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 In the recent years, according to the difficulty of accurately measuring parameters 
and demarcation of earth sciences, attempts have been made to simplify the natural 
events for better investigation using geo-modelling. Modeling with intelligent methods 
is one of the new methods that has been considered in this field in the recent years. In 
this work, the intelligent method of adaptive neural-fuzzy inference system (ANFIS) 
is used to predict the elements of lead and zinc located in the Guard Kooh area, north 
of Yazd province in Iran. Descriptive statistics of data and correlation matrices of 
studied elements are obtained using the SPSS software. After the data is standardized, 
imported to the MATLAB software, and the lead and zinc elements are predicted using 
the ANFIS-SCM method. In this method, 70% of the data (175 samples) are set as the 
training data, and the rest (75 samples) are set as the test data, which are randomly 
selected. Using the obtained results, it is found that the grade of the estimated elements 
in the studied area has a good accuracy and a high correlation with the grade of the 
analyzed elements. As a result, the ANFIS-SCM intelligent method is a useful and 
accurate method for estimating the lead and zinc elements. 
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1. Introduction 
A large volume of industrial raw materials is 

minerals, which due to excessive consumption of 
raw materials in the recent years, many industries 
have faced difficulties in supplying their raw 
materials. Minerals have also been transformed 
from high-grade and available materials to low-
grade minerals with limited availability due to high 
consumption in the recent years. 

According to studies, the soils of Iran have low 
zinc concentration, and therefore, most people in 
this country are deficient in zinc in their bodies [1]. 

Traditional methods in the science of mineral 
exploration, in addition to limited capability, cost a 
lot of time and money. In the recent years, the 
human beings have resorted to using methods that 
have achieved the most results with less cost and 
time. Earth sciences are among the sciences in 
which many factors are involved in shaping the 
results. Therefore, instead of trying to surround all 
the factors involved, creating an appropriate model 

that generally reflects the states and relationships 
between these factors, eliminates our need to 
analyze how minerals are formed. Therefore, 
modeling in earth sciences has gained a special 
importance. On the other hand, due to the problems 
and limitations of sampling in earth sciences, the 
traditional modeling methods that require a large 
amount of data are less efficient [2]. 

Of course, it is necessary to mention that the 
modeling methods are used as an auxiliary method 
in any science, and their use is done along with 
study and research, and finally, a definite result 
according to the opinion of the expert. Modeling 
with intelligent methods follows the same rule, and 
it is necessary to examine the relationship between 
different inputs with outputs, numbers, and other 
parameters in each step as an expert. In general, 
this method, like other methods, should be 
considered a tool, and its efficiency depends on 
how it is used. 
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Intelligent methods have been used in different 
sciences for different purposes. In general, in 
problems where the right amount of data is 
available, by selecting the appropriate inputs and 
outputs for model training, it is possible to model 
the desired range. Of course, the intelligent 
methods are generally combined for different 
problems, and by comparing their results, the 
optimal method can be selected [2]. 

Numerous studies have been conducted on the 
application of intelligent methods in the earth 
sciences, among which the following studies can 
be mentioned: Skabar (2003) using artificial feed 
neural network, mineral potential map in southwest 
Victoria, Australia prepared gold exploration. The 
input variables used included the geological, 
geophysical, and geochemical data of the region. 
The potential map obtained from this study was 
significantly improved compared to the previous 
studies using the traditional methods [3]. In another 
study, Fung et al. (2005) have compared different 
artificial neural networks to determine the mineral 
potential. 

Four different artificial neural networks, 
polynomial artificial neural networks, general 
regression artificial neural networks, probabilistic 
artificial neural networks, and post-diffusion 
artificial neural networks were compared. When 
the output interval value was 0, it was considered 
that the general regression artificial neural network 
had the highest efficiency, and the polynomial 
artificial neural networks had the lowest efficiency. 
Finally, the researchers suggested that the 
optimization algorithms such as genetic algorithms 
and fuzzy logic be used when conflicting results 
are obtained from different networks [4]. 

In another study, Leit and Filho (2009) have used 
probabilistic artificial neural networks to map the 
potential of platinum group elements in the Karajas 
region of Brazil. Two potential maps were drawn, 
one of the potential of gold and platinum group 
elements and the other for copper and platinum 
group elements. Gold potential map and platinum 
group elements with three classifications of the 
high, medium, and low potential areas; and the 
potential map of copper and platinum elements 
group were prepared by two classifications of high 
and low potential areas. In the gold potential map 
and platinum group elements, 0.57% of the studied 
area had a high potential and in the copper potential 
map and platinum group elements, 0.17% of the 
areas had a high potential [5]. In another study, 
Wang et al. (2011) using the data from geological 
maps, geological sections, exploratory boreholes, 
gravimetry, and magnetometry, and using methods 

of the fractal, multiple fractals, and probabilistic 
artificial neural networks obtained a 3D geological 
model of the molybdenum, lead, zinc, and silver 
porphyry deposits in the Lanchan region of China. 
In this study, the application of an artificial neural 
model was used to accumulate layers of various 
anomalies including geological and geochemical 
anomalies [6]. 

