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The geo-statistical simulation algorithms for continuous spatial variables have been
used widely in order to generate the statistically-honored models. There are two main
algorithms doing the continuous variable simulation, Sequential Gaussian Simulation
(SGS) and Direct Sequential Simulation (DSS). The main advantage of the DSS
algorithm against the SGS algorithm is that in the DSS algorithm no Gaussian
transformation of the original data is made. In this work, these two simulation
algorithms are explained, and their applications to a 3D spatial dataset are deeply
investigated. The dataset consists of the porosity values of 16 vertical wells extracted
from an actual cube obtained by a seismic inversion process. One well data is excluded
from the simulation process for the blind well test. Comparison between the
histograms show that the histogram reproduction is slightly better for the SGS
algorithm, although the population reproductions are the same for both SGS and DSS
results. The DSS algorithm reproduce the mean of input data closer to the mean of
well data compared to that of the SGS algorithm. Considering one realization from
each simulation algorithm, the RMS error corresponding to all simulated cells against
the real values is approximately equal for both algorithms. On the other hand, the error
show a slightly less value when the mean of 100 realizations of the DSS result is
considered.

1. Introduction

The geo-statistical simulation algorithms have
been widely used during the last decades in order
to generate the equiprobable models of any spatial
variable based on some conditioning data.
Different types of variables have led to the
development of various simulation algorithms. The
most common and traditional algorithm for
continuous variables is Sequential Gaussian
Simulation or SGS [1]. The application of SGS to
different geo-science fields has been recently
developed by numerous researchers [2-10].
Sakizadeh et al. (2017) have presented a spatial
risk assessment of heavy metals using SGS [7].
Talesh Hosseini et al. (2018) have used the geo-
chemical data to model the zonality elements in the
Baghqloom area of Iran [6]. Wang and Zuo (2018)
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have identified the geo-chemical anomalies by a
combination of SGS and grid-based local
singularity analysis [9]. Gholampour et al. (2019)
have applied the SGS algorithm to drill the core
data to model the alteration zones [10]. Metahni et
al. (2019) have compared different interpolation
methods and SGS algorithms in order to estimate
the contaminated soil volumes [8]. Sotoudeh et al.
(2020) have applied the SGS algorithm to grade
values of copper, and have developed a new
underground mine design based on grade
uncertainty [5]. Shen et al. (2021) have compared
the SGS algorithm with a positive matrix
factorization model for risk assessment of soil
heavy metals in the area of the Yellow River, China

[3].
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SGS uses a Gaussian transformation of original
data to perform the simulation. However, Soares
(2001) has proposed a new algorithm called Direct
Sequential Simulation (DSS), in which no prior
and posterior Gaussian transformations of the
original variable were required [11]. Many
researchers have used the DSS algorithms to model
their spatial datasets. Ribeiro et al. (2016) have
applied direct sequential simulation algorithms to
precipitation time series in order to detect
inhomogeneities in Portugal [12]. Sabeti et al. have
used the DSS algorithm to generate different
acoustic impedance models for a stochastic seismic
inversion method [13]. Pereira et al. (2019) have
analyzed the impact of a priori elastic models on
seismic inversion algorithm using direct sequential
simulation [14]. Madenoglu et al. (2020) have
applied DSS to the soil surface samples to assess
the uncertainty of soil erodibilites [4]. Almeida et
al. (2020) have developed an integrated method for
reducing the estimation uncertainty of reservoir
properties using the DSS algorithm [15]. Horta et
al. (2021) have applied the DSS algorithm to build
soil contamination maps [16]. Otzen et al. (2022)
have developed a new spherical linear inversion
algorithm using direct sequential simulation [17].

These two main simulation algorithms for
modeling many different variables from different
fields are now routinely used. The algorithm
selection has been always a difficult decision that
comes from lacking the comparing research on
these two algorithms. In this paper, the SGS and
DSS algorithms are briefly described, and a
practical comparison between them is presented
using a pseudo-real 3D dataset.

2. Sequential Gaussian Simulation

Considering the desired variable in a Gaussian
field, one can generate the joint distribution of
random variables. These variables are then
conditioned by a set of data of any type using the
notation. The following expression presents the
complementary cumulative distribution function
(CCFD) of the variables [1]:

F(N) (er ...,ZNl(n)) =

) (1
Prob{Z; < z;,i = 1,..,N|(n)}

The simulation is sequentially done by drawing
the values from the normal CCDF of each variable
using the Monte Carlo simulation procedure. The
conditioning data include all the original data (hard
data), and all the previously simulated points are
found within a neighborhood [18-20].
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The conditioning simulation of a continuous
variable z(u) proceeds as follows [18-20]:

1. Generate the univariate CCFD, F; (z) for the
entire grid.

2. Perform the normal transform of the z data
into the y data with a standard normal CDF.

3. Define a random path that defines which
node is going to be simulated first. At each
node u, specify the number of surrounding
conditioning data (both the hard data and
previously simulated nodes).

