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 The geo-statistical simulation algorithms for continuous spatial variables have been 
used widely in order to generate the statistically-honored models. There are two main 
algorithms doing the continuous variable simulation, Sequential Gaussian Simulation 
(SGS) and Direct Sequential Simulation (DSS). The main advantage of the DSS 
algorithm against the SGS algorithm is that in the DSS algorithm no Gaussian 
transformation of the original data is made. In this work, these two simulation 
algorithms are explained, and their applications to a 3D spatial dataset are deeply 
investigated. The dataset consists of the porosity values of 16 vertical wells extracted 
from an actual cube obtained by a seismic inversion process. One well data is excluded 
from the simulation process for the blind well test. Comparison between the 
histograms show that the histogram reproduction is slightly better for the SGS 
algorithm, although the population reproductions are the same for both SGS and DSS 
results. The DSS algorithm reproduce the mean of input data closer to the mean of 
well data compared to that of the SGS algorithm. Considering one realization from 
each simulation algorithm, the RMS error corresponding to all simulated cells against 
the real values is approximately equal for both algorithms. On the other hand, the error 
show a slightly less value when the mean of 100 realizations of the DSS result is 
considered. 
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1. Introduction 
The geo-statistical simulation algorithms have 

been widely used during the last decades in order 
to generate the equiprobable models of any spatial 
variable based on some conditioning data. 
Different types of variables have led to the 
development of various simulation algorithms. The 
most common and traditional algorithm for 
continuous variables is Sequential Gaussian 
Simulation or SGS [1]. The application of SGS to 
different geo-science fields has been recently 
developed by numerous researchers [2-10]. 
Sakizadeh et al. (2017) have presented a spatial 
risk assessment of heavy metals using SGS [7]. 
Talesh Hosseini et al. (2018) have used the geo-
chemical data to model the zonality elements in the 
Baghqloom area of Iran [6]. Wang and Zuo (2018) 

have identified the geo-chemical anomalies by a 
combination of SGS and grid-based local 
singularity analysis [9]. Gholampour et al. (2019) 
have applied the SGS algorithm to drill the core 
data to model the alteration zones [10]. Metahni et 
al. (2019) have compared different interpolation 
methods and SGS algorithms in order to estimate 
the contaminated soil volumes [8]. Sotoudeh et al. 
(2020) have applied the SGS algorithm to grade 
values of copper, and have developed a new 
underground mine design based on grade 
uncertainty [5]. Shen et al. (2021) have compared 
the SGS algorithm with a positive matrix 
factorization model for risk assessment of soil 
heavy metals in the area of the Yellow River, China 
[3]. 
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SGS  uses a Gaussian transformation of original 
data to perform the simulation. However, Soares 
(2001) has proposed a new algorithm called Direct 
Sequential Simulation (DSS), in which no prior 
and posterior Gaussian transformations of the 
original variable were required [11]. Many 
researchers have used the DSS algorithms to model 
their spatial datasets. Ribeiro et al. (2016) have 
applied direct sequential simulation algorithms to 
precipitation time series in order to detect 
inhomogeneities in Portugal [12]. Sabeti et al. have 
used the DSS algorithm to generate different 
acoustic impedance models for a stochastic seismic 
inversion method [13]. Pereira et al. (2019) have 
analyzed the impact of a priori elastic models on 
seismic inversion algorithm using direct sequential 
simulation [14]. Madenoglu et al. (2020) have 
applied DSS to the soil surface samples to assess 
the uncertainty of soil erodibilites [4]. Almeida et 
al. (2020) have developed an integrated method for 
reducing the estimation uncertainty of reservoir 
properties using the DSS algorithm [15]. Horta et 
al. (2021) have applied the DSS algorithm to build 
soil contamination maps [16]. Otzen et al. (2022) 
have developed a new spherical linear inversion 
algorithm using direct sequential simulation [17]. 

These two main simulation algorithms for 
modeling many different variables from different 
fields are now routinely used. The algorithm 
selection has been always a difficult decision that 
comes from lacking the comparing research on 
these two algorithms. In this paper, the SGS and 
DSS algorithms are briefly described, and a 
practical comparison between them is presented 
using a pseudo-real 3D dataset. 

