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 Mining Method Selection (MMS) is the first and the most critical problem in mine 
design, and depends on some parameters such as the geo-technical and geological 
features and economic factors. The factors affecting MMS are determined by some 
mining experts, and the most suitable mining method is selected using the hesitant 
fuzzy group decision-making (HFGDM) and technique for order performance by 
similarity to the ideal solution (TOPSIS) method. These factors include the type of 
deposit, slope of deposit, thickness of orebody, depth below the surface, grade 
distribution, hanging wall Rock Mass Rating (RMR), footwall RMR, ore body RMR, 
recovery, capital cost, mining cost, annual productivity, and environmental impact. 
Firstly, we propose the group decision-making (GDM) method to determine the 
weights of multi-attributes based on the score function with the decision-makers’ 
weights, in which the n-dimensional hesitant fuzzy environment take the form of 
hesitant fuzzy sets (HFS). Then we calculate the weights of these factors using the 
HFGDM method. A simple case study is also presented in order to illustrate the 
competence of this method. Here, we compare the seven mining methods for an 
Apatite mine, and select the optimal mining method using the TOPSIS method. 
Finally, the sub-level stope mining method is selected as the most suitable method to 
this mine. 

Keywords 
Mining method selection 
Hesitant fuzzy group decision-
making 
Technique for order 
performance by similarity to 
ideal solution 
Hesitant fuzzy sets 

 

1. Introduction 

Mining method selection (MMS) is one of the 
most critical and problematic activities of mining 
engineering because the accuracy of choosing the 
process greatly affects its economic potential, and 
any mistake in decision-making imposes some 
irreparable finance to the owners [1]. The ultimate 
goals of the mining method selection are 
maximizing the company’s profit and recovery of 
the mineral resources, and also providing a safe 
environment for the miners by selecting the 
suitable method with the least problems among the 

feasible alternatives. Selection of an appropriate 
mining method is a complex task that requires 
consideration of many technical, economic, social, 
and historical factors. The appropriate mining 
method is the method that is technically feasible for 
the ore geometry and ground conditions, while also 
being a low-cost operation. There is no single 
appropriate mining method for a deposit. Usually 
two or more feasible mining methods are possible 
in mines. Each method entails some inherent 
problems. Consequently, the optimal mining 
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method is one that offers the least problems in the 
mine. The approach of adopting the same mining 
method as that the neighboring operation is not 
always appropriate. However, this does not mean 
that one cannot learn from comparing mining plans 
of existing operations in the same district or of 
similar deposits. Each orebody is unique with its 
own properties, and engineering judgment has a 
great effect on the decision in such a versatile work 
like mining. Therefore, it seems clear that only 
experienced engineers who have improved his 
experience by working in several mines and 
gaining skills in different methods can make a 
logical decision about the mining method selection. 
Although experience and engineering judgment 
still provide a major input into the selection of a 
mining method, subtle differences in the 
characteristics of each deposit can usually be 
perceived only through a detailed analysis of the 
available data. 

It becomes the responsibility of the geologists 
and engineers to work together to ensure that all 
factors are considered in the mining method 
selection process. One of the common techniques 
to select the optimal mining method is the 
Analytical Hierarchy Process (AHP). AHP is a 
widely used multiple criteria decision-making tool, 
firstly proposed by Saaty [2]. The traditional AHP 
method is problematic in that it uses an exact value 
to express the decision-maker’s opinion in a 
comparison of alternatives. Especially, the AHP 
method is often criticized due to its use of 
unbalanced scale of judgments and its inability to 
adequately handle the inherent uncertainty and 
imprecision in the pair-wise comparison process 
[3]. Ataei et al. [4] have used the analytic hierarchy 
process to choose the best mining method. 
Jamshidi et al. [5] have applied the analytic 
hierarchy process to choose the optimal 

underground mining method in the Jajarm bauxite 
mine. Bitarafan and Ataei [6] have selected an 
appropriate mining method in anomaly No. 3 of the 
Gol-Gohar iron mine using fuzzy multiple attribute 
decision-making method. Naghedehi et al. [7] have 
suggested the fuzzy AHP (FAHP) method for 
selection of a suitable mining method for Bauxite 
ore deposit in Iran. 

Dehghani et al. [1] have chosen the most optimal 
mining method in the Gol-Gohar mine using the 
Grey and TODIM (an acronym in Portuguese, i.e. 
Tomada de Decisão Interativa Multicritério) 
decision-making techniques. Namin et al. [8] have 
proposed a new model to select the mining method 
based on the fuzzy TOPSIS. Samimi Namin et al. 
[9] have investigated the application of several 
decision-making techniques such as AHP, 
TOPSIS, and PROMETHEE to select an 
appropriate mining method in Iran. Also 
Bogdanovic et al. [10] have applied the 
PROMETHEE and analytic hierarchy process 
methods to determine an appropriate mining 
method in the Coka Marin mine in Serbia. Azadeh 
et al. [11] have presented a new method to select a 
mining method based on the improved Nicholas 
technique. Ataei et al. [12] have applied the Monte 
Carlo analytic hierarchy process method to select 
the best mining method in the Jajarm bauxite mine. 
Gelvez et al. [13] have used the analytic hierarchy 
process and the VIKOR methods to choose the 
optimal mining method in the coal mine in 
Colombia. Besides, Karimnia and Bagloo [14] 
have applied the analytical hierarchy process to 
choose the optimal extraction method in a salt mine 
in Iran. Yavuz [15] has used the AHP method to 
choose a suitable underground mining method for 
a lignite mine located in Istanbul. Chen et al. [16] 
have compared the results of the TOPSIS method 
with those for the AHP-VICOR method in the 
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mining method selection problems. The results of 
this work showed that the proposed model could 
predict a mining method with more precision. Ataei 
et al. [17] have also used TOPSIS to do the same 
for the Jajarm mine in Iran. Nourali et al. [18] have 
used a Hierarchical Preference Voting System 
(HPVS) for the MMS problem that uses a Data 
Envelopment Analysis (DEA) model to produce 
weights associated with each ranking place. 

However, the aforementioned operators and 
methods have some drawbacks as follow: An 
important topic in hesitant fuzzy group decision-
making (HFGDM) problems is how to determine 
the weights of both attributes and decision-makers. 
All the aforementioned operators and methods only 
consider the situations where the attribute weights 
are completely known or partially known, and the 
decision-makers’ weights are completely known. 
Furthermore, these weight vectors are provided by 
the decision-makers in advance, and therefore, are 
more or less subjective and insufficient. 