In one study, Twarakavi et al. (2006) have 
prepared a spatial distribution map of arsenic in a 
gold mine using a support vector machine and at 
least-squares of an advanced support vector 
machine. The analysis showed the results of a 
higher efficiency and a better predictability of the 
support vector machine and at least-squares of the 
strong support vector machine compared to the 
artificial neural network and kriging methods. The 
performance of the support vector machine was 
affected by remote points. Removing remote points 
from the dataset and using a backup vector 
machine improved the results [7]. In another study, 
Abedi et al. (2012) have performed a multi-
classification of the mineral potential areas of 
Nochun porphyry copper located in the Kerman 
province of Iran using a support vector machine. 
The support vector machine method, which is a 
data-driven method of pattern recognition, divided 
twenty-one boreholes into five classes with a 
classification accuracy of 52.38% [8]. 

In another study, Robinson (2000) has used the 
fuzzy logic method to determine the potential of a 
mineral area. Conventional methods classified the 
mineral potential of the region into two classes, 
high potential, and low potential. With this method, 
they also studied the fuzzy logic of vector areas 
with the medium's potential. The data and 
information layers were combined in the GIS 
environment [9]. 

In another study, Abedi et al. (2013) have used a 
hierarchical fuzzy logic method to determine the 
potential of a porphyry copper deposit. Several 
geophysical data obtained from magnetometric and 
electrical methods were used for this purpose. 
Three weights, experts were used to weigh the 
layers of information, and the classification based 
on mineral potential was made using the fuzzy 
logic method. The determination of the accuracy 
and validity of the results was also examined using 
existing drilling results, which showed promising 
results [10]. In another study, Tahmasebi and 
Hezarkhani (2012) have introduced a new method 
for grade estimation. This method was based on an 
artificial neural network and fuzzy logic, which 
was called an emergency neural-fuzzy inference 
system, which was a combination of two methods, 
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artificial neural network and fuzzy logic. The 
combination of these two methods of artificial 
intelligence is achieved through the verbal and 
numerical power of intelligent systems. In order to 
improve the efficiency of this system, a genetic 
algorithm was used as a known method to solve the 
complex optimization problems to optimize the 
network parameters such as learning rate, network 
movement, and the number of membership 
functions for each input. The comparison of these 
methods (artificial neural network, adaptive 
neural-fuzzy inference system) with this new 
method was done through a case study in the 
Songun copper mine, located in East Azerbaijan, 
Iran. The results showed that the new method could 
be a faster and more accurate alternative to the 
existing time-consuming methods for grade 
estimation. Therefore, its use was suggested for 
estimating grades in similar problems [11]. In 
another study, Ziaee et al. (2007) have used a 
combination of the artificial post-diffusion neural 
network model and vertical geochemical zoning to 
separate the hidden ore from the dispersed mineral 
area. With the results obtained from the proposed 
model and exploratory drilling in the area and the 
presence of porphyry copper deposits, the 
efficiency of this model was confirmed [12]. 

Renguang Zuo et al. (2021) have interpreted and 
visualized geochemical exploration data using the 
GIS and machine learning methods. Although 
various methods such as classical statistics, 
multivariate statistics, geostatistics, 
fractal/multifractal models, and machine learning 
algorithms have been successfully used to process 
geochemical exploration data, the efficient 
interpretation and visualization of geo-chemical 
exploration data still support reservoir exploration. 
It is provocative. In this study, a study for 
intelligent interpretation and visualization of 
geochemical exploration data, defined as the 
processing of geo-chemical survey data with the 
support of a Geographic Information System (GIS) 
and machine learning algorithms was proposed in 
the Sichuan Province, China [13]. Tahmoursi et al. 
(2021) have intelligently modeled geo-chemical 
exploration using a multi-class support vector 
machine and have integrated it with a continuous 
genetic algorithm in the Gonabad region, Khorasan 
Razavi, Iran. The results of this study showed that 
these methods could be used for intelligent mineral 
exploration and subsequent determination of 
mineralization zones. The above algorithms are 
applied to avoid wasting time and work, and in 
cases where the sampling result cannot be 
determined directly [14]. Renguang Zuo et al. 

(2021) have dealt with the methods of processing 
geo-chemical exploration data: past, present, and 
future. In this study, we review common methods 
for processing geo-chemical exploration data and 
identifying geo-chemical anomalies associated 
with mineralization. The results showed that in the 
future, deep learning algorithms will become a 
popular technique for geo-chemical data 
exploration and mining-related mining purposes in 
mineral exploration [15]. Guopeng Wu et al. 
(2021) have studied unsupervised machine 
learning for lithological mapping using geo-
chemical data in areas covered by Jining, China. 
This study highlights the ability of unsupervised 
learning to map intelligent lithology in the covered 
areas using the geo-chemical data of major stream 
sediments [16]. Bao-yi Zhang et al. (2021) have 
devised machine learning strategies for classifying 
rock stratigraphy based on geo-chemical sampling 
data (a case study in the Chahanwusu River 
District, Qinghai Province). Classification of rock 
stratigraphy is possible through the concentration 
of geo-chemical elements in sediments, and the 
XGB and LGBM algorithms are recommended for 
rock stratigraphy classification [17]. Ghadiyanloo 
et al. (2021) have identified the goals of porphyry 
copper mineralization in the Chahar Gonbad region 
of the Kerman province using the intelligent 
method of extreme learning. The evaluation of the 
models showed that the areas with high copper 
mineralization potential, which had been identified 
as exploratory targets, were in good agreement 
with the known copper events as well as with the 
characteristics of the geological index. Therefore, 
the goals can be planned for further exploration 
programs [18]. 

