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 Shear wave velocity (Vs) is considered as a key parameter in determination of the 
subsurface geomechanical properties in any hydrocarbon-bearing reservoir. During a 
well logging operation, the magnitude of Vs can be directly measured through the 
dipole shear sonic imager (DSI) logs. On a negative note, this method not only is 
limited to one dimensional (1D) interpretation, it also appears to be relatively costly. 
In this research work, the magnitude of Vs is calculated using one set of controversial 
petrophysical logs (compressional wave velocity) for an oil reservoir situated in the 
south part of Iran. To do this, initially, the pertinent empirical correlations between the 
compressional (Vp) and shear wave velocities are extracted for DSI logs. Then those 
empirical correlations are deployed in order to calculate the values of Vs within a series 
of thirty wells, in which their Vp values are already recorded. Afterwards, the Kriging 
estimator along with the Back Propagation Neural Network (BPNN) technique are 
utilized to calculate the values of Vs throughout the whole reservoir.  Eventually, the 
results obtained from the two aforementioned techniques are compared with each 
other. Comparing those results, it turns out that the Kriging estimation technique 
presents more accurate values of Vs than the BPNN technique. Hence, the supremacy 
of the Kriging estimation technique over the BPNN technique must be regarded to 
achieve a further reliable magnitude of Vs in the subjected oil field. This application 
can also be considered in any other oil field with similar geomechanical and geological 
circumstances. 
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1. Introduction 

Some of the petrophysical well log data acquired 
in the exploration phase of a hydrocarbon reservoir 
can provide precious information about the 
behavior of the reservoir geomechanics. The 
compressional wave velocity (Vp) logs and Shear 
wave velocity (Vs) are the petrophysical well logs 
for well logging tools. The Vp logs can be obtained 
by sonic logging that is usually available for all 
wells in the hydrocarbon reservoir fields. 
Nevertheless, the Vs logs can only be obtained by 
utilizing the dipole shear sonic imager (DSI) logs 
that is not available for all wells in the hydrocarbon 
reservoir fields because measurement of this data 
logs is more complicated and very expensive. 
Consequently, many researchers have tried to solve 

these problems by means of empirical equations [1-
19]. For this means, the empirical method has 
directly been determined by the DSI logs, which is 
a quantitative formulation between the Vs logs data 
from the DSI logs and other logs data from the 
conventional petrophysical logs data. Due to that, 
the empirical equations in a field depend on the 
geological and tectonic reservoir conditions as well 
as the type of conventional well logs available; if 
the condition and well logs are not similar and 
existing, these equations cannot satisfactorily be 
applied to other wells or fields. Hence, the 
geophysical and geomechanical researchers have 
tried to remove this weakness by replacing the 
artificial intelligence methods. For example, 
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Behnia et al [19] by using gene expression 
programming (GEP), and neuro-genetic and 
adaptive neuro-fuzzy inference system (ANFIS) 
have predicted the shear wave velocity in the 
limestone reservoir. The results obtained showed 
that the ANFIS method was the best predictor that 
could be used in the prediction of shear wave 
velocity. Moreover, in the past decade, other 
artificial intelligence approaches have been used to 
estimate the shear wave velocity that has shown 
better results than the empirical methods [e.g., 20-
24,17,18]. From the past to the present time, all the 
methods that have been presented to determine 
shear wave velocity are the extrapolation and 
empirical methods. Owing to the fact that the 
geological and tectonic properties in the different 
places of a hydrocarbon reservoir filed and diverse 
reservoir filed are variable, these methods cannot 
be considerably accurate in a large scale. 

In the past few decades, the geostatistical 
estimation and simulation methods have 
commonly been used in the earth science that have 
been successfully applied to determine diverse 
parameters parameters [see, e.g., 25-34]. Among 
the methods that have been introduced so far, in 
many cases, the Kriging method has provided more 
acceptable results than the other methods. Kriging 
is a geostatistical interpolation method for optimal 
spatial estimation [35]. This method provides a 
solution to the problem of estimation based on a 
continuous model of stochastic spatial variation, 
and takes the variogram model [36]. It is an 
estimation method that gives the best unbiased 
linear estimates of point values or of block 
averages [37]. Three types of linear kriging 
estimators have been widely used in the earth 
science, which include ordinary kriging (OK), used 
when the mean is unknown, Simple Kriging (SK), 
used when the mean is known, and the mean value 
kriging, used to estimate the value of the mean 
when it is unknown [38, 39]. 

