[1]. Ju, S., Motang, T., Shenghai, Y. and Yingnian, L. (2005). Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy. 80 (1-2): 67-74.
[2]. Ghasemi, S.M.S. and Azizi, A. (2018). Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. Journal of materials research and technology. 7 (2): 118-125.
[3]. Frenay, J. (1985). Leaching of oxidized zinc ores in various media. Hydrometallurgy. 15 (2): 243-253.
[4]. Abdel-Aal, E.A. (2000). Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy. 55 (3): 247-254.
[5]. Espiari, S., Rashchi, F. and Sadrnezhaad, S.K. (2006). Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy. 82 (1-2): 54-62.
[6]. Hurşit, M., Laçin, O. and Saraç, H. (2009). Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. Journal of the Taiwan Institute of Chemical Engineers. 40 (1): 6-12.
[7]. Larba, R., Boukerche, I., Alane, N., Habbache, N., Djerad, S. and Tifouti, L. (2013). Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy, 134, 117-123.
[8]. Irannajad, M., Meshkini, M. and Azadmehr, A.R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing. 49 (2): 547-555.
[9]. Chen, A., wei Zhao, Z., Jia, X., Long, S., Huo, G. and Chen, X. (2009). Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy. 97 (3-4): 228-232.
[10]. Moradkhani, D., Rasouli, M., Behnian, D., Arjmandfar, H. and Ashtari, P. (2012). Selective zinc alkaline leaching optimization and cadmium sponge recovery by electrowinning from cold filter cake (CFC) residue. Hydrometallurgy, 115, 84-92.
[11]. Kamran Haghighi, H., Moradkhani, D., Sardari, M.H. and Sedaghat, B. (2015). Production of zinc powder from Co-Zn plant residue using selective alkaline leaching followed by electrowinning. Physicochemical Problems of Mineral Processing, 51.
[12]. Lee, H.S. and Piron, D.L. (1995). Kinetics of alkaline leaching of pure zinc oxide. Chemical Engineering Communications. 138 (1): 127-143.
[13]. Ma, S.J., Yang, J.L., Wang, G.F., Mo, W. and Su, X.J. (2011). Alkaline leaching of low grade complex zinc oxide ore. In Advanced Materials Research (Vol. 158, pp. 12-17). Trans Tech Publications Ltd.
[14]. Habashi, F. (1993). A textbook of hydrometallurgy, metallurgie extractive Quebec. Enr. Que., Canada.
[15]. Ehsani, A., Ehsani, I. and Obut, A. (2021). Preparation of different zinc compounds from a smithsonite ore through ammonia leaching and subsequent heat treatment. Physicochemical Problems of Mineral Processing.
[16]. Soltani, F., Darabi, H., Aram, R. and Ghadiri, M. (2021). Leaching and solvent extraction purification of zinc from Mehdiabad complex oxide ore. Scientific Reports. 11 (1): 1-11.
[17]. Jiang, T., Meng, F.Y., Gao, W., Zeng, Y., Su, H.H., Li, Q. and Zhong, Q. (2021). Leaching behavior of zinc from crude zinc oxide dust in ammonia leaching. Journal of Central South University. 28 (9): 2711-2723.
[18]. Wang, R.X., Tang, M.T., Yang, S.H., Zhagn, W.H., Tang, C.B., He, J. and Yang, J.G. (2008). Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system. Journal of Central South University of Technology. 15 (5): 679-683.
[19]. Yin, Z., Ding, Z., Hu, H., Liu, K. and Chen, Q. (2010). Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution. Hydrometallurgy. 103 (1-4): 215-220.
[20]. Ding, Z., Yin, Z., Hu, H. and Chen, Q. (2010). Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution. Hydrometallurgy. 104 (2): 201-206.
[21]. Rao, S., Yang, T., Zhang, D., Liu, W., Chen, L., Hao, Z. and Wen, J. (2015). Leaching of low grade zinc oxide ores in NH4Cl–NH3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy. 158: 101-106.
[22]. Sinclair, R.J. (2005). The extractive metallurgy of zinc. Victoria: Australasian Institute of Mining and Metallurgy.
[23]. Liu, Z., Liu, Z., Li, Q., Yang, T. and Zhang, X. (2012). Leaching of hemimorphite in NH3–(NH4) 2SO4–H2O system and its mechanism. Hydrometallurgy, 125, 137-143.
[24]. Yang, K., Li, S.W., Zhang, L.B., Peng, J.H., Ma, A.Y. and Wang, B.B. (2016). Effects of sodium citrate on the ammonium sulfate recycled leaching of low-grade zinc oxide ores. High Temperature Materials and Processes. 35 (3): 275-281.
[25]. Yang, S.H., Hao, L.I., Sun, Y.W., Chen, Y.M., Tang, C.B. and Jing, H.E. (2016). Leaching kinetics of zinc silicate in ammonium chloride solution. Transactions of Nonferrous Metals Society of China. 26 (6): 1688-1695.
[26]. Liu, Z., Liu, Z., Li, Q., Cao, Z. and Yang, T. (2012). Dissolution behavior of willemite in the (NH4) 2SO4–NH3–H2O system. Hydrometallurgy, 125, 50-54.
[27]. Delley, B. (2000). From molecules to solids with the DMol 3 approach. The Journal of chemical physics. 113 (18): 7756-7764.
[28]. Klamt, A. and Schüürmann, G.J.G.J. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2. (5): 799-805.
[29]. Hancock, R.D. and Bartolotti, L.J. (2005). Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: Indications of the role of relativistic effects in the solution chemistry of gold (I). Inorganic chemistry. 44 (20): 7175-7183.
[30]. Gutten, O. and Rulisek, L. (2013). Predicting the stability constants of metal-ion complexes from first principles. Inorganic Chemistry. 52 (18): 10347-10355.
[31]. Yin, X., Opara, A., Du, H. and Miller, J.D. (2011). Molecular dynamics simulations of metal–cyanide complexes: Fundamental considerations in gold hydrometallurgy. Hydrometallurgy. 106 (1-2): 64-70.