Since limited studies have been performed using 
the intelligent methods to investigate the grade of 
lead and zinc elements in the Gerde Kooh area, 
north of Yazd, this study, to predict the grade of 
lead and zinc elements in this area, using the 
method of adaptive neural-fuzzy inference system 
(ANFIS) is discussed. 

2. Study and Sampling Area 
The studied area is located in the north of 

Mehdiabad lead and zinc mine in Yazd and 70 km 
SE of the Yazd city and the closest residential area 
to the area is Gerde Kooh village, which is located 
25 km west of it. The area to be explored, located 
in the SE corner of the 1:100,000 Fahraj sheet, 
includes the 11-sided ABCDEFGHIJK with an 
area of 10 square kilometers, the coordinates of 
which are given in Table 1. 
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Table 1. Coordinates of studied area. 
UTM, WGS84, Zone 40 

No. X Y No. X Y 
A 299050.2 3498675 G 305732.2 3495268.2 
B 300749.6 3498675 H 305594.4 3495210.8 
C 300745.8 3498374 I 304252.4 349465.4 
D 301857.9 3498371.5 J 301584.9 3496202.2 
E 301875.7 3497080 K 299980 349848.2 
F 305873.7 3497079.7  

 
The studied area is located on a series of 

mountains containing the lead and zinc mine of 
Mehdiabad, Yazd, and about half of the area 
consists of heights and the other half consists of 
alluvial plains and low hills. These heights are 
exposed as mountain ranges with a general trend 
northwest-southeast. These outcrops are composed 
of Cretaceous rocks below the Taft Formation, 
which due to erosion, faulting and folding, have 
formed stigmatic heights and are sometimes 
difficult to cross. These heights are located in the 
central parts of the area. The parts around these 
heights are composed of a sedimentary sequence of 
Sangestan formation, which is characterized by 
special marl erosion and drainage network of 
dendritic waterways and has a milder topography 
than the other parts. Due to the presence of 

calcareous layers in the series of detrital rocks of 
the Sangestan formation and the hardness of these 
rocks than the detrital layers, these layers have 
appeared in a stepped manner on the slope. The 
difference in height between the highest point and 
the lowest point is in the range of about 400 m [19]. 

3. Geology 
The studied area is located in the SE corner of the 

1:100,000 Fahraj sheet. The Fahraj map is located 
in the southern part of the structural zone of Central 
Iran but due to the trend of outcrops and structural 
elements, which show the northwest-southeast and 
the approximate proximity to the Sanandaj-Sirjan 
structural zone, this area may be the impact of the 
Zagros Mountains. 

 
Figure 1. Location of studied area on structural division map of Iran [19]. 
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In order to identify the rock units and also to 
investigate the possible presence of mineralization 
in different sections, an area of 10 square 
kilometers was identified to prepare a mineral 
geological map with a scale of 1:5,000. Therefore, 
by conducting field surveys, the rock units were 
sampled and mineralized, and also the boundaries 
of stratigraphic and fault units were collected using 
manual GPS. In this regard, a total of 12 samples 
were taken from 8 thin section samples, and from 
4 samples (mineralization and alteration) thin-
polished section was prepared, which are described 
below. 

3.1. Stratigraphic rock units 
Based on field surveys and petrographic studies 

performed on the samples taken in the 1:5,000 
mineral geological map, the exposed rock units in 
the area are divided into two main groups. These 
two groups include Lower Cretaceous sedimentary 
units and Quaternary sediments. 

3.1.1. Lower Cretaceous sedimentary units 
3.1.2. Quaternary sediments  

Lower Cretaceous rocks exposed in this area 
include two formations, Sangestan and Taft. The 
units of the Sangestan formation consist of brown 
sandstones below and thin layers of shale, 
sandstone, siltstone, and olive-green marl 
limestones. They are greenish-grey, and are 
exposed in low sections. The units of the Taft 
formation are mainly composed of limestone and 
dolomitic limestone with nodes and chert bands. 
This formation has formed the high and steep parts 
of the region. Quaternary units in the region also 
mainly consist of young and old alluvial garrisons 
and stream sediments. 

3.1.1.1. Sangestan Formation 
The units of this formation are the oldest 

stratigraphic rock units exposed in the area and are 
mainly exposed in the eastern, northeastern, and 
southern parts. This formation itself consists of two 
separable units in the desired scale, which are 
discussed below. 

A) ࡷs
s Unit  

This unit is the oldest stratigraphic unit in the 
area to be explored and consists of a sandstone unit 
with a thickness of about 400 m consisting of red 
to brown and gray archetypal sandstones. It is seen 
in dark gray to brown desert color. 

 

B) ࡷs
sh Unit  

The rocks of this unit have an outcrop on the unit 
and consist of a period of silty-marl limestone, 
sandstone, shale, and siltstone in olive green to 
grayish-green desert colors. This unit is manifested 
in the form of eroded outcrops and sometimes in 
the form of marl erosion. 