Recently, some studies have been devoted to 
address this issue, and developed some completely 
unknown weight generation processes within the 
hesitant fuzzy environment. Hu et al. [19] have 
constructed the entropy weight model to determine 
the attributes weights based on the proposed 
entropy measures. Liu et al. [20] have taken 
advantage of the linear programming technique for 
multi-dimensional analysis of preference 
(LINMAP) to determine the attribute weights 
objectively in the hesitant fuzzy multiple attribute 
decision-making. Xu and Zhang [21] have 
established an optimization model based on the 
maximizing deviation method to determine the 
optimal relative weights of attributes under hesitant 
fuzzy environment. However, the above-
mentioned weight generation methods only 
investigated multi-attributes single person 

decision-making with hesitant fuzzy information, 
and did not consider multi-criteria group decision-
making (MCGDM) with hesitant fuzzy 
information. In addition, in a MCGDM with 
hesitant fuzzy information, because the experts 
have their own inherent value systems and 
consideration, and thus the disagreement among 
the experts are inevitable, in such a case, consensus 
turns out to be very important in group decision-
making. The existing weight generation methods in 
Refs. [19-21] did not consider any consensus issue. 

To address this issue, Zhang [22] has developed 
two non-linear optimization models for MCGDM 
problems with hesitant fuzzy information, one 
minimizing the divergence among the individual 
hesitant fuzzy decision matrices, and the other 
minimizing the divergence between each 
individual hesitant fuzzy decision matrix and the 
collective hesitant fuzzy decision matrix, from 
which two exact formulae were obtained to derive 
the decision-makers’ weights and attributes, 
respectively. However, the operation and the 
methods in [22] did not consider that the decision-
makers’ weights mutually differed because the 
decision-makers had their own inherent value 
systems and consideration, and the weights of the 
attributes were related to the number of the 
decision-makers, and they decreased the 
computational complexity than the existing 
weighting methods in Refs. [19-21] but they 
increased the computational complexity in 
practical applications. 

To address this issue, in this paper, we define n-
dimensional hesitant fuzzy environment on number 
of the decision-makers, and develop the methods to 
determine the decision-makers’ weights for each 
attribute and set of whole attributes based on 
simple average operation. Then we calculate the 
weights of the attributes based on the score 
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function for each attribute and set of whole 
attributes with the decision-makers’ weights, and 
we chose the optimal mining method in the apatite 
mine using TOPSIS decision-making technique. 
The main advantages of these methods in relation 
to the other prevalent methods are to apply the 
distance numbers, to consider the intensity of 
criteria changes, and high accuracy in decision-
making. The outcome of such decision-making 
systems is to obtain the best results in the light of 
considering all the technical, economic, and safety 
criteria. 

2. Methodology 
2.1. HFGDM method 
2.1.1. Hesitant fuzzy sets (HFS) 

Torra [23] has proposed the notion of hesitant 
fuzzy sets to manage the situations in which several 
numerical values are possible for the definition of 
the membership of an element to a given set. 

Definition 1. [23] Given a fixed set X, then a 
hesitant fuzzy set (HFS) on X is in terms of a 
function that when applied to X returns a subset of 
[0, 1]. 

To be easily understood, Xia and Xu [24], 
express HFS by mathematical symbol: 

)｜)(,( XxxhxE E   (1) 

where )(xhE  is a set of some values in [0, 1], 

denoting the possible membership degree of the 
element x∈X to the set E. For convenience, Xia and 
Xu [24] have called )(xhh E  a hesitant fuzzy 

element (HFE), and H the set of all HFEs. 
(ⅰ)   h

ch





1 , 

(ⅱ)  
2211 , 2121 hh

hh





 , 

(ⅲ)  
2211 , 2121 hh

hh





 . 

Xia and Xu [24] have defined the following 
comparison rules for HFEs: 

Definition 2. [24] For a HFE h,   h
Eh

hS  
1)(

is called the score function of h, where hE is the 
number of the elements in h. For two HFEs 1h  and 

2h , if )()( 21 hShS  , then 21 hh  , and if 
)()( 21 hShS  , then 21 hh  . 

2.1.2. Group decision-making methods to 
determine weights of multiple attributes under 
n-dimensional hesitant fuzzy environment 

In this section, we propose the group decision-
making methods to determine the weights of 
multiple attributes in case that the hesitant fuzzy 
environment is given as n-dimensional hesitant 
fuzzy environment by n decision-makers. 

In real practical situations, the decision-makers’ 
hesitant weights for each attribute may differ with 
one another because the decision-makers have 
different experiences and specialties. Therefore, in 
order to determine more reasonable decision-
makers’ weights for set of the whole attributes, it 
should be considered the decision-makers’ hesitant 
weights for each attribute. 

To address this issue, suppose as follow: 

(ⅰ) Importance degrees of the attributes differ 
with one another according to the alternatives. 

(ⅱ) Evaluation levels of the decision-makers for 
set of the whole attributes are related to the 
evaluation levels of the decision-makers for each 
attribute. 

(ⅲ) Attribute weights for some alternatives are 
related to the number of the decision-makers. 

Let  nzzzZ ,,, 21   be a set of the decision 
makers and  mxxxX ,,, 21   be a set of 

attributes (attribute set). 

Let  
njjjj hhhh ,,,

21
  be the hesitant 

evaluation for the importance weights of j-th 
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attribute xj by n decision-makers. Thus hj is an 
element in the n-dimensional hesitant fuzzy 
environment for xj, and  mhhhH ,,, 21   is the set 

of all elements in the n-dimensional hesitant fuzzy 
environment for xj on  mxxxX ,,, 21  . 

According to the n-dimensional hesitant fuzzy 
environment, hj may be an element in n-
dimensional hesitant fuzzy set, n-dimensional 
interval-valued hesitant fuzzy set or n-dimensional 
hesitant triangular fuzzy set. According to the 
opinions of n decision-makers, the values of all 

jkh ; k = 1, 2, …, n may be the same. In case jkh ; 

k = 1, 2, …, n have the same values for j-th attribute 

jx , the hesitant degree for j-th attribute xj is the 
same hesitant degree for jkh . 

In case the decision-makers evaluate the hesitant 
degrees for the attribute differently, we may have a 
single hesitant degree for the attribute as the mean 
of the different hesitant evaluation values. 