The aim of this research work is to use the kriging 
estimators and well logs data belonging to an 
onshore oil field for estimating the shear wave 
velocity in overall a carbonate reservoir. 

 

 

2. Geology of Studied Area   
This work uses the data belonging to an onshore 

oil field that is located in the Province of 
Khuzestan, Abadan plain, near the Iran-Iraq 
frontier. The Abadan plain including this oil field 
structure is situated within the Mesopotamian 
foredeep basin in the SW of the Zagros foreland. 
Prior to the final collision of the oceanic domain 
between the continents had been under 
convergence at least since the late Eocene time. 
The Zagros foreland basin comprises the synand 
post-Zagros collision succession (upper Miocene 
to Holocene), which together with the deeper units 
(i.e. post Permian succession), has been deformed 
by the subsequent folding and thrusting. The 
foredeep basin area contains many super-giant oil 
and gas fields (see Figure 1). This case study oil 
field structure is around 23 km in length and 9 km 
wide. The trend of the structure is an exception to 
the belt of foothill fold of southwestern Iran, 
striking NW-SE. Regional disconformities were 
present at the top of Dariyan, Sarvak, Gurpi, and 
Jahrum, and they showed the effect of epirogenic 
movements. Above the Tarbour Member (inside 
Gurpi Formation), there is no structural closure, 
and it seems that this area is tilted to NE due to the 
Zagros orogeny.  

The Fahliyan Formation is well-exposed in the 
Zagros Mountains, in the Fars Province [40]. At the 
same time of the sedimentation of the Fahliyan, in 
the area located between the oilfield and the 
Khuzestan Province, the intra-shelf basin of the 
Garau Formation takes place. The current oilfield 
area at the time of the Fahliyan sedimentation must 
belong to an articulate carbonate ramp complex, 
partly controlled by local tectonics, partly by sea 
level changes, probably limited Eastward by a 
more subsiding area underwent a deeper 
sedimentation. Argillaceous limestones and shales 
of deep environment also develop in Offshore 
Kuwait, suggesting that this area belonged to the 
same intra-shelf basin. The sedimentation of these 
units is related to the significant sea level rise 
started during the late Tithonian and continued into 
the early Berriasian [41]. The shallow water 
sequences of Fahliyan and equivalent units of 
northern Persian Gulf underlay the shale and 
bioclastic limestone of the Ratawi Formation.  
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Figure 1. Geographical location of oil and gas fields in the Zagros foredeep basin. 

3. Well logging data 
The well logging data of this research work 

belongs to a number of thirty (30) vertical 
wellbores drilled into a carbonate reservoir situated 
in the southwestern part of Iran. The digitized well 
logs consist of the VS data from DSI logging in one 
well, and the Vp data from sonic logging in the 
thirty wells. Figure 2 shows the plot of the well 
logging data from DSI and petrophysics logs that 
have been used to find the relationship between the 
Vp and Vs logs in this work. As shown in Figure 2, 
a number of nine well logs including the Density 
log (ROHB), Caliper log (CAL), Shear wave 

velocity (Vs), Compression wave velocity (Vp), 
Gamma ray log (GR), True formation Resistivity 
log (RT), Total porosity (PIGT), Temperature 
(TEMP), and Poisson's Ratio (PR) have been used. 
Each one of the well logs contained 1562 records 
along the depth range of 4304-4542 m. 
Furthermore, a number of 99892 Vp logs data from 
the thirty vertical wellbores in the different depths 
were recorded, and were adopted in this research 
work. For all the well logs data, the statistical 
characteristics such as percentile values, central 
tendency, dispersion, and distribution were 
calculated. The corresponding results are shown in 
Table 1. 