The layers of this unit have a general trend of 
northwest-southeast and have a slope of about 15 
to 30 degrees to the west-southwest and in some 
parts, there are wrinkles. This unit is visible only in 
the northeastern half and in the southwestern half, 
it has gone under the sandstones of the Sangestan 
formation by a large normal fault. The border of 
this unit with the lower and upper units is gradual 
and continuous. The average thickness of this unit 
is about 90 m. 

3.1.1.2. Taft formation 

Taft formation in this area consists of two units, 
the lower unit has a continuous border with the 
upper unit of the Sangestan Formation. 

The youngest exposed rock unit in the area also 
consists of dolomitic rock-forming limestones that 
have created difficult-to-cross heights. 

A) ࢒࢚ࡷ૛ unit  

This unit is continuously located on the green 
limestone-marl unit of Sangestan formation in the 
explored area and its distinguishing feature is the 
color, type of erosion, and nap bands. The 
mentioned unit consists of alternating from thin to 
medium layers of limestone and dolomitic 
limestone in gray to cream color. Has been. 

B) ࢒࢚ࡷ
1 unit  

This unit has formed the youngest rock outcrops 
in the studied area, and is composed of cream to 
light gray dolomitic reef-karst limestones that due 
to the presence of numerous karsts in the desert 
facade in the form of honeycombs has appeared. 
No special layering is observed in them, and it is 
more visible in the form of masses. 

Its border with its lower unit is quite significant 
in most parts but in some parts, it can be seen 
gradually and continuously with unit 2݈ݐܭ. 

This unit is located in the southeastern part due 
to the operation of a large normal fault, next to the 
lower unit of the Sangestan formation (ݏݏܭ). 

3.1.2. Quaternary units 
Quaternary units in the area, referred to as young 

deposits, actually include alluvial plains, river 
sediments, debris, and rock blocks that have fallen 
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on the slopes. In the following, the mentioned units 
are described separately. 

A) Q࢚
1 unit  

This unit consists of alluvial barracks consisting 
of old unhardened sediments, which with relatively 
horizontal layering extend only in a few small parts 
of the studied area, and are mainly deposited in the 
higher parts of the plains. 

B) Qt2 unit  

This unit includes young alluvial barracks and 
floodplains that are spread in the lower parts of the 

plain and consists of unhardened layers and clay 
and silty sediments that cover a large part of the 
studied area, and include parts with different sizes 
are older units. 

C) Q࢒ࢇ unit  

This unit consists of the present-day river 
sediments, and consists of a collection of detached 
sediments to gravel along with soil and gravel 
particles from river streams within large and small 
waterways of the region. They have an outlook. 

 
Figure 2. Mineral-structural geological map 1:5000 area. 

4. Mineralization in Studied Area 
Mineralization occurs in two parts, one is silicate 

mineralization on the openings and karst cavities of 
dolomitic limestones of Taft formation and the 
other is part mineralization with gallons inside 
sandstone and shale Sangestan and Taft 
formations. 

5. Alteration 
Among the observed alterations in the studied 

area are dolomitization and silicification. The 
process of dolomitization in the Taft formation is 
abundantly visible and the effect of this process has 
created caves and karst cavities. 

Another alteration seen in this range is iron oxide 
and hydroxide alteration, which is affected by the 
performance of ferrule waters, anchorite dolomites, 
and forms an iron-rich zone. This iron-rich reddish-
yellow area is mainly found in fault zones. This 
alteration is not very large, and its intensity is very 
weak. 

6. Field Operations, Geochemical Sampling, 
and Chemical Analysis 

In this area, about 20 samples were designed and 
collected per square kilometer. The sampling 
network is less located in the main basins, and the 
location of the samples is closer to the tributaries 
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of waterways. Except for the above, it has been 
tried to have approximately the same distribution 
of geo-chemical samples. The weight of the sample 
was about 300 g to 500 g, which was collected 
using an 80-mesh sieve. In total, 250 geo-chemical 
samples have been collected in this project. 

The samples are taken after initial 
homogenization at a weight of about 20 g for 
analysis of samples by the ICP method. In the geo-
chemical exploration plan of the studied area, the 
geo-chemical samples were transferred to the 
Zarazma Company for analysis. 

 
Figure 3. Location of samples taken. 

7. Analysis of Comparative Neural-Fuzzy 
Inference System (ANFIS) Method 

The combination of the fuzzy logic and artificial 
neural networks leads to the creation of a fuzzy 
neural system that has the advantages of both fuzzy 
systems and artificial neural networks [20, 21]. In 
other words, a fuzzy neural system is a fuzzy 
system that uses a training instruction processed 
from a training algorithm derived from or inspired 
by the artificial neural network theory to determine 
its parameters (fuzzy sets and rules). The function 
of neural networks is directly related to the number 
and quantity of educational data [22], so when the 
number of educational data is small, the results of 
artificial neural networks are not very reliable. In 
such cases, the combination of artificial neural 
networks and fuzzy logic improves the 
performance of the artificial neural network system 
and acceptable results [23]. 

