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 The goal of this research work is to recognize the metallic mineralization potential 
in the Ahar 1:100,000 sheet (NW Iran) using the remote sensing data based on 
determination of the alteration zones. This area is located in the Ahar-Arasbaran 
metallogenic zone as a significant metallogenic zone in Iran and Caucasus. In this 
research work, the Landsat-7 ETM+ and advanced space borne thermal emission and 
reflection radiometer (ASTER) multispectral remote sensing data was interpreted by 
the least square fit (LS-Fit), spectral angle mapper (SAM), and matched filtering (MF) 
algorithms in order to detect the alteration zones associated with the metallic 
mineralization. The results obtained by these methods show that there are index-
altered minerals for the argillic, silicification, advanced argillic, propylitic, and phyllic 
alteration zones. The main altered areas are situated in the SE, NE, and central parts 
of this region. 
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1. Introduction 
Iran is classified as the several zones based on a 

relatively exclusive record of stratigraphy, 
magmatic events, metamorphism, tectonics, and 
generally geological records [1]. There are many 
ore mineralization types, especially magmatic and 
hydrothermal deposits, with alteration zones as an 
exploration key. Remote sensing is an appropriate 
tool for regional exploration of these ore deposits 
[2-4]. The index alteration minerals, e.g. iron 
oxide-hydroxides, clays, and carbonates illustrate 
indicative spectral absorption signatures in the 
shortwave infrared (SWIR) and visible near-
infrared (VNIR) areas [5-6]. Multi-hyperspectral 
satellite imagery with proper spectral and spatial 
resolution is accomplished of detecting the spectral 
absorption signs of altered minerals in the SWIR 
and VNIR spectral bands, which can be used to 
map and remotely record the hydrothermal 
alteration zones related to the target mineralization 

[7]. The Landsat-7 ETM+ imagery is applied for 
mapping the alteration zones associated with the 
epithermal gold and porphyry copper ores at the 
reconnaissance stage of copper-gold exploration. 
The VNIR spectral bands of ETM+ are used to map 
iron oxides and hydroxides (gossan), while the 
SWIR spectral bands are utilized to record the 
carbonate minerals [7, 8]. The band ratio of 3/1 is 
applied to recognize the iron ores minerals, e.g. 
hematite, jarosite, and limonite, based on the strong 
absorption features in band 1 (0.45–0.52 µm) and 
reflectance in band 3 (0.63–0.69 µm). The band 
ratio of 5/7 is significant for finding the hydroxyl-
bearing and carbonate minerals [9, 10]. 

Separation of particular alteration zone minerals 
by Landsat-7 ETM+ and VNIR-SWIR spectral 
bands is interesting related to the situation, 
quantity, and broad extent of these bands [11, 12]. 
The ASTER multi-spectral satellite imagery is 
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mainly suitable for perceptive alteration zones of 
various ore mineralization types [2, 7, 13]. Three 
VNIR spectral bands of ASTER are applied to 
detect iron oxide-hydroxides [13, 14]. The phyllic, 
argillic, and propylitic alteration zones are 
detectible by six SWIR spectral bands of ASTER 
[14]. The phyllic alteration comprising the illite-
muscovite-sericite and strong Al-OH absorption 
feature at 2.20_m is visible by band 6. The argillic 
zone includes kaolinite-alunite, which has the Al-
OH absorption feature at 2.17_m based on band 5 
of ASTER. The propylitic zone including chlorite, 
epidote, and calcite reveals the absorption features 
around 2.35 m, which correspond to band 8 (Table 
1) [3, 4, 14, 15, 16, 17].  

2. Geology Setting 
The case study is situated at NW Iran, East 

Azerbaijan province (Figure 1). Based on the 
structural zonation in Iran, this region is a portion 
of the Alborz-Azarbaidjan zone [18], which is part 
of the Central Iranian domain [19, 20]. The oldest 
rock types in this region are upper Cretaceous 
intermediate/basic volcanic and sedimentary rocks 
and Eocene intermediate to basic volcanic rocks. 
These rocks are intruded by the Oligocene 
granitoid intrusive bodies such as Khankandi, 

Sonajil, Yuseflu and Razgah plutons, which have 
formed various hydrothermal alteration zones and 
mineralizations (Figure 2) [21, 22]. 