Table 1. Statistical characteristics for well logs data. 
  PR RHOB GR RT CAL PIGT TEMP Vp Vs 

N Valid 1562 1562 1562 1562 1562 1562 1562 1562 1562 
Mean  0.301363 0.999035 25.45516 389.9904 6.204865 0.102544 134.9058 0.016267 0.008741 
Std. error of mean 0.000555 1.29E-05 0.23479 87.80941 0.020698 0.001612 0.058219 5.84E-05 2.86E-05 
Median  0.2979 0.999035 23.1291 59.49143 5.8554 0.110265 134.9057 0.015413 0.008436 
Mode  0.2935 0.998154 20.6828 0.54564 5.7711 0.01677 130.9243 0.014774 0.007239 
Std. deviation 0.021928 0.000509 9.279399 3470.416 0.818015 0.063715 2.300934 0.002306 0.001129 
Variance  0.000481 2.59E-07 86.10724 12043789 0.669148 0.00406 5.294296 5.32E-06 1.27E-06 
Skewness  -1.49779 7.81E-14 1.333179 25.83176 2.917466 -0.05354 1.24E-06 0.473953 0.582845 
Std. error of skewness 0.061918 0.061918 0.061918 0.061918 0.061918 0.061918 0.061918 0.061918 0.061918 
Kurtosis  17.35062 -1.2 1.92978 703.0447 12.33003 -1.19039 -1.2 -1.24481 -0.68928 
Std. error of kurtosis 0.123758 0.123758 0.123758 0.123758 0.123758 0.123758 0.123758 0.123758 0.123758 
Range  0.3169 0.001761 55.9956 99999.45 6.4587 0.30237 7.96299 0.007886 0.00541 
Minimum  0.0626 0.998154 9.0195 0.54564 5.6562 0.00368 130.9243 0.012714 0.006869 
Maximum  0.3795 0.999915 65.0151 100000 12.1149 0.30605 138.8873 0.020601 0.012278 
Percentiles 25 0.2887 0.998594 19.2294 32.19631 5.7711 0.0327 132.9125 0.014331 0.007766 
 50 0.2979 0.999035 23.1291 59.49143 5.8554 0.110265 134.9057 0.015413 0.008436 
 75 0.3145 0.999476 29.3435 131.6916 6.0852 0.153028 136.8991 0.018562 0.009627 
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Figure 2. Applied well logging data. 

To understand the relationship of dependency 
between the VS and VP logs data, firstly, the VS and 
VP data was obtained from the DSI logs, and then 

the scatter plot was drawn. Furthermore, the best 
linear regression line was fitted on this data (Figure 
3).  
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Figure 3. Scatter plot showing relationship of dependency between VS and VP logs data. 

Figure 3 shows that there is an acceptable 
correlation between the VS and VP logs data in the 
subjected field. Consequently, the equation of 
linear regression that was derived from the scatter 
plot was used to estimate the VS logs data in the 
other wells, which VP logs data was obtained from 
the sonic logging. Therefore, the linear equation 
between the VS and VP logs data was found as: 

0.001281 0.4584s PV V   (1) 

where SV  and PV  are the shear and 
compressional wave velocities, respectively. In this 
equation, the unit of SV  and PV  is /ft s . 

As already mentioned, for the thirty wells in the 
reservoir intervals, there is an amount of 
compressional wave velocity. So that by utilizing 
the above equation (Eq. (1)), the shear wave 
velocity in those wells was calculated (Figure 4).  

 

 
Figure 4. Shear wave velocity data in the thirty wells.  
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4. Methodology 
4.1. Back-Propagation Neural Network 

The purpose of applying Artificial Neural 
Network (ANN) is to extend a mathematical model 
of biological events in order to imitate the 
capability of biological neural structures for 
designing an intelligent information processing 
system [17]. Back-propagation neural network 
(BPNN) is an active scientific approach due to the 
efficiency in the modeling non-linear dynamic 
systems [17, 42]. A range of numerous applications 
can be found in various papers indicating the ability 
of this typical neural network [17, 43]. BPNN is 
usually recognized for its prediction capability to 
generalize well on a wide variety of problems. For 
example, Liang and Gupta have studied the 
stability of dynamic back-propagation training 
algorithm by the Lyapunov method [17]. This 
network is a supervised approach that means that it 
must be trained with both the input and target 
output data. During the training process, the 
network tries to match the outputs with the desired 
target values. Learning starts with the assignment 
of random weights. The output is then calculated, 
and the error is estimated [17]. This error is used to 
update the weights until the stopping criterion is 
reached. It should be noted that the stopping 
criterion is usually the average error of epoch [17]. 