The neural fuzzy adaptive inference system was 
introduced, a fuzzy inference system whose 

membership function parameters are modified by 
the post-diffusion method alone or in combination 
with the least-squares method [24]. In this research 
work, an ANFIS model has been used to identify 
the membership functions, which is: reduction 
clustering method, which is provided in the 
following brief description of this model. 

7.1. Decreasing clustering 
The reduction clustering method has been 

proposed by Chiu [25], where the data is 
considered the candidates for the cluster center. 
This method is as follows: 

First, a set of n data points  1 2 3, , ,..., nX X X X  in 
the next M space is considered. Since each data is 
a candidate for the cluster center, the density 

measurement iX  is defined at the following point: 
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(1) 

where ar  is a positive constant. A data point will 
reach a high density if there are many points in the 

neighborhood. Defines the ar  radius of a 
neighborhood; The data points outside this radius 
are of little help in measuring the density. After 
measuring the density of each data point, the data 
point with the highest density measurement is 

selected as the center of the first cluster. If 1cX  is 

the point selected and 1cD  measured its density, 
the density measurements for each data point are as 
follows: 

 

(2) 

where br  is a positive constant. After calculating 

the density for each data point, it was revised, 2cX  
was selected in the next cluster center, and all 
density calculations for the data were revised. This 
process continued as long as it produced a 
sufficient number of cluster centers. The reduction 
clustering algorithm is an attractive method for 
combining networks of multi-output adaptive 
neural-fuzzy inference systems, which 
automatically estimate the number of clusters and 
the location of their clusters. In the reduction 
clustering algorithm, each sample point is seen as 
the center of the potential cluster. Using the 
reduction clustering algorithm, the data center, 
cluster determines the number of reduction centers 
to automatically generate membership functions, 
rules, as well as membership functions. 

8. Results and Discussion 
The grade of some elements was analyzed, and 

the statistical indices of these elements in heavy 
water and mineral sediments are shown in Tables 2 
and 3, respectively. 

The expectation of a geochemist working on a 
regional scale is to have normal log communities 
with positive skewness because these 
communities’ high values with low frequencies can 
represent an economic potential. 

The results of element analysis show that the rate 
of change of mercury (Ag) elements between 0.45 
ppm and 0.45 ppm, aluminum (Al) between 60917 
ppm and 37919 ppm, the amount of arsenic (As) 
between 14.40 ppm and 40.40 ppm, the amount of 
change in barium (Ba) is between 377 ppm and 251 
ppm, the change in beryllium (Ba) is between 0.50 
ppm and 0.00 ppm, and the change in calcium (Ca) 
is between 0.99632 ppm and 0.00 ppm. In the case 
of cadmium (Cd), it is observed that the amount of 
this element varies between 0.38 ppm and 0.24 
ppm and cerium (Ce) between 49.00 ppm and 
33.00. The range of changes in cobalt (Co) is 
between 17.00 ppm and 9.00 ppm, chromium (Cr) 
is between 8073 ppm and 00.00 ppm, and copper 
(Cu) is between 19.00 ppm and 41.00 ppm. Iron 
(Fe) between 00/38684 ppm and 00/20129 ppm, 
potassium (K) between ppm 00/17874-00/10865, 
lanthanum (La) between 00/26- 00/17, lithium (Li) 
between ppm 00/33-19.00, magnesium (Mg) 
between 0.0000/20000 ppm, manganese (Mn) 
between 0.800/814/009 ppm, molybdenum (Mo) 
between 0.65 ppm and 65.95 ppm, sodium (Na) 
between 14611-5855 ppm, nickel (Ni) between 
ppm 00/64-00/39 ppm, phosphorus (P) between 
00/673-00/314 ppm, lead (Pb) between 00/40-
00/15 ppm, sulfur (S) between 007-7654/006/006 
ppm, antimony (Sb) between 1.29/1/79, scandium 
(Sc) between 10/11- 30/30 ppm, zinc (Zn) between 
ppm 00 /129-00/47 is variable. Strontium (Sr) 
between 0012-612/006 ppm, thorium (Th) between 
11/10-20/7 ppm, titanium (Ti) between 4130-
00/2289 ppm, uranium (U) between 30/0.00-16 
ppm, vanadium (V) varies between 541.00/121.00 
ppm, yttrium (Y) varies between 10.00-100.00 
ppm, ytterbium (Yb) varies between 1.00/1/50 
ppm, and zirconium (Zr) varies between 35.00/66-
00 ppm.  

Examination of skewness and elongation values 
of raw data of different elements showed that the 
highest skewness and elongation were related to 
sulfur (S) with values of 10.379 and 110.752, 
respectively. Also the lowest values of skewness 
and elongation of raw data are related to the 
element beryllium (Be) and lanthanum (La) with 
values of -3.687 and -0.598, respectively. 
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Table 2. Results of some of elements analyzed in present study. 
sample 