4. Use simple kriging (SK) to determine the
mean and variance of CCDF.

5. Draw a simulated value y® (1) from CCDF
using the Monte Carlo simulation.

6. Add the simulated value to the dataset.

7. Proceed to the next node based on the pre-
defined random path, and repeat the steps
until all node are simulated.

8. Transform the simulated values back into the
original variable (reverse normal transform).

3. Direct Sequential Simulation

Soares (2001) has introduced a direct sequential
simulation algorithm without any transformation of
the original variable. The algorithm procedure is
described in the following steps [11]:

1. Calculate the global CFD, F,(z) of the
continuous variable Z(x).

2. Define a random path.

3. Estimate the local mean and variance of the
visited node using simple kriging, presented as
z(x,)" and 2, (x,,), respectively.

4. Define the interval of F,(z) to be sampled using
Gaussian CDF.

5. Generate the value p from a uniform distribution
U(0,1).

6. Generate the value y° from G (y(x,)*, 0% (x,))
using the following equation:

y= G_l(y(xu)*ro-szk(xu)’ p) (2)

where y(x,,)* corresponds to the local estimate z(x,,)*
and G~ is the inverse Gaussian CDF.

7. Return the simulated value using the following
equation:
®)

z°(x,) = @71 (¥%)

where ¢~ in the inverse normal score transform.
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8. Repeat until all nodes have been visited.

Figure 1 shows the sampling of global
distribution F,(z) using the intervals that came
from the local estimate [11].
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Note that a Gaussian transformation is used for
the sample interval preparation purpose only, and
not for generating the local distribution as in the
SGS algorithm.

GHE)*0w(X) —p

Local interval of G(y)
equivalent to G(y(X,)*,6”w(Xy))

\

G(y)

Y~ Lo

¥—__ Equivalent local interval
of Fz(z) to be sampled

y(x,)*

z(x,)*

Figure 1. Sampling of global distribution F,(z) [11].

4. Application of algorithms to a 3D dataset

In order to compare the two simulation
algorithms, a pseudo-real dataset from a deepwater
turbidite reservoir was selected. The acoustic
impedance values were available from a seismic
inversion process. These values were later
converted to the porosity values. This means that
the actual porosity values in all areas are available.
The grid has the dimension of 100 x 100 x 70 cells
as a result of the seismic inversion procedure. Each

(a)

Porosity

0.06ll1s 0.1053 0.1454 01335

cell is 25 m long in each direction. These units
came from the 3D seismic data acquisition. In order
to build a dataset to be used for simulations, a static
model was built by extracting 16 vertical wells
from the 3D data. All wells were randomly chosen.
One well remained unused for blind well purposes.
Figure 2a shows a perspective view of wells in the
grid. A 2D horizontal slice is illustrated in Figure
2b, showing the location of all wells including the
blind well.
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Figure 2. a) 3D view of porosity data wells, b) 2D horizontal slice of wells.
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In order to do any geo-statistical simulation, first, direction was considered omnidirectional since
we need to do the semivariogram modeling. In this there were no considerable changes in different
research work, two directions were selected to horizontal directions. The ranges for the horizontal
calculate the variograms, horizontal and vertical. and vertical directions were calculated 36 and 18
Figure 3 presents the experimental variograms and cells, respectively.

fitted spherical models as well. The horizontal
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Figure 3. a) Horizontal variogram and b) vertical variogram modeling.

Using the variogram parameters and 15 well logs, the sequential Gaussian simulation algorithm was applied

to the grid. Two vertical sections in both x and y directions are presented in Figure 4. The same parameters

were used to run the direct sequential simulation algorithm. Figure 5 shows the same sections extracted from
the DSS results. These figures are only for visualization purposes.
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Figure 4. SGS results. (a) a vertical section in x direction and (b) a vertical section in y direction.
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Figure 5. DSS results. (a) a vertical section in x direction and (b) a vertical section in y direction.