4.2. Geostatistics Estimation  
Geostatistical analysis are a branch of classical 

statistics that are widely used to determine the 
spatial correlations between variables. In the 
nature, when sample points are approximately near 
to each other, the difference between a measured 
value of a parameter in these points is insignificant, 

but as the points distances increase, the difference 
increases too, which suggests measured values of 
the same parameter changed intensively [34]. This 
phenomenon is a signature implicating of the space 
effects on parameters values [34]. Therefore, 
geostatistics is an interpolation method that uses 
the space location between points to determine the 
unknown values from an estimated parameter. This 
instrumental capability presented geostatistics as a 
powerful method in making the reliable three-
dimensional models of various properties [34, 44-
46]. In the petroleum science and engineering, this 
work objects at interpretation of geology, 
geophysics and reservoir modeling [46]. There are 
different methods to determine the space 
distribution of a variable in geostatistics. For 
example, today, kriging method is one of the most 
practical methods in geostatistics. Kriging is an 
estimation method that gives the best unbiased 
linear estimates of point values or of block 
averages [37]. There are different types of kriging 
estimators, but in here only ordinary kriging (OK) 
to be introduced. OK used when the mean is 
unknown and defined as follows:  

The variable Z(x) is assumed to be stationary 
with mean m. Its mean at every point is equal to m 
and so is the mean of any block [37]. That is, 

mZEmxZE Vi  )(,)]([  (2) 

Most estimators are weighted moving averages 
of the surrounding data values; that is, they are 
linear combinations of the data: 

 )(*
iiV xZZ   (3) 

Condition of unbiasedness is as follows: 
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In order to be unbiased, the expected error must 

be zero, so either m=0 or the kriging weights must 
add up to 1. The variance of the error estimation 

can be expressed in terms of either the covariance 
or the variogram [37]: 
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where ),( VV  is the average of the variogram 
between any two points x and x' sweeping 
independently throughout the volume V. 

  ''1),( 2 dxdxxx
V

VV      (6) 

Equation 6 explains the block kriging. When the 
uncertainty is relatively large, one might want to 
smooth the interpolated results by performing 
kriging on a larger area than single points. This 
type of kriging interpolation is known as block 
kriging. 

In the same way ),( VxC i  and ),( VVC  are the 
averages for the covariance. In order to minimize 

the estimation variance under the constraint that the 
sum of the kriging weights must be equal to 1, a 
Lagrange multiplier   has been introduced into 
the expression to be minimized [37]. The problem 
is minimized by the following equation: 

   12)( *
ivv ZZVar   (7) 

The partial derivatives of the quantity are then set 
to zero. This leads to a set of N+1 linear equations 
called the kriging equations or kriging system. 
When written these equations in terms of the 
variogram model the kriging system is [37]: 
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The minimum of the variance which is called the 

kriging variance, is given by [37]: 

      VVVxiiK ,,2  (9) 

Moreover, the equations could also have been 
obtained in terms of the covariance by minimizing 
the first form of equation 4. The kriging system is 
as follows [37]: 
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The two Lagrange multipliers are related by 
  . The corresponding kriging variance is 

given by [37]: 

   VxCVVC iiK ,,2    (11) 

To solve the numerical system, it is convenient to 
write it in matrix form: AX = B [37]. 
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(12) 

 
If   is an admissible model and if there are no 

multiple points, the matrix A is always non-
singular. Its inverse A-1 exists. So a solution exists 
and it can be proved that it is unique [37]. 
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BAX 1  (13) 

The kriging variance can be written: 

   transposedXXVVBX TT
K  ,2   (14) 

Note that the matrix A itself is not positive 
definite.  

5. Results and Discussion  
5.1. Back-Propagation Neural Network 

In this study, shear wave velocity was estimated 
by BPNN method and coordinate data (X, Y and 
Z). To do this firstly, the actual data of shear wave 

velocity was derived by DSI logs in only one well 
(well A), and then, those data logs along with the 
coordinate data (X, Y, and Z) were used to estimate 
the shear wave velocity of BPNN. The data set was 
divided into the training and testing data with a 
ratio of 70% to 30%, respectively.  In this case, the 
optimum networks included one input layer 
consisting of 3 neurons (X, Y, Z), three hidden 
layers of sigmoidal function comprising 8, 5 and 2 
neurons, and an output layer containing only one 
neuron (S-wave velocity). The predicted values for 
the shear wave velocities using the BPNN 
algorithms versus the real values are shown in 
Figure 5. 

  
Figure 5. Demonstrating real SV versus predicted SV (left) and errors of SV estimation using BPNN for well A 

(right). 

As it can be seen, in Figure 5, the results show a 
relatively good coefficient of determination (R = 
0.94), whereas the estimation process (error) is not 
more accurate. 