elements  1 2 3 4 5 6 7 

Ag (ppm) 0.22 0.27 0.26 0.26 0.29 0.23 0.26 
Al (ppm) 41615 41398 43549 42098 38337 38368 40803 
As (ppm) 10.1 13.5 9.9 8.9 10.2 7.2 7.7 
Ba (ppm) 329 377 339 355 344 324 321 
Be (ppm) 1.1 1 1.1 1 <1 1 1 
Ca (ppm) 78806 82771 86391 88435 91647 80590 78333 
Cd (ppm) 0.29 0.38 0.26 0.29 0.29 0.31 0.3 
Ce (ppm) 45 47 45 43 44 39 37 
Co (ppm) 13 17 14 12 14 10 9 
Cr (ppm) 479 349 405 137 82 159 123 
Cu (ppm) 27 26 22 21 21 22 22 
Fe (ppm) 32710 27954 28537 22759 21682 25221 23402 
K (ppm) 13007 12199 11157 12447 13156 14315 14529 
La (ppm) 24 23 23 20 19 24 22 
Li (ppm) 24 21 20 22 22 25 25 
Mg (ppm) 14484 13780 13152 14076 13856 15166 14593 
Mn (ppm) 716 668 726 560 538 596 556 
Mo (ppm) 0.77 0.85 0.84 0.83 0.73 0.79 0.75 
Na (ppm) 1169 11639 11179 10790 11194 10585 9827 
Ni (ppm) 51 46 46 41 44 49 46 
P (ppm) 390 391 378 390 392 465 445 

Pb (ppm) 23 27 29 19 19 24 24 
S (ppm) 248 271 252 244 230 254 310 

Sb (ppm) 1.11 1.01 1.11 1.16 0.85 0.96 1.06 
Sc (ppm) 8.4 7.6 7.5 6.6 6.7 7.8 7.4 
Zn (ppm) 44 40 39 44 44 54 55 

Table 3. Statistical indicators of the elements of studied area. 

Kurtosis Skewness Standard 
deviation 

Arithmetic 
Average Minimum Maximum Statistical index 

Elements  

1.563 0.851 0.038 0.26 0.19 0.45 Ag (ppm) 
0.913 0.837 4002.2524 46273.9560 37919 60917 Al (ppm) 
5.475 1.163 1.05 8.9200 6.40 14.40 As (ppm) 
1.140 -0.500 1.23 313.5640 251 377 Ba (ppm) 
16.487 -3.687 0.22 1.09 0.00 1.50 Be (ppm) 
7.050 -2.869 24235.65596 81601.74 0.00 99632 Ca (ppm) 
1.453 0.464 0.019 0.29 0.24 0.38 Cd (ppm) 
-0.140 0.332 2.95 40.62 33.00 49.00 Ce (ppm) 
3.794 0.999 1.05 11.42 9.00 17.00 Co (ppm) 
36.563 4.608 91.94 180.78 80.00 1073.00 Cr (ppm) 
5.065 1.708 2.92 24.80 19.00 41.00 Cu (ppm) 
8.625 1.732 2026.09 25262.59 20129.00 38684.00 Fe (ppm) 
0.816 0.665 1177.55 13775.37 10865.00 17874.00 K (ppm) 
-0.598 0.136 1.66 21.32 17.00 26.00 La (ppm) 
0.866 0.606 2.34 24.60 19.00 33.00 Li (ppm) 
-0.208 -1.277 7388.24 13822.86 0.00 20000.00 Mg (ppm) 
2.409 1.501 55.36 600.63 509.00 814.00 Mn (ppm) 
0.428 0.357 0.05056 0.7678 0.65 0.95 Mo (ppm) 
2.063 -0.584 1413.0089 11123.1920 14611 0.5855 Na (ppm) 
-0.081 -0.365 4.80 53.50 39.00 64.00 Ni (ppm) 
3.464 0.765 42.14 439.13 314.00 673.00 P (ppm) 
15.356 2.389 2.46 20.53 15.00 40.00 Pb (ppm) 

110.752 10.379 668.82 341.36 176.00 7654.00 S (ppm) 
0.734 0.541 0.08 0.98 0.79 1.29 Sb (ppm) 
0.258 0.255 0.58 7.97 6.30 10.10 Sc (ppm) 
14.923 3.183 8.24 62.71 47.00 129.00 Zn (ppm) 
0.656 0.076 51.81 301.25 204.00 612.00 Sr (ppm) 
2.869 0.975 0.55 8.94 7.20 11.10 Th (ppm) 
1.597 -0.819 261.96 2857.94 2289.00 4130.00 Ti (ppm) 
10.176 1.960 3.15 8.83 0.00 16.30 U (ppm) 
-0.021 0.003 7.46 70.37 54.00 121.00 V (ppm) 
0.221 -0.046 0.72 12.08 10.00 14.00 Y (ppm) 
21.542 3.384 0.0779 1.27 1.00 1.50 Yb (ppm) 
1.239 0.599 4.44 48.18 35.00 66.00 Zr (ppm) 
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8.1. Prediction of lead and zinc elements using 
ANFIS model 