It is possible to construct the set of elements in n-
dimensional hesitant fuzzy environment for a 
single attribute according to the number of the 
decision-makers. 

If k-th decision-maker evaluates the hesitant 
degree for j-th attribute jx  as 0.46, 0.5 and 0.58, 

then we can change the hesitant degree into the 
mean value 0.513. 

This main idea is based on that the varied hesitant 
evaluation values of decision-maker should be 
distributed to environs of mean value. 

To determine weights of multiple attributes with 
decision-makers’ weights under n-dimensional 
hesitant fuzzy set, we define the n-dimensional 
hesitant fuzzy set following as: 

Definition 3. Given mapping 
nEh  that when 

applied to attribute set  mxxxX ,,, 21   returns a 

subset of n-dimensional values in [0,1] by set 
 nzzzZ ,,, 21   of decision-makers, then 

mapping 
nEh  determine the n-dimensional hesitant 

fuzzy set (n-DHFS) nE  on X , and we call 
),,2,1(),( mjXxxh jjEn

 a membership 

function of n-DHFS nE . 

To be easily understood, we express n-DHFS by 
the mathematical symbol: 

),,2,1,｜)(,( mjXxxhxE jjEn n
  (2) 

where )(xhE  is a subset of some n-dimensional 

values in [0, 1], denoting the possible membership 

degree of the element Xx j   to the set nE . For 

convenience, we call ),,2,1(,)( mjxhh jEj n
  

element of n-dimensional hesitant fuzzy set (n-
DHFS) for j attribute jx  and nH  the set of all n-

DHFS. 
Let the given element 
  ),,1,,,2,1(]1,0[,,,, 21 nkmjhhhhh kjnjjjj    of a 

n-DHFE for attribute jx  permits duplication of 

jkh  on the attribute set X , where jkh  is related to 

an opinion of k-th decision-maker for j-th attribute 
jx . 

In real situations, the hesitant opinion of the 
decision-makers for j-th attribute jx  may differ 

with one another because the decision-makers may 
come from different fields, and thus have different 
experiences and specialties. Therefore, the 
decision-makers’ weights may differ with one 
another for one attribute. 

We can define the k-th decision-maker’s weight 

for element jh  of n-DHFS for j-th attribute jx  as 

follows: 

),,2,1,,,2,1(,)1(1
1

mjnkhh
n

w
n

l
jkjljk   



 (3) 

where ),,2,1( mjw
kj   is the weight of 

hesitant evaluation level degree of the k-th 
decision-maker to jh . 
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By considering the conditions 0
kjw  and 

),,2,1(1
1

mjw
n

k
kj 



, the k-th decision-maker’s 

weight jkw  to element jh  of a n-DHFS for j-th 
attribute jx  is determined as: 





n

p
jpjkjk www

1
 

),,2,1,,,2,1( mjnk    

If the hesitant evaluation level degrees of the 
decision-makers are all the same, i.e. 

jnjj hhh  21 , then nkw jk ,,2,1;1  . 

The main idea of (3) is that the hesitant 
evaluation level degree for the attribute approach 
to the mean value, the larger the decision-makers’ 
weights for the attribute become. 

Definition 4. The hesitant fuzzy score function 
with the weights to jh  for j-th attribute jx  is 

defined as follows: 

),,2,1(,1)(
1

mjhw
n

hS jk

n

k
kjj  


 (4) 

If the hesitant evaluation level degrees of the 
decision-makers are all the same, i.e. if 

jjnjj hhhh  21 , jj hhS )(  is completed. 

All the aforementioned operators and methods 
only consider the decision-makers’ weights where 
an attribute is fix.  

In real situations, the hesitant opinion of 
decision-makers for each other different attributes 
may differ with one another to the fact that the 
decision-makers may come from different fields, 
and thus have different experiences and specialties. 

Therefore, the decision-makers’ weights for 
every attributes on set of whole attributes may 
differ with one another. 

Then we can define the weights of hesitant 
evaluation level degrees of decision-makers for 

nH  to set  mn hhhH ,, 21  of elements of all n-

dimensional hesitant fuzzy set (n-DHFEs) as 
follows: 

),,2,1(,)(11
1

nkhhS
m

w
m

j
jkjk 











 



 (5) 

Determining a weight kw  of hesitant evaluation 
level degree of decision-maker for nH , jkw  of the 
k-th decision-maker to element jh of n-DHFS for 

j-th attribute jx  0kw  and 



n

k
kw

1
1  might 

satisfy, then ),,2,1(
1

nkwww
n

p
pkk  



 is 

completed. 
Definition 5. Let given set  mn hhhH ,,, 21   of 

all elements of n-dimensional hesitant fuzzy set (n-
DHFEs) on attribute set  mxxxX ,,, 21  . 

We define the hesitant fuzzy score function with 
weights for attributes ),,2,1( mjx j   on nH  as 

follows: 

),,2,1(,1)(
1

mjhw
n

HS jk

n

k
knj  


 (6) 

If so, we can rank the ),,2,1( mjx j   in 

descending order according to the values of 
)( nj HS  ),,2,1( mj  . Then we can decide the 

weights ),,2,1( mjW
jx   of importance degree 

to each attribute on attribute set  mxxxX ,,, 21   

as follow: 





m

j
xx

m

l
nlnjx jjj

WWmjHSHSW
11

10,),,2,1(,)()(   (7) 

2.1.3. Steps of determining weight of multiple 
attributes 

Based on the above analysis, we next develop an 
approach to the GDM problem to determine 
weights of multiple attributes with n-dimensional 
hesitant fuzzy information, which is composed of 
the following steps: 

Step 1. For a GDM problem to determine weights 
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of multiple attributes with n-dimensional hesitant 
fuzzy information, the all decision-makers evaluate 
as hesitant value in [0,1] for each attribute 

),,2,1( mjx j  , and then n-dimensional hesitant 

fuzzy sets ),,2,1( mjh j   constructs for each 
attribute ),,2,1( mjx j  , and determine the set 

 mn hhhH ,,, 21   of all n-DHFEs.  
Step 2. Calculate the weight jkw  of the k-th 

decision-maker to element jh of n-DHFS for j-th 
attribute jx  using Equation (3), so that 

),,2,1(1,0
1

mjww
n

k
kjkj  


 satisfy. 

Step 3. Calculate the hesitant fuzzy score 
function values with weights for attributes jx of 

),,2,1( mjh j   using Equation (4). 

