by Journel, is a 
non-parametric geostatistical method for estimation 
of the probability of exceeding a specific threshold 
value, Zk, at a given location. In indicator kriging, 
the stochastic variable, Z(u), is transformed into an 
indicator variable with a binary distribution, as 
follows [2, 14, 15, 34, 35, 38-43]: 

I (u;zk)=�D
1�o  �V�è Q �V�Þ 

0�o  �K�P�D�A�N�S�E�O�A
 

(4) 

k=1, 2, 3,…, m 

where I (u; zk) is index value of the sample I, and 
Zk is the given cut off grade. 

Indicator kriging estimates the probability of the 
grade of a given block to be smaller than a specific 
cut-off grade. The merit of this method is that the 
estimation process is independent from the 
distribution of the data. 

Prior to applying this method, the raw data should 
be transformed into the index values, based on the 
upper mentioned equation (4).  

Indicator kriging is almost similar to ordinary 
kriging except in indicator kriging; the indicator 
variogram values are used instead of the ordinary 
variogram. The indicator variogram can provide 
information about the spatial distribution of each 
class of values, allowing the evaluation of the 
probability to exceed the cut-off values [42]. The 
indicator variogram is calculated for each given cut-
off grade using the following equation: 

�Û�Ü
�Û( �D���V�Þ) =

1

2 �0 ( �D)
Í [ �+ ( �T�Ü

�Ç ( �Û)

�Ü�@�5

�� �V�Þ) F �+ ( �T�Ü+ �D�� �V�Þ) ] �6 (5) 

where N(h) is the number of pair of samples 
separated by vector “h” .  

The approximate value of the index variable in 
each point is given by the following equation [34, 
35]: 

I*(uo, zk) = �Ã �O�Ý
�l
�h�@�5 (zk)I(uk, zk) (6) 

where I(xi, zk) represents the values of the 
indicator at measured locations, uj, and �Oj is the 
weighting factor of I(uk, zk) in estimating I*(uo, zk). 

The approximate value of the index, I(uk, zk), 
varies between 0 and 1, and suggests the probability 
of the grade of the estimated block to be smaller 
than the cut-off grade [1, 35, 42]. 

The indicator is then estimated using OK to give 
the probability estimate of exceeding or not 
exceeding the thresholds of interest. The IK 
estimate of each single indicator lies in the interval 
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[0,1] [1, 12, 40, 44], and can be interpreted as [1, 12, 
40]: 

1. Probability that the grade exceeds the indicator 
threshold or  

2. As proportions (the proportion of the block 
above the specified cut-off on the data support). 

3.8. Sequential indicator simulation (SIS) 

SIS is an invaluable tool for providing the spatial 
models by combining the sequential paradigm with 
indicator formalism to simulate nonparametric 
categorical or continuous distributions. The 
objective in SIS is to generate realizations {z(x1), 
z(x2), …, z(xn)} at un-sampled locations {x1, x2, …, 
xn} for a set of random variables z(x) of a property. 
In this simulation approach, the IK estimator is used 
for providing the model. Like Full Indicator Kriging 
(FIK), SIS utilizes many thresholds for 
transforming data into the indicator values to 
perform the simulation [38, 45]. 

In general, the SIS algorithm can be implemented 
as follows [38, 45]: 

1. Transformation of the data of  Cu grade in to the 
indicator codes (o or 1) by the indicator function 
at each threshold zk. 

2. Preparation of the indicator variograms for each 
threshold. 

3. Definition of a random path. 

4. Application of the IK estimator at each 
unsampled location from all other values ( 
known and simulated ) to approximate the 
probability of variable being lower than a given 
cutoff value. 

F[zk; x�c
m�Ä(n+m-1)]=probIK[z(x�c

m) �”���]k] (7) 

where n is the number of observed data, m-1 is the 
number of previous simulated values, and F [zk; 
x�c

m�Ä(n)] is the conditional cumulative distribution 
fuction (CCDF). 

5. Simulation at other locations sequentially. 
A flow chart illustrating the SIS procedure is 

shown in Figure 12.  