Table 1. ASTER satellite image specifications of 
Ahar. 

Name Path 
AST_L1B_110602_003 

110602 
AST_L1B_110602_004 

 
In this work, the recognition of alteration zones 

with remote sensing data is actively and widely 
used for prospecting the hydrothermal ore deposits 
such as the porphyry, epithermal, and massive 
sulfide mineralization around the world [23, 24]. 
According to the 1:100,000 geological map of 
Ahar, about half of the region is covered by 
Tertiary intrusive, volcanic, and sedimentary 
rocks. The paleocene–Eocene Rock units mainly 
consist of volcanic rocks formed in shallow marine 
conditions. The southern part of the area is mainly 
covered by sedimentary rocks, which are folded 
and have formed distinct anticline and syncline 
structures. However, in the central and north parts 
of this area, most outcrops are of igneous rocks 
(Figure 2), which form the main heights of the 
region [25]. 

 
Figure 1. Location of Ahar quadrangle in NW Iran. 
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Figure 2. 1:100 000 Ahar geological map (Arc GIS 10.4.1). 

The Ahar-Arasbara district has an area of about 
23,132 km2, and is located in the Azarbaijan 
province in NW Iran. Arasbaran forms as the 
middle part of the Alborz-Arasbaran Lesser 
Caucasus magmatic belt, which shows various ore 
deposits in successive geodynamic settings [26, 27, 

28]. Most of the mineralization in Lesser Caucasus 
is associated with the Middle Jurassic magmatic 
complexes [29]. These rocks can reveal a 
subduction-related signature based on the geo-
chemical, petrological, and isotopical data, 
depicted by Moritz et al. (2011) [27].  
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3. Materials and Methods 
3.1. ASTER and ETM7+ image processing 

Seven scenes of the ASTER associate of this 
studied region and pre-processing is carried out. 
This technique can be applied for the geological 
field works that do not have too much vegetation 
since this area has a low vegetation. It is necessary 
to detect the radiometric and spatially corrected 
images due to the analysis and comparison of the 
spectral data. Then the raw images have to be 
converted to an orthoimage for geometric 
correction, which is applied by generating a Digital 
Elevation model (DEM) based on the topographic 
data and using ground control points in the 
orthorectification of the ASTER images [2].  

3.2. Least squares fitting (LS-Fit) 

LS-Fit is a method that assumes that the input 
values’ bands are acting as the variables of a linear 

expression and the “y” value of the equation, as the 
predicted band information gives a calculated 
output value. This predicted band should be based 
on the linear equation. The altered minerals that are 
sensitive to a specific band are then discriminated 
from the features that are reflective to the other 
bands as well taking the variance between the 
original and predicted values [30]. Distribution of 
iron oxides were generated by all the visible and 
near-infrared (VNIR) bands as the input and 
VNIR-b1 as the modeled band. LS-Fit was applied 
to record the spectral signatures of hydrothermal 
alterations, i.e. clay minerals and iron oxides. LS-
Fit achieves a linear band prediction by a least 
square fitting technique. It is used to find the 
regions of altered clay minerals and iron oxides in 
an exploratory dataset [31]. An output image of the 
LS-Fit model indicates the distribution of the 
argillic alteration zone as dark pixels, as depicted 
in Figure 3.  

  
(Before) (After) 

Figure 3. Spectral display of four minerals before and after resample. 

3.3. Spectral angle mapper (SAM) algorithm 
SAM is a classification method that permits a 

rapid ma spectral similarity between the image 
spectrum and the reference reflectance spectra. The 
image spectra were compared with the USGS 
Digital Spectral Library Minerals [32]. This 
method has been extensively utilized for 
lithological mapping [33, 34]. The SAM procedure 
is a supervised method that recognizes the 
numerous classes in an image based on the spectral 
angle’s calculation between the spectra, and treats 
them as vectors in an n-dimensional space with 
dimensionality equal to the number of bands. 
Moreover, the reference spectra can be taken from 
the field observations and available spectral 
libraries [35]. The SAM categorization improves 
the target reflectance features and separation rock 
types based on the unique spectral signature for 
each lithological unit [36, 37]. 
 