Step 4. Calculate the weights ),,2,1( nkwk   of 

hesitant evaluation level degrees of decision-
makers for nH  using Equation (5), so that 0kw  

and 



n

k
kw

1
1  satisfy. 

Step 5. Calculate the hesitant fuzzy score 
function values with weights for attributes 

),,2,1( mjx j   on nH  by using Equation (6), and 

calculate the weights ),,2,1( mjW
jx   of 

importance degree to each attribute for attribute set 
 mxxxX ,,, 21   using Equation (7). 

2.2. TOPSIS Method 

Technique for ordering preference by similarity 
to an ideal solution (TOPSIS) is a classic Multi 
Attribute Decision Making (MADM) method 
developed by Hwang and Yoon [25]. TOPSIS 
helps the decision-makers develop issues to 
analyze, compare, and rank according to their 
alternate ratings. 

TOPSIS is based on the concept of the closest 
alternative choice of a positive ideal solution (PIS) 

and furthest from the negative ideal solution (NIS). 
The sum of the highest values of each attribute is 
called a positive ideal solution (PIS). The sum of 
the lowest values of each attribute is called the 
negative ideal solution (NIS). Based on a 
comparison of the relative distance of PIS and NIS, 
alternative priority arrangements can be achieved 
[16, 26, 27]. TOPSIS advantages: (1) Human 
choice is represented by logical thinking, (2) The 
concept is simple and easy to understand, (3) The 
computing process can be easily programmed into 
a spreadsheet, (4) Be able to measure the relative 
performance of decision alternatives in simple 
mathematical form [28]. 

TOPSIS method includes six stages for solving 
decision-making problem [23, 29]: 
Step 1: Converting decision-making matrix to a 
normalized matrix using Equation (8): 





m

i
ij

ij
ij

a

a
r

1

2
 

(8) 

whereas i = 1, 2, ..., n; and j = 1, 2, ..., m  

Step 2: Create a normalized weighted decision 
matrix. 

Normalized weighted decision matrix. 

ijxij rwy
j

  (9) 

Step 3: Determines the matrix of positive ideal 
solutions (PIS) and the negative ideal solution 
matrix (NIS).  

Normalized weights in the decision matrix (yi j) 
are used to determine the positive ideal solution 
(A+) and the negative ideal solution (A-). 

 
 












n

n

yyyA

yyyA

,,

,,

21

21
 (10) 
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












 





 





 





 





 





 





21

21

|max,|min

|min,|max

JjyJjyy

JjyJjyy

ijiijij

ijiijij  (11) 

Step 4: Determine the distance between each 
alternative from a positive ideal solution matrix 
and a negative ideal solution matrix. The distance 
between the i-th alternative and the positive ideal 
solution as: 

 


 
m

j
ijji yyD

1
 (12) 

The distance between Ai alternatives with the 
negative ideal solution value is formulated as: 

 


 
m

j
jiji yyD

1
 (13) 

Step 5: Calculating the closeness coefficient of 
each alternative from D+ and D-. 

The closeness coefficient of alternative is given 
as: 









ii

i
i DD

D
C  (14) 

Step 6: Ranking alternatives  

The Ci
+ sequence is used to rank so that the best 

alternative is the shortest distance to the positive 
ideal solution and has the furthest distance to the 
negative-ideal solution. 

3. Model of mining method selection in Apatite 
mine using HFGDM-TOPSIS method 
3. 1 Description of studied site 

In order to investigate the competence of this 
technique for the MMS problem, we chose an 
Apatite mine to conduct a case study, which is 
located in west of the DPR Korea. The three-
dimension model of the orebody and main 
development workings including shaft and drifts is 
shown in Figure 1. As shown in this figure, 
entrances of main shaft are elevation +285 m, 
respectively, and level height for mining blocks is 
50 m. As of now, ore mining and tunneling at the 
mine are carried out on levels 50 m and 100 m. The 
collapse of surface ground caused by mining 
activities is allowable, the effect of ground water is 
taken no account, because there are no rivers and 
geological faults, industry buildings and domestic 
houses in the mining area. 

 
Figure 1. 3-Dimension model of the orebody and main development workings in an Apatite mine. 

The physical and mechanics parameters such as 
deposit geometry (type of deposit, slope of deposit, 

thickness of orebody and depth below the surface) 
and rock mass characteristics are shown in Table 1. 
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Table 1. Some information about apatite mine. 

orebody 

Type of deposit 
Slope of deposit 
Thickness of orebody  
Depth below the surface 
Mineable reserve 
Production rate 

layer lattice 
45~60° 
16~22 m 
80~120 m 
35,700,000 t 
500,000 t 

Geo-mechanical data 
Hanging wall Rock Mass Rating (RMR) 
Footwall RMR 
Orebody RMR 

35 
40 
55 

Hydrogeology Hydrogeology conditions Dry 

 
3.2. Model of mining method selection 

For selecting the most economical and 
appropriate mining method using the HFGDM-
TOPSIS method, in the first stage, all alternatives 
and decision attributes are determined. 

Characteristics that have a major impact on the 
mining method selection include: 

- Physical and mechanical characteristics of the 

deposit such as ground conditions of the ore 

zone, general shape, ore thickness, dip, plunge, 

depth below the surface, hanging wall, and 

footwall, grade distribution, and quality of 

resource. The basic components that define the 

ground conditions are: shear strength of rock 

material, natural fractures and discontinuities, 

orientation, length, spacing, and location of 

major geologic structures, in situ stress, 

hydrologic conditions, etc. 

- Economic factors such as capital cost, mining cost, 

mineable ore tons, orebody grades, and mineral 

value. 

- Technical factors such as mine recovery, dilution, 

flexibility of methods, machinery, and mining 

rate. 

- Productivity factors such as annual productivity, 

equipment efficiency, and environmental 

considerations. 

In this regard, in order to form the initial 
decision-making matrix, the parameter type of 
deposit, slope of deposit, thickness of orebody, 
depth below the surface, grade distribution, 
hanging wall RMR, footwall RMR, ore body 
RMR, recovery, capital cost, mining cost, annual 
productivity, and environmental impact were 
selected as the effective factors involved in 
choosing the mining method. Likewise, the mining 
methods including sub-level stoping, sub-level 
caving, block caving, cut and fill, shrinkage 
stoping, stope and pillar, and stull stoping were 
selected as the extraction options. 