2. Sequential Gaussian Simulation 
Considering the desired variable in a Gaussian 

field, one can generate the joint distribution of 
random variables. These variables are then 
conditioned by a set of data of any type using the 
notation. The following expression presents the 
complementary cumulative distribution function 
(CCFD) of the variables [1]: 

,ଵݖ)(ே)ܨ … , ((݊)|ேݖ = 

௜ܼ}ܾ݋ݎܲ ≤ ௜ݖ , ݅ = 1, … ,ܰ|(݊)} 
(1) 

The simulation is sequentially done by drawing 
the values from the normal CCDF of each variable 
using the Monte Carlo simulation procedure. The 
conditioning data include all the original data (hard 
data), and all the previously simulated points are 
found within a neighborhood [18-20]. 

The conditioning simulation of a continuous 
variable z(u) proceeds as follows [18-20]: 

1. Generate the univariate CCFD, ܨ௓(ݖ) for the 
entire grid. 

2. Perform the normal transform of the ݖ data 
into the ݕ data with a standard normal CDF. 

3. Define a random path that defines which 
node is going to be simulated first. At each 
node ݑ, specify the number of surrounding 
conditioning data (both the hard data and 
previously simulated nodes). 

4. Use simple kriging (SK) to determine the 
mean and variance of CCDF. 

5. Draw a simulated value ݕ(ଵ)(ݑ) from CCDF 
using the Monte Carlo simulation. 

6. Add the simulated value to the dataset. 

7. Proceed to the next node based on the pre-
defined random path, and repeat the steps 
until all node are simulated. 

8. Transform the simulated values back into the 
original variable (reverse normal transform). 

3. Direct Sequential Simulation 

Soares (2001) has introduced a direct sequential 
simulation algorithm without any transformation of 
the original variable. The algorithm procedure is 
described in the following steps [11]: 

1. Calculate the global CFD, ܨ௭(ݖ) of the 
continuous variable ܼ(ݔ). 

2. Define a random path. 

3. Estimate the local mean and variance of the 
visited node using simple kriging, presented as 
௦௞ଶߪ and ∗(௨ݔ)ݖ  .respectively ,(௨ݔ)

4. Define the interval of ܨ௭(ݖ) to be sampled using 
Gaussian CDF. 

5. Generate the value ݌ from a uniform distribution 
ܷ(0,1). 

6. Generate the value ݕ௦ from ܩ൫ݕ(ݔ௨)∗, ௦௞ଶߪ  ൯(௨ݔ)
using the following equation: 

ݕ = ,∗(௨ݔ)ݕଵ൫ିܩ ௦௞ଶߪ ,(௨ݔ)  ൯ (2)݌

where ݕ(ݔ௨)∗ corresponds to the local estimate ݖ(ݔ௨)∗ 
and ିܩଵ is the inverse Gaussian CDF. 

7. Return the simulated value using the following 
equation: 

(௨ݔ)௦ݖ = ߮ିଵ(ݕ௦) (3) 

where ߮ିଵ in the inverse normal score transform. 
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8. Repeat until all nodes have been visited. 

Figure 1 shows the sampling of global 
distribution ܨ௭(ݖ) using the intervals that came 
from the local estimate [11]. 

Note that a Gaussian transformation is used for 
the sample interval preparation purpose only, and 
not for generating the local distribution as in the 
SGS algorithm. 

 
Figure 1. Sampling of global distribution [11] (ࢠ)ࢠࡲ. 

4. Application of algorithms to a 3D dataset 
In order to compare the two simulation 

algorithms, a pseudo-real dataset from a deepwater 
turbidite reservoir was selected. The acoustic 
impedance values were available from a seismic 
inversion process. These values were later 
converted to the porosity values. This means that 
the actual porosity values in all areas are available. 
The grid has the dimension of 100 × 100 × 70 cells 
as a result of the seismic inversion procedure. Each 

cell is 25 m long in each direction. These units 
came from the 3D seismic data acquisition. In order 
to build a dataset to be used for simulations, a static 
model was built by extracting 16 vertical wells 
from the 3D data. All wells were randomly chosen. 
One well remained unused for blind well purposes. 
Figure 2a shows a perspective view of wells in the 
grid. A 2D horizontal slice is illustrated in Figure 
2b, showing the location of all wells including the 
blind well.  

 
Figure 2. a) 3D view of porosity data wells, b) 2D horizontal slice of wells. 
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In order to do any geo-statistical simulation, first, 
we need to do the semivariogram modeling. In this 
research work, two directions were selected to 
calculate the variograms, horizontal and vertical. 
Figure 3 presents the experimental variograms and 
fitted spherical models as well. The horizontal 

direction was considered omnidirectional since 
there were no considerable changes in different 
horizontal directions. The ranges for the horizontal 
and vertical directions were calculated 36 and 18 
cells, respectively. 