In order to see if the histogram is reproduced in
the simulation results, the histograms are plotted in
Figures 6 and 7 for the SGS and DSS algorithms,
respectively. As seen, both algorithms are able to
reproduce the histogram of the well data in the
simulated values. The SGS algorithm seems to be
slightly more successful in the reproduction of the
histogram. Other important parameters that should
be reproduced in any geo-statistical simulation
algorithms are the mean and variance of the input
data. Table 1 is created for the comparisons. As
shown in this table, both algorithms reproduce the
mean and variance of the well data in their outputs.
Although the differences are negligible, the DSS
algorithm is able to reproduce the mean more
efficiently.

(a)

Wells data histogram

For the purpose of variogram reproductions,
Figures 8 and 9 are presented. As shown in these
figures, the variograms are reproduced in the
simulation results for both the SGS and DSS
simulation algorithms.

Since the porosity cube of the same grid
dimension is available in the current dataset, it is
possible to compare it to the simulation results.
One realization from each simulation algorithm is
randomly selected. In addition, the mean cube
through 100 realizations for each simulation
algorithm is included in this comparison. Root
mean square error (RMSE) is calculated, and the
results are shown in Table 2. This table confirms
that both algorithms are approximately equal in the
simulation of the porosity of all cells.
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Figure 6. (a) Histogram of porosity from well data and (b) histogram of simulation result using SGS algorithm.
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Figure 7. (a) Histogram of well porosity data and (b) histogram of simulation result using DSS algorithm.
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Figure 8. Variogram reproduction in SGS algorithm. (a) Horizontal variogram of well data. (b) and (c)
Horizontal variograms of two randomly selected simulation results from SGS algorithm. (d) Vertical variogram

of well data. (e) and (f) Vertical variograms of simulation results.

Table 1. Mean and variance comparisons for SGS and DSS results.

Mean difference Variance difference

Mean Variance from well data from well data
Well data 0.1467 0.00136 - -
SGS results 0.1479 0.00122 7.6 % -10.7 %
DSS results 0.1468 0.00152 0.047 % 11.2 %

Table 2. Root mean square error (RMS error) between actual porosity values and simulated ones.

One Mean of 100

realization realizations
SGS algorithm 343 % 1.98%
DSS algorithm 3.50 % 1.68%
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5. Blind well analysis Table 3 shows the correlation coefficient and RMS
error between the actual data and the simulation
results. Although the correlation coefficient for the
DSS algorithm is higher than the SGS algorithm,
the RMS errors show a reverse outcome.

For vertical changes analysis, a blind well test
was performed. Figure 10 presents the actual
porosity data plot versus the SGS and DSS results.
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Figure 9. Variogram reproduction in DSS algorithm. (a) Horizontal variogram of well data. (b) and (c)
Horizontal variograms of two randomly selected simulation results from DSS algorithm. (d) Vertical variogram
of well data. (e) and (f) Vertical variograms of simulation results.
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as presented in Figure 3.
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Table 3. Blind well analysis. Correlation coefficients and RMS error between actual data and SGS and DSS

results.
Correlzttion RMS error
coefficient
SGS algorithm 83 % 21.4%
DSS algorithm 88 % 28.9 %

6. Uncertainty analysis

One of main advantages of the simulation
algorithms compared to other deterministic
estimation algorithms is the ability to do the
uncertainty assessment. This assessment can be
done by calculating the variance for each cells
using various simulated results. In this research
work, 100 realizations were used for generating a
variance cube for each simulation algorithm.
Higher variance values show that the uncertainty of
simulated values to be more close to the actual ones
is high, and vice versa. As the geo-statistical
simulation algorithms are conditioned to the well
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data, it is expected to have less uncertainty close to
the wells locations. For the visualization purpose,
three horizontal slices from different areas were
extracted from variance cube and illustrated in
Figure 11. As shown in this figure, the more
distance from wells, the higher uncertainty in the
simulation results. The averages of standard
deviation values among all simulated cells from
each simulation results have been calculated just to
have an idea about the uncertainty. These averages
were 0.0264 and 0.0252 for SGS and DSS
algorithms, respectively, showing that the
uncertainty corresponding to both simulation
algorithms is approximately equal.
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Figure 11. Uncertainty analysis. Horizontal slices extracted from different areas of variance cube from SGS (a, b
and c) and DSS algorithm results (d, e and f).
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7. Conclusion