After data processing, the correlation between 
the elements was evaluated using the correlation 
matrix prepared by the Pearson method in the SPSS 
software. According to the purpose of the study 
(prediction of the lead and zinc elements), we 
selected the elements that had the highest 
correlation with the lead and zinc elements as the 
input to the model. According to the correlation 
matrix, specified, the elements were found to be 
aluminum (Al), arsenic (As), barium (Ba), 
cadmium (Cd), cerium (Ce), cobalt (Co), 
chromium (Cr), copper (Cu), iron (Fe), lanthanum 
(La), manganese (Mn), molybdenum (Mo), sodium 
(Na), phosphorus (P), sulfur (S), scandium (Sc), 
thorium (Th), titanium (Ti), vanadium (V), yttrium 
(Y), yttrium (Yb), zinc (Zn) have the highest 
correlation with lead (Pb) compared to the other 

available elements. It was also found that the 
elements aluminum (Al), arsenic (As), barium 
(Ba), beryllium (Be), cadmium (Cd), cerium (Ce), 
cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), 
potassium (K), lanthanum (La), lithium (Li), 
manganese (Mn), nickel (Ni), phosphorus (P), lead 
(Pb), scandium (Sc), thorium (Th), titanium (Ti), 
vanadium (V), yttrium (Y), yttrium (Yb) have the 
highest correlation with zinc (Zn) compared to the 
other available elements. Some results of the 
correlation matrix between the elements are given 
in Table 4. As shown in the correlation table, a 
good correlation is observed between the metal 
elements and the lead and zinc deposits, which can 
be an indication of the possible mineralization of 
lead and zinc in the carbonate type. The total 
number of geo-chemical data was 250, of which 
70% of the data (175 data) were randomly selected 
as the training data and 30% of the data (75 data) 
as the test data. 

Table 4. Some results of correlation matrix between analyzed elements 
 Ag Al As Ba Be Ca Cd Ce Co Cr Cu Fe K 

Ag 1 -0.046 -0.004 -0.123 0.061 0.038 0.021 0.030 0.047 0.022 0.044 0.057 0.059 
Al -0.046 1 0.374** 0.248** **0.534 -0.081 0.048 0.409** 0.471** -0.174** 0.358** 0.337** 0.676** 
As -0.004 0.374** 1 0.102 0.227** -0.007 0.037 0.340** 0.506** 0.285** 0.246** 0.462** 0.266** 
Ba -0.123 0.248** 0.102 1 0.170** 0.109 0.477** 0.223** 0.104 0.284** 0.266** 0.252** 0.364** 
Be 0.061 0.534** 0.227** 0.170** 1 0.244** 0.042 0.391** 0.309** -0.213** 0.299** 0.275** 0.666** 
Ca 0.038 -0.081 -0.007 0.109 0.244** 1 0.080 -0.003 -0.004 -0.074 0.059 0.013 0.104 
Cd 0.021 0.048 0.037 0.223** 0.042 0.080 1 0.010 0.131* 0.103 0.115 0.114 -0.040 
Ce 0.030 0.409** 0.340** 0.104 0.391** -0.003 0.010 1 0.622** 0.231** 0.215** 0.637** 0.628** 
Co 0.047 0.471** 0.506** 0.284** 0.309** -0.004 1.31* 0.622** 1 0.541** 0.363** 0.885** 0.396** 
Cr 0.022 -0.174** 0.285** 0.266** -0.213** -0.074 0.103 0.231** 0.541** 1 0.066 0.676** -0.321** 
Cu 0.044 0.358** 0.246** 0.252** 0.299** 0.059 0.115 0.215** 0.363** 0.066 1 0.344** 0.240** 
Fe 0.057 0.337** 0.462** 0.364** 0.275** 0.013 0.114 0.637** 0.885** 0.676** 0.344** 1 0.317** 
K 0.059 0.676** 0.266** -0.012 0.666** 0.104 -0.040 0.628** 0.396** -0.321** 0.240** 0.317** 1 

 
8. 1.1. Data standardization 

For the data to enter the adaptive neural-fuzzy 
inference system, it is necessary for the range of 
data changes to be similar to each other, which is 
called data standardization. Data standardization 
for logging into the adaptive neural-fuzzy 
inference system was also performed by Equation 
(3), which places the range of inputs in the range (-
1.1). 

௡݌ = 2
݌ − ௠௜௡݌

௠௔௫݌ − ௠௜௡݌
− 1 (3) 

wherein: 

௡݌  : Standardized parameter; 
 ;True parameter :  ݌
 ;௠௔௫ : Maximum real parameter݌
௠௜௡݌  :  Minimum real parameters [26, 27]. 

8.1.2. Model performance evaluation criteria 

In order to evaluate the performance of the model, 
two indicators were used, the relationships of 
which are as follows: 

ܴଶ = 1 −
∑ ௜ݕ) − ௜ᇱ)ଶ௡ݕ
௜ୀଵ

∑ ௜ଶ௡ݕ
௜ୀଵ −

∑ ௜ᇱݕ
ଶ௡

௜ୀଵ
݊

 (4) 

ܧܵܯ =
1
݊
෍(ݕ௜ − ௜ᇱ)ଶݕ
௡

௜ୀଵ

 (5) 

where: 

 ௜ : Measured value andݕ

௜ݕ
ᇱ : Predicted value. 
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The criterion ܴଶ  indicates the correspondence 
between the measured and predicted values, which 
in the best case will be 1 and in the worst case - 1. 

The MSE criteria also indicate an error between 
the measured and predicted values, and the lower 
the value, the more reliable the model performance. 