3.9. Ordinary kriging  

Ordinary Kriging (OK) is probably one of the 
most common geo-statistical methods being applied 
in estimation since it has gained much recognition 
and has proven to be a very good estimator [29]. OK 
is an estimation method often associated with the 
normal distribution [46]. OK is a linear geo-
statistical method that provides local estimation by 
interpolation. Krige and Matheron have introduced 
this linear estimation technique to reduce the 

volume variance effect. OK assumes that the 
regionalized variables are stationary where the 
mean is unknown [3-5, 41, 43]. Ordinary kriging 
can be estimated by linear combination of the 
observed values with weights as follows [11, 33]: 

�<�Û(�T�4) =  Í �ã�Ü�<(�T�Ü)
�á

�Ü�@�5
 (8) 

where �<�Û(�T�4) is the kriging estimation at location 
�T�4, �<(�T�Ü) is the sampled value at location �T�Ü, and �ã�Ü 
is the weighting factor for �<(�T�Ü). The estimation 
error is: 

�<�Û(�T�4) F �<(�T�4) = �4(�T�4) = Í �ã�<(�T�Ü) F�<(�T�4)
�á

�Ü�@�5
 (9) 

where �<(�T�4) is the unknown true value at �T�4, and 
�4(�T�4) is the estimation error. For an unbiased 
estimator, the mean of the estimation error must be 
equal to zero. Therefore, �' {�4(�T�4)} = 0 and, 

Í �ã�Ü= 1
�á

�Ü�@�5
 (10) 

The parameters of the search ellipsoid are shown 
in Table 5. 

 

Figure 12. A flow chart illustrating procedure of 
(SIS). 

Table 5. Search ellipsoid parameters. 
Range Rmaj/Rsemi Rmaj/Rmin Azimuth  Dip Plunge 

82.66 1.083 1.81 110 30 -10 
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3.10. Block modeling 

Block modeling is performed to determine the 
volume of the ore deposit, limit the estimation 
space, and finally, to estimate the ore reserve. The 
factors that determine the size of the block are 
mainly to fully reflect the changing characteristics 
of the ore body. The ore body should have a large 
vaiability, the unit block should be small, the ore 
body should be in a lower vaiablility, then the unit 
block could be large. If the block size is too large or 
too small, the sample evaluation result will be 
average, and it cannot accurately reflect the 
characteristics of grade changes [47]. The size of 
these blocks is selected based on several factors, 
such as the drill hole spacing, mining method 
(bench height), and  ore deposit geological settings 
[12]. In the Aynak copper deposit, the distance 
between boreholes varies from 20 m to 100 m in 
different parts of the deposit. 

Table 6. Block model parameters in Aynak copper 
deposit. 

Type X Y Z 
Minimum  27808 91215 1486 
Maximum 29248 93335 2496 

Main-block size 10 10 10 
Sub-block size 2.5 2.5 2.5 

 
Therefore, the dimensions of the main block size 

were selected as 10 × 10 × 10 m and the sub-block 
size 2.5 × 2.5 × 2.5 m throughout the ore body extent 
(Table 6). The 3D block model of the Aynak copper 
deposit is shown in Figure 13. 
 

 
Figure 13. Block model of Aynak copper deposit. 

3.11. Ore deposit boundary modification using 
IK and SIS methods 

The simplest method to identify ore against waste is 
to draw the ore-waste boundaries manually in cross-
sections based on the borehole information [13]. 
Generally, for low grade deposits in which the 
boundaries are highly depended on th cut-off grade, 

it is vitally important to determine the ore deposit 
bound of a block. When it is required to separate the 
estimation blocks in an ore reserve, it is so helpful 
to apply the IK and SIS interpolation methods. IK 
and SIS are non-parametric techniques that are used 
in ore deposit boundary determination and ore 
reserve estimation widely. IK and SIS are also able 
to help the user to draw the probability map for any 
grade to have the probability of happening equal to 
or greater than an arbitrary cut-off grade. 
In this work, in order to determine the ore deposit 
boundary and reserve estimation using the IK and 
SIS methods, the exploratory borehole information 
related to the Aynak central copper deposit was 
used. For this purpose, by applying a cut-off grade 
(0.1% Cu), that below of 0.1% is considered as 
waste and above it, as ore; all the data was converted 
to 0 and 1, and the ore deposit boundary was 
estimated using the indicator kriging method. 
Finally, the estimation domain was cut with an 80% 
probability of occurrence, and the ore deposit 
boundary was determined. The results of this 
estimation as a probability map are shown in Figure 
14. 