In this work, two common geo-statistical
simulation algorithms, SGS and DSS, were applied
to a porosity dataset to compare the results. The
sequential Gaussian simulation algorithm requires
transformation of data into Gaussian distribution.
Unlike the SGS algorithm, the direct sequential
simulation uses the original data during the
simulation procedure. Applying these two
algorithms to the porosity data of 15 wells shows
that both algorithms are able to generate simulated
cubes without showing any errors simulating
700000 cells. The same random path and
variogram models were used. The histogram
reproduction analysis shows that the SGS
algorithm is able to slightly better reproduce the
histogram of well data. Note that the populations
are perfectly reproduced for the algorithms in the
same way. On the other hand, the DSS algorithm
reproduce the mean value of well data with much
less RMS error compared to the SGS algorithm.
The reproduction of variance value was
approximately equal. Considering one realization
from each simulation algorithm, the RMS errors
corresponding to all simulated cells were almost
the same but the mean of 100 realizations showed
a slightly less RMS error in the DSS algorithm.
Regarding a blind well test correlation coefficient
between the actual values and simulated ones was
higher when using the DSS algorithm. However,
the RMS error shows a less value when using the
SGS algorithm.

Acknowledgments

The authors would like to thank three anonymous
reviewers for their useful comments. The authors
are grateful to Professor Amilcar Soares for his
valuable remarks.

References

[1]. Deutsch, CV and Journel, A.G. (1998). GSLIB
Geostatistical Software Library and. User's Guide. New
York: Oxford University Press.

[2]. Bai, T. and Tahmasebi, P. (2022). Sequential
Gaussian simulation for geosystems modeling: A
machine learning approach. Geoscience Frontiers. 13
(1): 101258.

[3]. Shen, W., Hu, Y., Zhang, J., Zhao, F., Bian, P. and
Liu, Y. (2021). Spatial distribution and human health
risk assessment of soil heavy metals based on sequential
Gaussian simulation and positive matrix factorization
model: A case study in irrigation area of the Yellow
River. Ecotoxicology and Environmental Safety. 225,
112752.

555

Journal of Mining & Environment, Vol. 13, No. 2, 2022

[4]. Madenoglu, S., Atalay, F. and Erpul G. (2020).
Uncertainty assessment of soil erodibility by direct
sequential Gaussian simulation (DSIM) in semiarid land
uses. Soil and Tillage Research. 204, 104731.

[5]. Sotoudeh, F., Ataei, M., Kakaie, R. and
Pourrahimian, Y. (2020). Application of Sequential
Gaussian Conditional Simulation to Underground Mine
Design under Grade Uncertainty. Journal of Mining and
Environment. 11 (3): 695-709.

[6]. Talesh Hosseini S., Asghari O, and Ghavami Riabi
SR. (2018). Spatial modelling of zonality elements
based on compositional nature of geochemical data
using geostatistical approach: a case study of
Baghqloom area, Iran. Journal of Mining and
Environment. 9 (1): 153-67.

[7]. Sakizadeh M., Sattari M.T. and Ghorbani H. (2017).
A new method to consider spatial risk assessment of
cross-correlated heavy metals using geo-statistical
simulation. Journal of Mining and Environment. § (3):
373-91.

[8]. Metahni, S., Coudert, L., Gloaguen, E., Guemiza,
K., Mercier, G. and Blais J-F. (2019). Comparison of
different interpolation methods and sequential Gaussian
simulation to estimate volumes of soil contaminated by
As, Cr, Cu, PCP and dioxins/furans. Environmental
Pollution. 252, 409-19.

[9]. Wang, J. and Zuo, R. (2018). Identification of
geochemical anomalies through combined sequential
Gaussian simulation and grid-based local singularity
analysis. Computers and Geosciences. 118, 52-64.

[10]. Gholampour, O., Hezarkhani, A., Maghsoudi, A.
and Mousavi, M. (2019). Application of sequential
Gaussian simulation and concentration-volume fractal
model to delineate alterations in hypogene zone of
miduk porphyry copper deposit, SE Iran. Journal of
African Earth Sciences. 150, 389-400.

[11]. Soares A. (2001). Direct Sequential Simulation
and Cosimulation. Mathematical Geology. 33(8), 911-
26.

[12]. Ribeiro, S., Caineta, J., Costa, A.C., Henriques, R.,
and Soares, A. (2016). Detection of inhomogeneities in
precipitation time series in Portugal using direct
sequential simulation. Atmospheric Research. 171, 147-
58.

[13]. Sabeti, H., Moradzadeh, A., Ardejani, F.D.,
Azevedo, L., Soares, A., Pereira, P. and Nunes, R.
(2017). Geostatistical seismic inversion for non-
stationary patterns using direct sequential simulation
and co-simulation. Geophysical Prospecting. 65, 25-48.