The hierarchical structure of the problem is 
shown in Figure 2. 

 
Figure 2. Hierarchical structure of decision problem. 

whereas X1-type of deposit, X2- slope of deposit, X3- thickness of orebody, X4- depth below the 
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surface, X5-hanging wall RMR, X6-footwall RMR, 
X7-ore body RMR, X8-grade distribution, X9-
recovery, X10-capital cost, X11-mining cost, X12-
annual productivity, X13-environmental impact; 
A1-sub-level stoping, A2-sub-level caving, A3-
block caving, A4-cut and fill, A5-shrinkage stoping, 
A6-stope and pillar, A7-stull stoping 

4. Mining Method Selection Using HFGDM-
TOPSIS Method 
4.1. Determination of weight of attributes using 
HFGDM 

Using HFGDM, the weights of 13-attributes are 
determined by 5-steps in Section 2.1.3. 

Step 1. If determine set 
 131211109876543215 ,,,,,,,,,,,, hhhhhhhhhhhhhH   

of elements of 5-dimensional hesitant fuzzy set for 
set 

 13121110987654321 ,,,,,,,,,,,, xxxxxxxxxxxxxX   

of attributes and set  54321 ,,,, zzzzzZ   of 
decision-makers. 

The decision-makers use the linguistic variables 
to evaluate the importance of attributes and the 
ratings of alternatives with respect to various 
attributes. In this work, to select the optional 
mining method for the studied mine, in order to 
illustrate the idea of HFGDM-TOPSIS, we 
deliberately transform the existing precise values 
to seven-levels, fuzzy linguistic variables; very low 
(VL), low (L), middle Low (ML), middle (M), 
middle high (MH), high (H), and very high (VH), 
where VL = [0, 0.1], L = [0.1, 0.3], ML = [0.3, 0.4], 
M = [0.4, 0.6], MH = [0.6, 0.7], H = [0.7, 0.9], and 
VH = [0.9, 1]. 

The importance linguistic values of the attributes 
determined by these five decision-makers are listed 
in Table 2. 

Table 2. Importance linguistic values of attributes (xj) from five decision-makers (zi). 

Decision-makers 
Importance linguistic values of attributes 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
z1 M VH M ML H M MH ML VH M H H H 
z2 ML H M L H M MH ML VH M H VH MH 
z3 M H MH L MH MH H ML H H VH H H 
z4 ML H MH ML H M H L VH MH VH H H 
z5 M VH MH L H M MH ML VH M H MH H 

 
The importance values of attributes evaluated by five decision-makers are illustrated in Table 3. 

Table 3. Set  131211109876543215 ,,,,,,,,,,,, hhhhhhhhhhhhhH  of elements of 5-DHFS. 

Decision- 
makers 

Importance linguistic values of attributes 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

z1 0.5 0.95 0.5 0.35 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.8 0.8 
z2 0.35 0.8 0.5 0.2 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.95 0.65 
z3 0.5 0.8 0.65 0.2 0.65 0.65 0.8 0.35 0.8 0.8 0.95 0.8 0.8 
z4 0.35 0.8 0.65 0.35 0.8 0.5 0.8 0.2 0.95 0.65 0.95 0.8 0.8 
z5 0.5 0.95 0.65 0.2 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.65 0.8 

 
Here, the elements of 5-DHFS are as follow: 
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)8.0,8.0,8.0,65.0,8.0(
),65.0,8.0,8.0,95.0,8.0(),8.0,95.0,95.0,8.0,8.0(
),5.0,65.0,8.0,5.0,5.0(),95.0,95.0,8.0,95.0,95.0(

),35.0,2.0,35.0,35.0,35.0(),65.0,8.0,8.0,65.0,65.0(
),5.0,5.0,65.0,5.0,5.0(),8.0,8.0,65.0,8.0,8.0(

),2.0,35.0,2.0,2.0,35.0(),65.0,65.0,65.0,5.0,5.0(
),95.0,8.0,8.0,8.0,95.0(),5.0,35.0,5.0,35.0,5.0(

13

1211

109

87

65

43

21











h
hh

hh
hh

hh
hh
hh

 

 
Step 2. Calculate the weights jkw  of the k-th 

decision-maker to element jh  of 5-dimensional 
hesitant fuzzy set (5-DHFS) for j-th attribute jx  

using Equation (3), so that 

),13 1,2,(1,0
5

1
 



jww
k

kjkj  satisfy. 

(Table 4) 

Table 4. Decision-makers’ weights )5,4,3,2,1,13 1,2,(  kjw jk   for jh . 

Decision-makers Attributes 
w1k w2k w3k w4k w5k w6k w7k w8k w9k w10k w11k w12k w13k 

wj1 0.203 0.196 0.196 0.196 0.204 0.204 0.203 0.204 0.204 0.204 0.203 0.213 0.204  
wj2 0.196 0.203 0.196 0.203 0.204 0.204 0.203 0.204 0.204 0.204 0.203 0.181 0.185  
wj3 0.203 0.203 0.203 0.203 0.185 0.185 0.196 0.204 0.185 0.177 0.196 0.213 0.204  
wj4 0.196 0.203 0.203 0.196 0.204 0.204 0.196 0.185 0.204 0.211 0.196 0.213 0.204  
wj5 0.203 0.196 0.203 0.203 0.204 0.204 0.203 0.204 0.204 0.204 0.203 0.181 0.204  

 
Step 3. Calculate the hesitant fuzzy score 

function values with weights for attributes xj of hj 
using Equation (4). 

 

 1545.0,16.0,1718.0,117.0,1845.0,0645.0,1418.0,1055.0,1545.0,0518.0,1182.0,1718.0,0882.0)( jhS  

 
Step 4. Calculate the weights )5,4,3,2,1( kwk  

of hesitant evaluation level degrees of decision-
makers for 5H  using Equation (5), so that 0kw  

and 



5

1
1

k
kw  satisfy. 

2038.0,1943.0,1895.0,2134.0,199.0 54321  wwwww

Step 5. Calculate the hesitant fuzzy score function 
values with weights for attributes xj on 5H  by 
using Equation (6) and calculate the weights Wxj of 
importance degree to each attribute for set 

 1321 ,,, xxxX   of attributes using Equation 
(7). 