 

 
Figure 14. 3D ore deposit model in Aynak copper 

deposit using IK (a) and SIS (b) methods with 
probabil ity of 80%. 
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4. Results and Discussion  

Before the ore deposit estimation, it is required to 
perform the statistical and geo-statistical analysis of 
the sampled data. Also to control the estimation 
process, it is necessary to modify a 3D model as the 
estimation space. To define the estimation area, the 
conventional, IK and SIS interpolation methods 
were applied, and the ore body solid models were 
obtained. Then the block model was created 
covering the mineralization space of the ore body, 
and constrained by the ore body solid model (Figure 
8). 

In this work, the IK and SIS methods were used to 
modify the optimum ore deposit boundary, and 
estimate the Cu concentration in the Aynak copper 
deposit. IK and SIS were used to estimate the 
probability of ore occurance based on 3D the 
anisotropic indicator variogram models. 

Then the ore body probability map to exceed the 
chosen 0.1% cut-off grade with a probability of 80% 
presence of ore deposit was obtained (Figure 14). 
Based on the SIS method, one hundred realizations 
were calculated, and the E-type map that illustrates 
thah the point-by-point average of all realizations 
was obtainted. Figure 15 shows a 3D view of Cu 
concentration in the Aynak central copper deposit 
constrained using the SIS approach. 
 

 
Figure 15. 3D view E-type map. 

 
Finally, the ore reserve estimation was performed 

using the OK method on the transformed values 
with the conventional and geo-statistical (IK and 
SIS) constrained block model. Then the results were 
back-transformed to the primal raw values. After 

estimating the Cu concentration in the Aynak 
copper deposit, the estimated block model was 
performed by transformed (ln(Cu)) and back-
transformed (Cu) values, which illustrated in 
conventional 3D block model (Figures 16 a & b). 
 

 

 
Figure 16. Ore reserve estimation using OK method 

(a) transformed values (ln(Cu)) and (b) back-
transformed values (Cu). 

In this work, the tonnage of ore deposit was 
calculated in different cut-off grades using the OK 
method. For a cut-off grade of 0.2% Cu, the tonnage 
of ore reserve based on Ok method with the 
conventional, IK and SIS constrained ore body 
model was estimated as follow (Table 7). 

Finally, the grade-tonnage curves were plotted. 
According to these curves, on the basis of an special 
cut-off grade, the average grade and tonnage of a 
mineral deposit can be estimated all together. Figure 
17 presents the grade-tonnage curves of ore reserve 
in the Aynak copper deposit. 

Table 7. Ore reserve estimation of Aynak copper 
deposit using OK method (with 0.2 % cut-off grade). 

Constrain 
method 

Tonnage (ton) Average 
grade (%) 

Conventional 453459000 1.0774 
IK 459157000 1.0801 
SIS 467742000 1.0514 
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Figure 17. Grade-tonnage curves constrained on the basis of IK  and SIS estimations. 

5. Conclusions 

Choosing the robust geostatistical methods with a 
minimum error is a very vital step for the ore deposit 
boundary modification and ore reserve estimation. 
In order to model the ore deposit boundary and 
define the estimation space, the conventional and 
geo-statistical (IK and SIS) methods were used, and 
the ore body solid model was obtained. The results 
of this work show that the traditional ore body 
modeling methods, generally due to low accuracy, 
is time-consuming; the user intervention in ore 
deposit boundary modeling, and also 
impelementing the same interpolation rules for 
different ore deposit types, in some cases, could be 
imprecise and locally erroneous. In this work, the 
traditional linear OK and non-linear IK and SIS geo-
statistical methods were implemented and 
compared for ore deposit boundary modification 
and ore reserve estimation in the Aynak copper 
deposit. 

Overal, in comparison, the SIS method was be 
able to much properly model the orebody with a 
higher continuity and the local fluctuation that had 
a better conformity with the Aynak staratabound 
deposition. The proximity of the obtained reserve 
estimation results using different implemented 
methodologies is probably due to a low-grade 
variability, and genetical regularity in the Aynak 
copper deposit, and guarantees the accuracy of the 
obtained results in the ore reserve evaluation. 
However, in the low-grade deposits with higher 

irregularity and ore grade variability, ore boundary 
modeling with traditional methods could be much 
complicated, and we are required to implement the 
proposed non-linear geo-statistical and simulation 
methodologies to reduce the risk of estimation. 
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