3.4. Matched filtering (MF) algorithm 
MF maximizes the spectral response of an 

identified endmember, and suppresses the response 
of the compound unknown background, and then 
computes the distribution of each end-member 
separately. This technique does not require the 
knowledge of all the endmembers within the 
image. The MF results are grey scale images with 
values between 0 and 1, where 1 means perfect 
match [38]. The dataset has been unmixed by MF 
to create the abundance images of noticed 
alteration minerals. 

4. Discussion 
4.1. Dataset 

The filtering process will sharpen the borders of 
different units. The standard GIS methods have 
been utilized to assist in the evaluation of the 
discovered lineaments [16]. The data sources for 
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this work comprise remote sensing data (Tables 1 
and 2), geological data, and ground survey data. 
The ENVI (Environment for Visualizing Images), 
version 4.8, Geomatica 9.1, and Arc GIS 
(Geographic Information System), version 10.4.1, 
software packages were used to process the 
ASTER and landsat-7 (ETM+) imagery and 
digitizing the GIS layers, respectively (Figure 4). 
In this research work, the specific characteristics of 
the ASTER and ETM+ bands along with several 
conventional and sophisticated image processing 
methods were used to extract the geological 

information (Figures 5 and 6). Different image 
processing techniques including LS-Fit, SAM, and 
MF were used for geological mapping in the 
studied area.  

Table 2. ETM 7+ satellite image specifications of 
Ahar. 

Path/row Date 
source/update 

168/33 2012/1399 
168/34 

 

 
Figure 4. Location of Ahar’s ASTER and ETM7+ images. 
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Figure 5. Changes in spectral reflection curves of minerals within the bands of  

ASTER and ETM + sensors. 

 
Figure 6. Spectral behavior of several minerals in the 14-band range of ASTER image. 

Spectral processing can inform the mineralogical 
content of pixels in a limited way (multi-spectral 
data) or in detail (hyper-spectral data), broadly 
used in the exploration and mapping of the 
alteration zones. The ETM+ and ASTER data can 
be used for identification of differentiate and 
mapping of many minerals since most of the 
minerals in the mentioned alteration zones are in 

the range of 1.5-2.5 µm spectral wavelengths. Each 
one of these alteration zones are able to show a 
detailed type of mineralization (Figures 7 and 8). 
The LS-Fit method identifies the kaolinite, alunite, 
illite, halosite, montomorionite, dikite, 
pyrophyllite, chlorite, epidote, goethite, hematite, 
and limonite in the studied area but it is not a 
successful method for the sericite alteration.  
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Figure 7. Absorption and reflection ranges of 
kaolinite in SWIR bands of ASTER sensor. 

 
Figure 8. Residual image obtained by applying 
LS_Fit algorithm to identify kaolinite regions. 

Table 3. Specifications of Ahar 1:100,000 sheet ore deposits.   
Deposit’s name Deposit’s type Paragenesis 

Youseflu-Noghduz Epithermal Au, Cu, Fe oxides and hydroxides 
Noghduz Epithermal Au, Ag, Cu 
Sar Lakhlu Porphyry Cu, Zn-Pb, Ag, Mo 
Zereshlu Porphyry Cu 
Anbad Jadid Skarn Cu, Fe, Mo 
Razgah Vein (mainly epithermal in volcanic rocks) Cu, Fe 

 
Moreover, the kaolinite, alunite, illite, halosite, 

dikite, montomorionite, pyrophyllite, chlorite, 
epidote, goethite, hematite, and limonite in the 
studied area also yielded acceptable results based 
on the MF method (Figures 9 and 10). Therefore, 
the ASTER images were used to recognize and 
discrete the alteration zones (Figures 4 and 5). 
Classifying the alteration zones such as advanced 
argillic (Figure 11), argillic (Figure 12), phyllic 
(Figure 13), propylitic (Figure 14), iron oxides 
(Figure 15), and silicification (Figure 16) alteration 
zones was carried out in this research work. 