 
Figure 3. a) Horizontal variogram and b) vertical variogram modeling. 

Using the variogram parameters and 15 well logs, the sequential Gaussian simulation algorithm was applied 
to the grid. Two vertical sections in both x and y directions are presented in Figure 4. The same parameters 
were used to run the direct sequential simulation algorithm. Figure 5 shows the same sections extracted from 
the DSS results. These figures are only for visualization purposes. 

 
Figure 4. SGS results. (a) a vertical section in x direction and (b) a vertical section in y direction. 
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Figure 5. DSS results. (a) a vertical section in x direction and (b) a vertical section in y direction. 

In order to see if the histogram is reproduced in 
the simulation results, the histograms are plotted in 
Figures 6 and 7 for the SGS and DSS algorithms, 
respectively. As seen, both algorithms are able to 
reproduce the histogram of the well data in the 
simulated values. The SGS algorithm seems to be 
slightly more successful in the reproduction of the 
histogram. Other important parameters that should 
be reproduced in any geo-statistical simulation 
algorithms are the mean and variance of the input 
data. Table 1 is created for the comparisons. As 
shown in this table, both algorithms reproduce the 
mean and variance of the well data in their outputs. 
Although the differences are negligible, the DSS 
algorithm is able to reproduce the mean more 
efficiently. 

For the purpose of variogram reproductions, 
Figures 8 and 9 are presented. As shown in these 
figures, the variograms are reproduced in the 
simulation results for both the SGS and DSS 
simulation algorithms. 

Since the porosity cube of the same grid 
dimension is available in the current dataset, it is 
possible to compare it to the simulation results. 
One realization from each simulation algorithm is 
randomly selected. In addition, the mean cube 
through 100 realizations for each simulation 
algorithm is included in this comparison. Root 
mean square error (RMSE) is calculated, and the 
results are shown in Table 2. This table confirms 
that both algorithms are approximately equal in the 
simulation of the porosity of all cells. 

 
Figure 6. (a) Histogram of porosity from well data and (b) histogram of simulation result using SGS algorithm. 
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Figure 7. (a) Histogram of well porosity data and (b) histogram of simulation result using DSS algorithm. 

 
Figure 8. Variogram reproduction in SGS algorithm. (a) Horizontal variogram of well data. (b) and (c) 

Horizontal variograms of two randomly selected simulation results from SGS algorithm. (d) Vertical variogram 
of well data. (e) and (f) Vertical variograms of simulation results. 

Table 1. Mean and variance comparisons for SGS and DSS results. 

 Mean Variance Mean difference 
from well data 

Variance difference 
from well data 

Well data 0.1467 0.00136 - - 
SGS results 0.1479 0.00122 7.6 % -10.7 % 
DSS results 0.1468 0.00152 0.047 % 11.2 % 

Table 2. Root mean square error (RMS error) between actual porosity values and simulated ones. 

 One 
realization 

Mean of 100 
realizations 

SGS algorithm 3.43 % 1.98% 
DSS algorithm 3.50 % 1.68% 
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5. Blind well analysis 
For vertical changes analysis, a blind well test 

was performed. Figure 10 presents the actual 
porosity data plot versus the SGS and DSS results.  

Table 3 shows the correlation coefficient and RMS 
error between the actual data and the simulation 
results. Although the correlation coefficient for the 
DSS algorithm is higher than the SGS algorithm, 
the RMS errors show a reverse outcome. 

 
Figure 9. Variogram reproduction in DSS algorithm. (a) Horizontal variogram of well data. (b) and (c) 

Horizontal variograms of two randomly selected simulation results from DSS algorithm. (d) Vertical variogram 
of well data. (e) and (f) Vertical variograms of simulation results. 

 
Figure 10. Blind well test. Comparing porosity values from actual data, SGS and DSS results along the blind well 

as presented in Figure 3. 
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Table 3. Blind well analysis. Correlation coefficients and RMS error between actual data and SGS and DSS 
results. 