 

 1536.0,1603.0,1715.0,1172.0,1843.0,0642.0,1415.0,1057.0,1543.0,0518.0,1176.0,1721.0,0878.0)( 5 hS j  

(15) 
 0913.0,0953.0,102.0,0697.0,1096.0,0382.0,0841.0,0628.0,0918.0,0308.0,0699.0,1023.0,0522.0

jxW  

 
4.2 Selection of optimal mining method using 
TOPSIS method 

The optimal mining system is selected by the 
TOPSIS methods of 6-steps in Section 2.2. 

Step 1, making of the decision matrix. 

The decision matrix is made by calculating 
weight of the 7-alternatives (mining methods) for 
each attributes using the HFGDM method. 

The importance linguistic values of the 7-
alternatives for the type of deposit (x1) determined 
by these five decision makers are listed in Table 5. 
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Table 5. Importance linguistic values of 7-alternatives (aj) for type of deposit (x1) determined by 5-decision-

makers (zi). 

Decision-makers 
Importance linguistic values of 7-alternatives for the type of deposit (x1) 

a1 a2 a3 a4 a5 a6 a7 
z1 M VH M ML H M MH 
z2 ML H M L H M MH 
z3 M H MH L MH MH H 
z4 ML H MH ML H M H 
z5 M VH MH L H M MH 

 
The importance values of 7-alternatives (aj) for 

type of deposit (x1) evaluated by five decision-
makers are illustrated in Table 6. The weights (ai1) 

of 7-altenatives calculated for the type of deposit 
(x1) using 5-steps in Sec 2.1.3 are illustrated in 
Table 6. 

Table 6. Weights (ai1) of 7-altenatives for the type of deposit (x1). 

Decision-makers 
Importance linguistic values of 7-alternatives for the type of deposit (x1) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.8 0.8 0.65 0.8 0.8 0.35 0.8 
z2 0.8 0.8 0.65 0.8 0.8 0.5 0.8 
z3 0.95 0.8 0.8 0.8 0.8 0.35 0.65 
z4 0.8 0.8 0.65 0.95 0.95 0.35 0.8 
z5 0.8 0.65 0.65 0.95 0.8 0.5 0.8 
ai1 0.1612  0.1496  0.1321  0.1668  0.1610  0.0797  0.1496  

 
Like the preceding the weights (aij) of 7-

altenatives calculated for each attributes (xj) are 
illustrated in Tables 7-17. 

Table 7. Weights (ai2) of 7-altenatives for slope of deposit (x2). 

Decision-makers 
Importance linguistic values of 7-alternatives for slope of deposit (x2) 
a1 a2 a3 a4 a5 a6 a7 

z1 0.95 0.95 0.65 0.8 0.8 0.35 0.65 
z2 0.95 0.8 0.8 0.95 0.95 0.35 0.5 
z3 0.8 0.8 0.8 0.95 0.95 0.35 0.5 
z4 0.95 0.8 0.65 0.8 0.95 0.35 0.65 
z5 0.8 0.95 0.65 0.8 0.8 0.5 0.65 
ai2 0.1718 0.1662 0.1369 0.1659 0.1717 0.0734 0.1141 

Table 8. Weights (ai3) of 7-altenatives for thickness of orebody (x3). 

Decision-makers 
Importance linguistic values of 7-alternatives for thickness of orebody (x3) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.95 0.8 0.65 0.8 0.65 0.35 0.8 
z2 0.95 0.65 0.65 0.8 0.8 0.2 0.65 
z3 0.8 0.65 0.5 0.65 0.65 0.2 0.8 
z4 0.8 0.65 0.5 0.8 0.65 0.2 0.8 
z5 0.8 0.8 0.65 0.8 0.5 0.35 0.65 
ai3 0.1876 0.1549 0.1284 0.1682 0.1422 0.0562 0.1625 
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Table 9. Weights (ai4) of 7-altenatives for depth below the surface (x4). 

Decision-makers 
Importance linguistic values of 7-alternatives for depth below the surface (x4) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.8 0.5 0.35 0.8 0.95 0.65 0.65 
z2 0.8 0.35 0.2 0.8 0.95 0.5 0.65 
z3 0.8 0.35 0.2 0.95 0.8 0.65 0.8 
z4 0.95 0.5 0.35 0.8 0.8 0.5 0.8 
z5 0.8 0.5 0.35 0.8 0.95 0.65 0.8 
ai4 0.1803 0.0949 0.0623 0.1807 0.1936 0.1278 0.1604 

Table 10. Weights (ai5) of 7-altenatives for hanging wall RMR (x5). 

Decision-makers 
Importance linguistic values of 7-alternatives for hanging wall RMR (x5) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.65 0.35 0.2 0.8 0.5 0.5 0.2 
z2 0.8 0.35 0.2 0.65 0.8 0.35 0.2 
z3 0.8 0.5 0.5 0.8 0.65 0.35 0.35 
z4 0.8 0.5 0.35 0.8 0.8 0.5 0.35 
z5 0.8 0.35 0.35 0.8 0.65 0.5 0.35 
ai5 0.2100 0.1109 0.0855 0.2103 0.1851 0.1204 0.0778 

Table 11. Weights (ai6) of 7-altenatives for footwall RMR (x6). 

Decision-makers 
Importance linguistic values of 7-alternatives for footwall RMR (x6) 
a1 a2 a3 a4 a5 a6 a7 

z1 0.65 0.5 0.5 0.8 0.8 0.35 0.35 
z2 0.65 0.5 0.5 0.65 0.65 0.5 0.5 
z3 0.8 0.8 0.5 0.65 0.65 0.35 0.35 
z4 0.8 0.65 0.65 0.8 0.8 0.5 0.5 
z5 0.65 0.65 0.65 0.65 0.8 0.5 0.5 
ai6 0.1684 0.1469 0.1321 0.1688 0.1756 0.1041 0.1041 

Table 12. Weights (ai7) of 7-altenatives for ore body RMR (x7). 

Decision-makers 
Importance linguistic values of 7-alternatives for ore body RMR (x7) 
a1 a2 a3 a4 a5 a6 a7 

z1 0.8 0.65 0.5 0.8 0.65 0.35 0.35 
z2 0.95 0.5 0.35 0.8 0.8 0.35 0.5 
z3 0.95 0.5 0.5 0.8 0.65 0.5 0.5 
z4 0.8 0.65 0.5 0.95 0.8 0.5 0.2 
z5 0.8 0.5 0.35 0.8 0.65 0.35 0.5 
ai7 0.2038 0.1328 0.1040 0.1967 0.1682 0.0967 0.0978 

Table 13. Weights (ai8) of 7-altenatives for grade distribution (x8). 