[14]. Pereira, P., Azevedo, L., Nunes, R. and Soares, A.
(2019). The impact of a priori elastic models into
iterative geostatistical seismic inversion. Journal of
Applied Geophysics. 170, 103850.

[15]. Almeida, F., Davolio, A. and Schiozer, D.J.
(2020). Reducing uncertainties of reservoir properties in



Sabeti and Moradpouri.

an automatized process coupled with geological
modeling considering scalar and spatial uncertain
attributes. Journal of Petroleum Science and
Engineering. 189, 106993.

[16]. Horta, A., Azevedo, L., Neves, J., Soares, A. and
Pozza, L. (2021). Integrating portable X-ray
fluorescence (pXRF) measurement uncertainty for
accurate soil contamination mapping. Geoderma. 382,
114712.

[17]. Otzen, M., Finlay, C.C. and Hansen, T.M. (2022).
Direct Sequential Simulation for spherical linear inverse
problems. Computers and Geosciences. 160, 105026.

[18]. Hajsadeghi, S., Asghari, O., Mirmohammadi, M.,
Afzal, P. and Meshkani, S.A. (2020). Uncertainty-
volume fractal model for delineating copper
mineralization ~ controllers  using  geostatistical

556

Journal of Mining & Environment, Vol. 13, No. 2, 2022

simulation in Nohkouhi volcanogenic massive sulfide
deposit, Central Iran. Bulletin of the Mineral Research
and Exploration. 161 (161): 1-11.

[19]. Soltani, F., P. Afzal, and Asghari, O. (2014).
Delineation of alteration zones based on Sequential
Gaussian Simulation and concentration—volume fractal
modeling in the hypogene zone of Sungun copper
deposit, NW Iran. Journal of Geochemical Exploration,
140, 64-76.

[20]. Soltani, F., Moarefvand, P., Alinia, F. and Afzal,
P. (2019). Characterization of rare earth elements by
coupling multivariate analysis, factor analysis, and
geostatistical simulation; case-study of Gazestan
deposit, central Iran. Journal of Mining and
Environment. 10 (4): 929-945.



1) Jlo o390 0,las o050 0,50 o jlaiomo g (dro (idghy — cole 4yl S50l g ol

JHAT Gamamw 0010 Sl ool b kv 9 (w8 (oo 6 5lwarnd (e 595l (os du o

Y PR X B
G900 0 01538 9 7 Sl v

Olpl ey oo py (Smieo olRLSIS (i (owiige 09,5 )
JW5 5 oy g ¢y g 0 REGIS ( e (28 gl o j o 9 (x50 Wlidixi 35 0 -

Oyl bl py3 (b J olKaiils (eI g (D OUSUESIS ((yame (w i 09,5 -
VXY S) oy FYY0/) L)l

sabeti@birjandut.ac.ir :olsl5e Jytus odinw 55 %

HRWE

Ghgy 90 i8S )5 ooliil 550 0058 ol 4y gy (2l sloyiie I )l Sl 4 e ladue 0l sl el sileand slots,
Ohgy e 5o e (b9, (Shol (551 prdtiae It (il 5 (gosS (St (gilond )10 292 dsgy (gl peite (iludeds plndl (nl g 00es
2T o5 5 ond ool 2y siluand (b5, 95 Gl (GResl (rl 0 Srdised D)o melies () 0 (59505 S0l (ssS i 4T el (] (oS
295 Somdw b ools Sl 5l aS el WSB ol V& J5ss polae Jeld esls ol el a8 5 13 580 oy 9,50 5SS oxBly 4 cols S (s,
S35 2 pelinne 9 (55 (Jlgie (53l drnd (00,95 90 9 oud ALIS LS S ()l sl ol S sl eols unsl oud gl Eal (sloj ) (s ileiygsly vl B
ey gl az ST ol g (Sl (owsF (Jge (55lodnnt 02 98 53 ol g adgi il a5 wms oo s Lol S s anslio el oad Jlocl 03l o
rSle & 675005 (Silie S e I giloind 05 @l ol ssalie BB LSy sk a oyl 50 2 @l el Tin 0 ]
8lg e g o (gludnnd Jladie G Dlar e 5SSle Y32 sla lurtnd g, 90 5l plaS el lagion S (o (18,5 Hlaise b aitus (6999 (slaodls
95 ke iloand | oS puitns Jlgie ludnnd 0% 5950 8,90 50 Lo ool (3i25 V- + 58l (5 S50 b 00 ik il LS Lo B

Ll

A el S ls i e iltnd (oS e iluted el gaalS ClolS



mailto:sabeti@birjandut.ac.ir