 Correlation 
coefficient RMS error 

SGS algorithm 83 % 21.4 % 
DSS algorithm 88 % 28.9 % 

 

6. Uncertainty analysis 
One of main advantages of the simulation 

algorithms compared to other deterministic 
estimation algorithms is the ability to do the 
uncertainty assessment. This assessment can be 
done by calculating the variance for each cells 
using various simulated results. In this research 
work, 100 realizations were used for generating a 
variance cube for each simulation algorithm. 
Higher variance values show that the uncertainty of 
simulated values to be more close to the actual ones 
is high, and vice versa. As the geo-statistical 
simulation algorithms are conditioned to the well 

data, it is expected to have less uncertainty close to 
the wells locations. For the visualization purpose, 
three horizontal slices from different areas were 
extracted from variance cube and illustrated in 
Figure 11. As shown in this figure, the more 
distance from wells, the higher uncertainty in the 
simulation results. The averages of standard 
deviation values among all simulated cells from 
each simulation results have been calculated just to 
have an idea about the uncertainty. These averages 
were 0.0264 and 0.0252 for SGS and DSS 
algorithms, respectively, showing that the 
uncertainty corresponding to both simulation 
algorithms is approximately equal. 

 
Figure 11. Uncertainty analysis. Horizontal slices extracted from different areas of variance cube from SGS (a, b 

and c) and DSS algorithm results (d, e and f). 
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7. Conclusion 
In this work, two common geo-statistical 

simulation algorithms, SGS and DSS, were applied 
to a porosity dataset to compare the results. The 
sequential Gaussian simulation algorithm requires 
transformation of data into Gaussian distribution. 
Unlike the SGS algorithm, the direct sequential 
simulation uses the original data during the 
simulation procedure. Applying these two 
algorithms to the porosity data of 15 wells shows 
that both algorithms are able to generate simulated 
cubes without showing any errors simulating 
700000 cells. The same random path and 
variogram models were used. The histogram 
reproduction analysis shows that the SGS 
algorithm is able to slightly better reproduce the 
histogram of well data. Note that the populations 
are perfectly reproduced for the algorithms in the 
same way. On the other hand, the DSS algorithm 
reproduce the mean value of well data with much 
less RMS error compared to the SGS algorithm. 
The reproduction of variance value was 
approximately equal. Considering one realization 
from each simulation algorithm, the RMS errors 
corresponding to all simulated cells were almost 
the same but the mean of 100 realizations showed 
a slightly less RMS error in the DSS algorithm. 
Regarding a blind well test correlation coefficient 
between the actual values and simulated ones was 
higher when using the DSS algorithm. However, 
the RMS error shows a less value when using the 
SGS algorithm. 
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  چکیده:

اند. دو روش طور گسترده مورد استفاده قرار گرفتههاي مقید به خواص آماري از متغیرهاي فضایی پیوسته، به آماري براي تولید مدلسازي زمینهاي شبیهروش
سازي متوالی مستقیم. برتري اصلی روش مستقیم در مقابل روش سازي متوالی گوسی و شبیهسازي متغیرهاي پیوسته وجود دارد، شبیهعمده براي این انجام شبیه

سازي شرح داده شده و کاربرد آنها بر رد. در این پژوهش، این دو روش شبیهپذیهاي ورودي در روش مستقیم صورت نمیگوسی این است که تبدیل گوسی داده
بعدي خروجی چاه قائم است که از مکعب داده هاي سه 16روي یک داده شبه واقعی تخلخل مورد بررسی دقیق قرار گرفته است. این داده شامل مقادیر تخلخل 

ي یک چاه براي ارزیابی نتایج کنار گذاشته شده و دو الگوریتم شبیه سازي متوالی گوسی و مستقیم بر روي اي استخراج شده است. داده هاسازي لرزهفرایند وارون
ع سازي متوالی گوسی اندکی بهتر است اگرچه بازتولید جوامدهد که بازتولید هیستوگرام در الگوریتم شبیهها نشان میاین داده اعمال شده است. مقایسه هیستوگرام

ن سازي متوالی مستقیم داراي میانگین نزدیکتري به میانگیتوگرام نتایج هر دو الگوریتم به طور یکسان قابل مشاهده است. نتایج الگوریتم شبیهآماري در هیس
 زي شده و مقدار واقعیساسازي، خطاي جذر میانگین مربعات بین مقدار شبیهها از هر کدام از دو روش شبیههاي ورودي هستند. با درنظر گرفتن یکی از تحققداده

سازي متوالی گوسی سازي متوالی مستقیم کمتر از شبیهتحقق، این خطا در مورد الگوریتم شبیه 100تقریبا یکسان است. از طرف دیگر، با درنظر گرفتن میانگین 
 است.

  .لسازي متوالی مستقیم، واریوگرام، تخلخسازي متوالی گوسی، شبیه، شبیهآمارزمین کلمات کلیدي:
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