Decision-makers 
Importance linguistic values of 7-alternatives for grade distribution (x8) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.8 0.5 0.35 0.65 0.8 0.8 0.5 
z2 0.65 0.35 0.2 0.8 0.65 0.65 0.5 
z3 0.8 0.5 0.35 0.65 0.65 0.65 0.65 
z4 0.65 0.35 0.35 0.65 0.8 0.8 0.5 
z5 0.65 0.5 0.5 0.8 0.8 0.65 0.5 
ai8 0.1695 0.1044 0.0826 0.1704 0.1765 0.1698 0.1268 
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Table 14. Weights (ai9) of 7-altenatives for recovery (x9). 

Decision-makers 
Importance linguistic values of 7-alternatives for recovery (x9) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.65 0.5 0.35 0.95 0.65 0.35 0.8 
z2 0.65 0.5 0.35 0.95 0.65 0.2 0.65 
z3 0.5 0.5 0.5 0.95 0.65 0.35 0.65 
z4 0.5 0.35 0.35 0.8 0.5 0.35 0.8 
z5 0.5 0.35 0.35 0.8 0.5 0.2 0.65 
ai9 0.1451 0.1133 0.0987 0.2307 0.1525 0.0748 0.1849 

Table 15. Weights (ai10) of 7-altenatives for capital cost (x10). 

Decision-makers 
Importance linguistic values of 7-alternatives for capital cost (x10) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.65 0.65 0.5 0.35 0.95 0.5 0.35 
z2 0.8 0.65 0.5 0.35 0.95 0.35 0.35 
z3 0.65 0.65 0.5 0.5 0.8 0.5 0.5 
z4 0.65 0.8 0.65 0.5 0.95 0.35 0.35 
z5 0.5 0.65 0.5 0.35 0.95 0.35 0.5 

ai10 0.1621 0.1694 0.1319 0.1017 0.2300 0.1023 0.1026 

Table 16. Weights (ai11) of 7-altenatives for mining cost (x11). 

Decision-makers 
Importance linguistic values of 7-alternatives for mining cost (x11) 

a1 a2 a3 a4 a5 a6 a7 
z1 0.65 0.8 0.8 0.5 0.65 0.65 0.35 
z2 0.8 0.8 0.8 0.65 0.5 0.5 0.35 
z3 0.65 0.65 0.8 0.5 0.8 0.5 0.2 
z4 0.65 0.8 0.8 0.65 0.65 0.5 0.35 
z5 0.5 0.65 0.65 0.5 0.65 0.65 0.5 

ai11 0.1562 0.1776 0.1853 0.1053 0.1571 0.1345 0.0840 

Table 17. Weights (ai12) of 7-altenatives for annual productivity (x12). 

Decision-makers 
Importance linguistic values of 7-alternatives for annual productivity (x12) 
a1 a2 a3 a4 a5 a6 a7 

z1 0.8 0.8 0.8 0.65 0.5 0.65 0.5 
z2 0.8 0.95 0.8 0.65 0.5 0.65 0.35 
z3 0.95 0.8 0.95 0.8 0.5 0.8 0.35 
z4 0.8 0.8 0.8 0.65 0.35 0.65 0.5 
z5 0.8 0.8 0.8 0.65 0.35 0.65 0.5 

ai12 0.1752 0.1761 0.1752 0.1434 0.0926 0.1434 0.0941 

Table 18. Weights (ai13) of 7-altenatives for environmental impact (x13). 

Decision-makers Importance linguistic values of 7-alternatives for environmental impact (x13) 
a1 a2 a3 a4 a5 a6 a7 

z1 0.8 0.65 0.5 0.95 0.8 0.8 0.8 
z2 0.8 0.5 0.5 0.95 0.8 0.8 0.65 
z3 0.65 0.5 0.35 0.95 0.65 0.95 0.65 
z4 0.8 0.35 0.35 0.8 0.8 0.8 0.8 
z5 0.8 0.35 0.35 0.8 0.8 0.8 0.8 

ai13 0.1580 0.0951 0.0833 0.1824 0.1580 0.1711 0.1521 

 
According to Tables 6-18, the decision matrix is formed in Table 19. 
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Table 19. Normalized decision matrix. 

Alternatives 
Attributes 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
a1 0.1612 0.1718 0.1876 0.1803 0.210 0.1684 0.2038 0.1695 0.1451 0.1621 0.1562 0.1752 0.1580 
a2 0.1496 0.1662 0.1549 0.0949 0.1109 0.1469 0.1328 0.1044 0.1133 0.1694 0.1776 0.1761 0.0951 
a3 0.1321 0.1369 0.1284 0.0623 0.0855 0.1321 0.1040 0.0826 0.0987 0.1319 0.1853 0.1752 0.0833 
a4 0.1668 0.1659 0.1682 0.1807 0.2103 0.1688 0.1967 0.1704 0.2307 0.1017 0.1053 0.1434 0.1824 
a5 0.161 0.1717 0.1422 0.1936 0.1851 0.1756 0.1682 0.1765 0.1525 0.230 0.1571 0.0926 0.158 
a6 0.0797 0.0734 0.0562 0.1278 0.1204 0.1041 0.0967 0.1698 0.0748 0.1023 0.1345 0.1434 0.1711 
a7 0.1496 0.1141 0.1625 0.1604 0.0778 0.1041 0.0978 0.1268 0.1849 0.1026 0.084 0.0941 0.1521 

 

Step 2: According to Table 19, Equations (9) and 
(15), normalized weighted decision matrix is 

formed in Table 20. 

Table 20. Weighted decision matrix. 