Finally, 6 deposits were identified in this region 
(Figure 17, Table 3). Youseflu-Noghduz and 
Noghduz are the Au and epithermal deposits in the 
northern of the great fault with NW-SW trend, and 
Sar Lakhlu, Zereshlu, Andab Jadid, and Razgah are 
the Cu and porphyry deposits in the southern part 
of the Ahar region. Then the alteration zones and 
targets in Figure 18 are visible. The main targets 
are located in the NE and SE parts of this area. 
Advanced argillic with silicification show 
epithermal targets in these parts. 
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Figure 9. Image obtained by applying MF algorithm to identify kaolinite areas. 

 
Figure 10. Alterations types of Ahar 1:100,000 sheet (by SAM method). 
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Figure 11. Advanced argillic alteration of Ahar 1:100,000 sheet. 

 
Figure 12. Argillic alteration of Ahar 1:100,000 sheet. 
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Figure 13. Phyllic (sericitic) alteration of Ahar 1:100,000 sheet. 

 
Figure 14. Propylitic alteration of Ahar 1:100,000 sheet. 
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Figure 15. Iron oxide alteration of Ahar 1:100,000 sheet. 

 
Figure 16. Silicification of Ahar 1:100,000 sheet. 
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Figure 17. Ahar 1:100,1000 sheet ore deposits. 
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Figure18. Alteration zones and targets of Ahar 1:100,000 sheet. 

5. Conclusion 

The band ratio, Ls-Fit, SAM, and MF methods 
were utilized to detect the argillic and advanced 
argillic alteration zones. Appropriate results were 
derived via the Ls-Fit, MF, and SAM methods. 
Furthermore, the band ratio, Ls-Fit, MF, and SAM 
methods were used to depict the epidotes and 
chlorites. Proper results were achieved from the 
MF and SAM approaches, and the results obtained 
were compared with the targets extracted by the 
Ls-Fit method, which had a good adaptation. 
However, the band ratio method was not successful 
for these minerals. The bond ratios of 6/7 and (5 + 
7)/6 were used to discrete the sericitic alteration. In 
order to determine the iron oxides, the best results 
were obtained from the Ls-Fit, SAM, and MF 
methods. The final result was obtained by 
combining and comparing all these methods. The 

silicification alteration areas can be distinguished 
only by using the ASTER images because 
silicification can be detected in the wavelength 
range of 9.275-10.25 µm, and has a significant 
absorption and a suitable bandwidth ratio of 12.13. 
The alteration types of Ahar are accumulated in the 
NE, SE, and central parts of this district. 
Furthermore, two alteration zones and targets were 
proposed in NE and SE. Correspondingly, the 
metallic deposits of Ahar 1:100,000 sheet were 
correlated with these alteration zones in the studied 
region.  
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  چکیده:

سیل سنجی می 1:100000هاي فلزي در برگه هدف از این مقاله یافتن پتان ستفاده از داده هاي دور شداهر با ا اریباران -ردمطالعه در زون فلززایی اهرموه منطق .با
اسـتفاده شـده  7 ماهواره لندسـت ASTERو  +ETM دورسـنجی و چندطیفی هايدر این پژوهش، از دادهدارد که زونی بسـیار مهم در ایران و قفقاز اسـت. قرار 

ــت.  ـــخیص و راي ) بMF( کردن همســـانفیلترو ) SAM( گیري زاویه طیفیهانداز ،)LS-Fit( برازش کمترین مربعات هايدر این مطالعه از روشاسـ جدایش تش
یسی، هاي سیلهاي شاخص دگرسانیها نشانگر وجود کانینتایج حاصل از این روشاز یکدیگر استفاده شده است.  هاي فلزيزاییبط با کانهمرت هاي دگرسانیزون
طبق نتایج اشــند. ترمال بزایی از نوع پورفیري و اپیهاي کانهتوانند نشــانگر تیپها میینباشــد که او پروپیلیتیک می لیک پیشــرفته، آرژیلیک متوســط، فیلیکآرژی

  نطقه قرار دارند.باختري، جنوب خاوري و مرکزي این مهاي شاخص در مناطق جنوبسانیحاصله دگر

  .هاي دگرسانی، اهرزون، )MFن (همسا لترکردنی) و فSAM( یفیط هیزاو يریگ¬)، اندازهLS-Fitمربعات ( نیبرازش کمتر کلمات کلیدي:
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