Then the BPNN code was run for thirty shear 
wave velocity datasets, which were previously 
shown in Figure 4. In this case, the input datasets 
were the coordinates (X, Y, Z), the hidden layers 
were three layers of sigmoidal function comprising 
8, 5, and 2 neurons, and the output was the shear 
wave velocity with the ratio of training to test data 
equal as 70% to 30%, just like we did in the 
previous case. The results obtained are shown in 
Figure 6.  

The results obtained in Fig. 6 show a low 
correlation coefficient of determination (R = 0.32), 
and a high error for the determined shear wave 
velocity. Therefore, this method is not appropriate 
in the estimation of shear wave velocity.  

 

 

5.2. Geostatistics Estimation 
5.2.1. Variography Results 

In geostatistics, a spatial structure is necessary, 
which is expressed by the variogram model.  
Variogram is a basic tool for investigating the 
spatial structure. Kriging is the geostatistical 
estimator used in this research work.  As it was 
previously mentioned, the variogram model is a 
critical parameter for various Kriging estimators. 
Therefore, the exactitude of the offered parameters 
from the variogram is of crucial significance and it 
can have a significant, positive (or negative) 
influence on the estimated blocks [39, 47]. The 
variogram provides an understanding of spatial 
mutability of a property versus the distance; its 
value increases as single values of a sample 
become more diverse [48]. One of the most 
important conceivable deployments of variogram 
is the estimation of the parameter value at the un-
sampled location, and/or estimation of the average 
over a certain area [49]. In this research work, in 
order to create a 3D model by the Kriging method 
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for the oil field, firstly, the variography was carried 
out. This work was conducted through the 
Datamine software, which is a reliable in geo-
statistics estimation. Then in order to create the 
variogram, the records of shear wave velocity data 

in the 30 wells were used. This data was already 
shown in Figure 4. Correcting these datasets, their 
wireframes were plotted, and after applying 
wireframes, the additional shear wave velocity data 
was removed (Figure 7).  

 
 

Figure 6. Demonstrating real versus predicted shear wave velocity (left) and errors of shear wave velocity 
estimation using BPNN (right) for thirty wells. 

  
(a) (b) 

Figure 7. Shear wave velocity wireframes for 30 wells in reservoir intervals (before (a) and after (b) applying 
corrections with wireframes). 

In the next step, the experimental variograms 
were performed on the shear wave velocity data 
from the wireframes. According to the anisotropy 
of the reservoir, three perpendicular variograms 
were required to determine the appropriate 

elliptical search area. Therefore, the variograms for 
different parameters such as azimuth and dip were 
determined, and eventually, the suitable theoretical 
models based on the least square differences were 
fitted to them (see Figures 8 to 10). 
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Figure 8. Variogram model for shear wave velocity in azimuth 40 and dip 0. 

 
Figure 9. Variogram model for shear wave velocity in azimuth 130 and dip 0. 
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Figure 10. Variogram model for shear wave velocity in azimuth 220 and dip 10. 

As formerly mentioned, the variogram 
parameters are crucial information for 3D 
geostatistical modeling. These parameters have 
been acquired through the best fitted theoretical 
variogram model (see Figures 8-10). According to 
Figures 8-10, the best theoretical variogram model 
fitted in 3 perpendicular direction is spherical 
model, and other characteristics of the variogram 
such as azimuth, dip, search radius, sill and nugget 
effect have been shown on the top and the bottom 
of variograms. 

5.2.2. Cross validation  

After determining the variogram models, Cross-
Validation has been used to validate variogram 
models. In this approach, estimates are compared 
with the measured values for a collection of sites 
different from those used as input data [47]. Cross-
validation (which is also known as jack-knifing or 
point kriging) is sometimes used in an attempt to 
determine the “best” variogram model to use in the 
grade estimation process. Also, kriging plans are 

sometimes optimized based on cross validation 
exercises. The most commonly used requiring that 
a sample be extracted from the database and its 
value re-estimated using the remaining samples 
and the variogram models being tested. This 
method requires using a well-established stationary 
domain with a good number of samples, such that 
about 50 % of them can be taken out and still the 
variogram model and other statistical properties are 
maintained [50]. The XVALID process provides a 
statistical method of fitting variogram parameters. 
Each sample in the data set is removed in turn and 
its value is estimated from the remaining data using 
point kriging. Thus for each sample there is an 
actual value and a kriged value estimated from the 
surrounding data. The XVALID process calculates 
a set of statistics comparing actuals and estimates 
which show how good (or bad) the estimates are 
[51].  The scatter plot of actual shear wave velocity 
versus the estimated values have been shown in 
Figure 11. Furthermore, the cross validation 
statistics are presented in Table 2.  
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Figure 11: Scatter plot of actual shear wave velocity versus the estimated values. 