Alternatives 
Attributes 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
a1 0.0084 0.0176 0.0131 0.0056 0.0193 0.0106 0.0171 0.0065 0.0159 0.0113 0.0159 0.0167 0.0144 
a2 0.0078 0.0170 0.0108 0.0029 0.0102 0.0092 0.0112 0.0040 0.0124 0.0118 0.0181 0.0168 0.0087 
a3 0.0069 0.0140 0.0090 0.0019 0.0078 0.0083 0.0088 0.0032 0.0108 0.0092 0.0189 0.0167 0.0076 
a4 0.0087 0.0170 0.0118 0.0056 0.0193 0.0106 0.0166 0.0065 0.0253 0.0071 0.0107 0.0137 0.0167 
a5 0.0084 0.0176 0.0099 0.0060 0.0170 0.0110 0.0142 0.0067 0.0167 0.0160 0.0160 0.0088 0.0144 
a6 0.0042 0.0075 0.0039 0.0039 0.0110 0.0065 0.0081 0.0065 0.0082 0.0071 0.0137 0.0137 0.0156 
a7 0.0078 0.0117 0.0114 0.0049 0.0071 0.0065 0.0082 0.0048 0.0203 0.0071 0.0086 0.0090 0.0139 

 

Step 3: According to Table 20, Equations (10) and (11), PIS(A+) and NIS(A-) follow as: 
 

  
0167.0,0168.0,0189.0,016.0,0253.0,0067.0

,0171.0,011.0,0193.0,006.0,0131.0,0176.0,0087.0,, 1321   yyyA  (16) 

  
0076.0,0088.0,0086.0,0071.0,0082.0,0032.0

,0081.0,0065.0,0071.0,0019.0,0039.0,0075.0,0042.0,, 1321   yyyA  (17) 

 

Step 4: According to Table 20, Equations (12), 
(13), (16) and (17), the distance between each 

alternative follows as: 

 

 0719.0,0832.0,0304.0,0238.0,0702.0,0523.0,0208.0
iD  (18) 

 0386.0,0273.0,08.0,0866.0,0403.0,0582.0,0896.0
iD  (19) 

 
Step 5: According to Equations (14), (18) and (19), the closeness coefficient of each alternative follows as; 

 

 3495.0,2472.0,7245.0,7843.0,3647.0,5266.0,8113.0
iC  (20) 
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According to the closeness coefficient of 7-

alternatives, the order of these alternatives is 
A1>A4>A5>A2>A3>A7>A6. 

The sub-level stoping method is selected as its 
closeness coefficient has the highest value. In other 
words, the first alternative is closer to PIS and 
farther from NIS. 

The result calculated from FAHP [7] using the 
above-mentioned model and conditions is as 
follows. 

Ci = (0.757, 0.625, 0.547, 0.741, 0.712, 
0.484, 0.536) (21) 

The order of these alternatives is A1 > A4 > A5 > 
A2 > A3 > A7 > A6. 

From the above calculating result, we can find 
that the proposed method in this study is in good 
agreement with the results obtained from FAHP. 

5. Conclusions 

MMS is one of the most important and the most 
essential of decisions of a mining project that have 
a significant influence on the all of the mine 
decision-making problems. 

In this work, the best mining method for Apatite 
mine was selected using HFGDM-TOPSIS based 
on the viewpoints of the experts considering 13-
criteria and 7-alternatives. After calculating the 
priority of the alternatives, the feasible mining 
methods for this mine were ranked. The results 
obtained showed that the sub-level stoping method 
with the priority of 0.8113 was the best for the 
studied mine. 

The results indicated that by application of 
HFGDM-TOPSIS for the MMS problem, some 
difficulties related to the previous methods could 
be reduced. Moreover, the proposed approach 
could be applied simply in GDM with too many 
decision-makers and taken into account large 
amount of uncertain information. Hence, it is 
expected that this method will be applied to various 
problems of multi-criteria decision-making in 
mining engineering. 
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 تیمعدن آپات کی ي: مطالعه موردHFGDM-TOPSISانتخاب روش استخراج مناسب با استفاده از روش 

  

   3 میک لیدونگ ا و *2، اون چول هان،1چون پاك ونگیم

  خلق کره کیدموکرات يجمهور انگ،ی ونگیچاك، پ میک یمعدن، دانشگاه صنعت یدانشکده مهندس -1
  خلق کره کیدموکرات يجمهور انگ،ی ونگیچاك، پ میک یدانشگاه صنعت ،یدانشکده علوم و مهندس -2

  خلق کره کیدموکرات يجمهور انگ،ی ونگیچاك، پ میک یدانشگاه صنعت ،يکاربرد اتیاضیگروه ر -3

  22/06/2022، پذیرش 01/03/2022ارسال 

  huch8272@star-co.net.kp* نویسنده مسئول مکاتبات: 

  

  چکیده:

 يو عوامل اقتصاد یشناس نیو زم یکیژئوتکن يهایژگیمانند و ییمعدن است و به پارامترها یمشکل در طراح نیتریو اصل نیاول )MMS(انتخاب روش معدن 
مردد  يفاز گروه يریگ میروش استخراج با استفاده از تصم نیترو مناسب شودیم نییاز کارشناسان معدن تع یتوسط برخ MMSدارد. عوامل موثر بر  یبستگ

)HFGDM( آل  دهیعملکرد سفارش با شباهت به روش راه حل ا يبرا کیو تکن)TOPSIS( کانسار،  بیعوامل عبارتند از نوع کانسار، ش نی. اشودیانتخاب م
 نهیهز ،یابیباز ،یمعدن يماده ریسنگ درونگ  RMR ،یسنگ وارهید  RMR، (RMR) زانیآو واریجرم سنگ د يرتبه بند ار،یع عیسطح، توز ریعمق ز ،یضخامت کان

بر  یژگیوزن چند و نییتع يرا برا )GDM( یگروه يریگ می. در ابتدا، ما روش تصمیطیمح ستیسالانه. ، و اثرات ز يبهره ور ،يمعدنکار نهیهز ،يهگذاریسرما
است . سپس وزن    )HFS( يفاز يبه شکل مجموعه ها يعدب n  (HFGDM) يفاز طیکه در آن مح م،یکرد شنهادیپ رندگانیگ میبا وزن تصم ازیاساس تابع امت

هفت   نجا،یروش ارائه شده است. در ا نیا تیبه منظور نشان دادن صلاح زیساده ن يمطالعه مورد کیمحاسبه شد.  HFGDMعوامل را با استفاده از روش  نیا
روش استخراج از طبقات  تیانتخاب شد. در نها TOPSISرا با استفاده از روش  نهیشده است و روش استخراج به سهیرا با هم مقا تیروش استخراج معدن آپات

  .معدن انتخاب شده است نیا يروش برا نیتربه عنوان مناسب نیریز

  .مردد يفاز يآل، مجموعه ها دهیسفارش بر اساس شباهت به راه حل ا ياجرا کیمردد، تکن يگروه فاز يریگ میتصم ،معدنکاريانتخاب روش  کلمات کلیدي:
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