8.1.3. Results obtained from ANFIS-SCM 
model 

In this research work, the training and testing of 
the ANFIS-SCM model for the dataset were 
performed. The results obtained from the model are 
shown in Tables 5 and 6. As it can be seen in these 
tables, the ANFIS-SCM method is associated with 
high a reliability and accuracy in predicting the 
grade of the lead and zinc elements. 

Figures 3 and 6 show the correlation between the 
measured and predicted values in the training and 
test dataset for the ANFIS-SCM model. In 
addition, the comparison between the measured 
and predicted values of Pb and Zn by ANFIS-
SCM  in the test and training stages is shown in 
Figures 4, 5, 7, and 8, which are due to correlation. 
The above is matched. The results obtained 
indicate that the ANFIS-SCM model has a high 
capability in estimating the lead and zinc elements 
using a set of input elements, and can be used 
optimally for other projects with similar 
conditions. 

 
 

Table 5. Comparison between results of ANFIS-
SCM model for training and test dataset (Pb). 

Data collection ࡾ૛ ࡱࡿࡹ 
Pb 

(ANFIS-SCM) 
Train 0.9899 0.00045 
Test 0.8399 0.0039 

Table 6. Comparison between results of the ANFIS-
SCM model for training and test dataset (Zn). 

Data collection ࡾ૛ ࡱࡿࡹ 
Zn  

(ANFIS-SCM) 
Train 0.989 0.00042 
Test 0.8607 0.00884 

 

  
(a) (b) 

Figure 4. Correlation between measured and predicted values in training dataset (A), test (B) (ANFIS-SCM) 
(Pb). 

 
Figure 5. Graph of measured and predicted values in training dataset (ANFIS-SCM) (Pb). 
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Figure 6. Graph of measured and predicted values in test dataset (ANFIS-SCM) (Pb). 

  
(a) (b) 

Figure 7. Correlation between measured and predicted values in training dataset (A), test (B) (ANFIS-SCM) 
(Zn). 

 
Figure 8. Graph of measured and predicted values in training dataset (ANFIS-SCM) (Zn). 

 
Figure 9. Graph of measured and predicted values in test dataset (ANFIS-SCM) (Zn). 
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Figure 10. Map of lead element anomalies using stream sediment data in studied area. 

 
Figure 11. Map of zinc element anomalies using stream sediment data in studied area. 

9. Conclusions 

Based on the results of data analysis, pre-
processing, and preparation of the correlation table 
between elements using correlation matrix that was 
prepared in SPSS software, and Pearson method, 
after standardization, the data was entered into the 
MATLAB environment, and the grade of the lead 

and zinc elements was predicted using the ANFIS-
SCM method. While 70% of the data (175 samples) 
for the training dataset and 30% of the data (75 
samples) for the test dataset were randomly 
selected, for the ANFIS-SCM model training 
dataset, for each one of the elements, the desired 
values of R2, MSE, were obtained as follows: lead 
(R2 = 0.989, MSE = 0.00045), zinc (R2 = 0.989, 
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MSE = 0.00042), as well as for the ANFIS model 
test dataset. The SCM Lead values (R2 = 0.8999, 
MSE = 0.0039), zinc (R2 = 0.8607, MSE = 0.884) 
were obtained. Using the results obtained from this 
model, it was found that the grade of the estimated 
elements in the studied area had a good accuracy 
and a high correlation with the measured values. As 
a result, the ANFIS-SCM intelligent method is a 
useful and accurate method for estimating the lead 
and zinc elements. 
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  چکیده:

 یررسب يبرا یعیوقایع طب ،سازيبر آن شده است که با استفاده از مدل یسع راخی سال چند در ها،آن يو مرزبند امترهاپار قیدق يرگیدشوار بودن اندازه لیبه دل
مطالعه،  نیدر این حوزه مورد توجه قرار گرفته است. در ا ریاخ انیاست که در سال يجدید هايهوشمند از جمله روش هايبا روش سازيبهتر، ساده گردند. مدل

مورد استفاده قرار گرفته  زد،یواقع در منطقه گرده کوه، شمال  يعناصر سرب و رو ینبیشی)، در پANFIS( یقیتطب يفاز -یاستنتاج عصب ستمیس شمندروش هو
- استاندارد از پس هاداده ق،یتحق نیبدست آمد. جهت انجام ا SPSS افزار نرم از استفاده با مطالعه مورد عناصر همبستگی ماتریس و هاداده توصیفی رهاياست. آما

 مجموعه براي) نمونه 175( هادرصد داده 70روش  نیردید. در اگ بینیپیش ي، عناصر سرب و روANFIS-SCM روش از استفاده با و شده متلب محیط وارد سازي،
 که شد مشخص مدل، این از آمده دست به نتایج از استفاده با. شدند انتخاب تصادفی طور به آزمون داده مجموعه براي) نمونه 75( هاداده درصد 30 و آموزش داده

شده برخوردار بوده است. در نتیجه  زیعناصر آنال اریبسیار خوب و همبستگی بالایی نسبت به ع یمورد بررسی از دقت يعناصر تخمین زده شده در محدوده ارعی
 . باشدمی يو دقیق جهت تخمین عناصر سرب و رو دیروشی مف ANFIS-SCMروش هوشمند 

  .زدیشمال  ،يو رو، عناصر سرب ANFIS-SCM ن،یعلوم زم کلمات کلیدي:
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