Figure 11 shows that there is a significant 
correlation of determinations (R=0.994; see Table 
2) between the actual shear wave velocity and the 
estimated values. The result of this figure shows 

that the accuracy of the estimated values from this 
approach is extremely acceptable. For further 
checking, the cross-validation statistics have been 
shown in Table 2. 

Table 2. Cross-validation statistics for shear wave velocity. 
Number of samples estimated 36477 
Number of samples not estimated 30 
Mean of actual values 2757.64465 
Mean of estimated values 2757.61814 
Mean difference (Act-Est) 0.02651131 
Mean difference (as % of actual) 0 
Mean absolute difference 14.6445387 
Variance of actual values 111005.615 
Variance of estimated values 107425.813 
Correlation coefficient 0.994 
Kriging variance: mean of KV estimated from model 0.00015548 
Kriging variance: mean of squared differences 1259.53894 
Kriging variance: ratio    0 

 
Table 2 demonstrates the remarkable results for a 

number of samples, mean difference, correlation 
coefficient,and Kriging variance estimated by the 
jackknife Kriging approach. Finally, the results of 
this approach show that the elliptical search area by 
those variograms are highly accurate in any points 
of the reservoir in the oil field for estimating the 
shear wave velocity.  

5.2.3. 3D Model by Ordinary Kriging Estimator 

After finding the perfect elliptical search area 
based on the variography parameters obtained from 
the perpendicular variogram, the 3D model of shear 
wave velocity was constructed by utilizing the OK 
estimator. This process was carried out in the 
Datamine software. Therefore, at first, the datasets 
in 30 wells, obtained from the empirical 
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correlation, were used as the input data, and then 
the block model for overall reservoir was 
constructed (the block size was 200, 300, and 15 
m). Ultimately, the shear wave velocity for each 
block was estimated using the elliptical search area 

and OK estimator. Figure 12 shows the result of 
estimation shear wave velocity for every block in 
the whole reservoir of the oil field by the OK 
estimator. 

 
Figure 12. Estimation of shear wave velocity (3D model) by utilizing OK estimator in the whole of reservoir oil 

field.  

Figure 12 shows the 3D model for shear wave 
velocity that has been estimated by the OK 
estimator. In some points, this estimator has not 
been able to obtain a value for the favorable block 
(see the absent block with gray color in Figure 12). 
In this 3D model, the absent block from shear wave 
velocity is due to the low radius for the elliptical 
search area. Furthermore, the shear wave velocity 
in the other blocks estimated by the OK estimator 
is shown in 6 ranges with 6 different colors. These 
6 ranges for shear wave velocity were determined 
by the cumulative frequency. The 3D shear wave 
model in this case study was considered as a key 
information about the reservoir oil field that could 
be used to make a 3D geomechanics model, 
although it may not be accurate. Therefore, in order 

to evaluate the accuracy of the 3D shear wave 
velocity model, the reliability of the estimated 
values was verified. 

5.2.4. Reliability of estimated values 
In geostatistics, Kriging variance (KVar) has 

been used to measure the reliability of the 
estimated values (see section 4.2 for more 
information). Therefore, the KVar has been utilized 
to measure the error of the estimation by OK 
estimator for understanding the reliability of the 
estimated values. The estimation variance of shear 
wave velocity by KVar was determined and shown 
as a distribution 3D block model for the overall 
reservoir of oil filed in Figure 13.   
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Figure 13. 3D block model of Kriging estimation variance in the whole of reservoir oil field. 

Figure 13 shows the 3D errors block model for 
estimating the shear wave velocity by the OK 
estimator. For standardization of the data, the 
estimation variance values are between 0 and 1. 
The minimum values of the estimation variance 
indicated that the errors of estimation of the shear 
wave velocities by the OK estimator were 
minimum. Furthermore, the enhancement 
estimation variance indicated that the error of 
estimator increased. According to this declaration 
for the results of the 3D KVar, the minimum errors 
are around the drilled boreholes that the shear wave 
velocities were available, and also away from 
around the drilled boreholes that the error 
estimation increased. Furthermore, the 3D block 
model of KVar is shown in 6 ranges with 6 
different colors, which were determined by the 
cumulative frequency. Finally, those results show 
that the estimated values by the OK estimator are 
strongly acceptable, and accurate for this case 
study.  

6. Conclusions 
In this research work, the magnitude of shear 

wave velocity was estimated using two different 
techniques including the Back-Propagation Neural 
Network (BPNN) and Ordinary Kriging (OK) 
together with the conventional petrophysics logs. 
Our findings illustrated that the BPNN technique 
presented an extremely low correlation coefficient 
(R = 0.32) with a high error, and consequently, it 
was not able to accurately estimate the values of 
shear wave velocity. The potential rationale for this 
drawback is that while the BPNN technique is an 
extrapolation method, the changes in the 
subsurface geomechanical conditions are mainly 

intense in the oil reservoirs. To the contrary, 
through the OK technique, a new 3D model for 
estimating the shear wave velocity was acquired so 
that it presented a high correlation coefficient, and 
also was acutely accurate. Such a high accuracy is 
perhaps derived from this point that the OK 
technique is based on an interpolation approach. 
Therefore, it can be expressed that the OK 
technique is substantially a more reliable estimator 
than the BPNN technique for determination of the 
shear wave velocities in the oil reservoirs. 
Furthermore, the results obtained indicated that in 
the absence of the DSI logs, the values of shear 
wave velocity could be estimated by utilization of 
the conventional petro-physics well logs. The 
results obtained from the affordable and acceptable 
3D geostatistics model could be utilized to estimate 
the shear wave velocities throughout the subjected 
oil reservoir in the current research work. More 
than this, such a geostatistics model could also be 
applied to any other oil field containing reservoirs 
with identical geological and geomechanical 
characteristics. 
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   چکیده:

) همیشه به عنوان یکی از پارامترهاي کلیدي در تعیین خواص زیر سطحی ژئومکانیکی مخازن هیدروکربوري بوده است. در خلال عملیات Vsسرعت موج برشی ( 
توان علاوه بر تفسیر یک بعدي ) اندازه گیري کرد. از نقاط ضعف این روش میDSIتوان بصورت مستقیم از طریق نگار صوتی دوقطبی (را می Vsچاه نگاري، مقدار 

یزیکی فهاي متداول پتروآن به هزینه بالاي انجام کار اشاره کرد. ازاینرو، در این تحقیق تلاش گردید روش جایگزینی براي تخمین سرعت موج برشی از طریق نگاره
) در یک مطالعه موردي در یکی از مخازن کربناته در جنوب ایران ارائه داده شود. براي انجام کار، در ابتدا سرعت موج برشی واقعی Vpمانند سرعت موج فشاري (

مجموعه داده که از نگار صوتی دو  یک مجموعه داده در یک چاه در میدان مورد نظر بکار گرفته شد. همبستگی بین سرعت موج فشاري و موج برشی واقعی این
ها وجود داشت و حدود سی چاه بود استفاده ها که سرعت موج فشاري آنچاهقطبی بود استخراج گردید. سپس رابطه بدست آمده از همبستگی موجود براي دیگر 

) براي محاسبه سرعت موج BPNNبا شبکه عصبی برگشتی (ها سرعت موج برشی شان تخمین زده شد. در ادامه روش تخمیگر کریجینگ همراه گردید و براي آن
ریجینگ مقادیر ک برشی در سرتاسر مخزن هیدروکربوري بکار گرفته شد. نتایج بدست آمده از این دو تکنیک با یکدیگر مقایسه گردید که نشان داده روش تخمنین

د روش تخمینگر کریجینگ نسبت به شبکه عصبی برگشتی براي تخمین سرعت موج برشی تري ارائه داده است. نتایج این تحقیق نشان داد کاربرو مدل بسیار دقیق
د کارا و مناسب ته باشبسیار دقیق و قابل اعتمادتر خواهد بود و مدل بدست آمده در میادین مشابه که شرایط ژئومکانیکی و زمین شناسی نزدیکی با این تحقیق داش

  بود.  هدخوا

 .هاي چاه، سرعت موج برشیتخمین، تخمینگر کریجینگ، نگارهمدل سه بعدي،  کلمات کلیدي:
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