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1. Introduction

Mining Method Selection (MMS) is the first and the most critical problem in mine
design, and depends on some parameters such as the geo-technical and geological
features and economic factors. The factors affecting MMS are determined by some
mining experts, and the most suitable mining method is selected using the hesitant
fuzzy group decision-making (HFGDM) and technique for order performance by
similarity to the ideal solution (TOPSIS) method. These factors include the type of
deposit, slope of deposit, thickness of orebody, depth below the surface, grade
distribution, hanging wall Rock Mass Rating (RMR), footwall RMR, ore body RMR,
recovery, capital cost, mining cost, annual productivity, and environmental impact.
Firstly, we propose the group decision-making (GDM) method to determine the
weights of multi-attributes based on the score function with the decision-makers’
weights, in which the n-dimensional hesitant fuzzy environment take the form of
hesitant fuzzy sets (HFS). Then we calculate the weights of these factors using the
HFGDM method. A simple case study is also presented in order to illustrate the
competence of this method. Here, we compare the seven mining methods for an
Apatite mine, and select the optimal mining method using the TOPSIS method.
Finally, the sub-level stope mining method is selected as the most suitable method to
this mine.

Mining method selection (MMS) is one of the
most critical and problematic activities of mining
engineering because the accuracy of choosing the
process greatly affects its economic potential, and
any mistake in decision-making imposes some
irreparable finance to the owners [1]. The ultimate
goals of the mining method selection are
maximizing the company’s profit and recovery of
the mineral resources, and also providing a safe
environment for the miners by selecting the

suitable method with the least problems among the

E Corresponding author: huch8272@star-co.net.kp (U. Chol Han).

feasible alternatives. Selection of an appropriate
mining method is a complex task that requires
consideration of many technical, economic, social,
and historical factors. The appropriate mining
method is the method that is technically feasible for
the ore geometry and ground conditions, while also
being a low-cost operation. There is no single
appropriate mining method for a deposit. Usually
two or more feasible mining methods are possible
in mines. Each method entails some inherent

problems. Consequently, the optimal mining
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method is one that offers the least problems in the
mine. The approach of adopting the same mining
method as that the neighboring operation is not
always appropriate. However, this does not mean
that one cannot learn from comparing mining plans
of existing operations in the same district or of
similar deposits. Each orebody is unique with its
own properties, and engineering judgment has a
great effect on the decision in such a versatile work
like mining. Therefore, it seems clear that only
experienced engineers who have improved his
experience by working in several mines and
gaining skills in different methods can make a
logical decision about the mining method selection.
Although experience and engineering judgment
still provide a major input into the selection of a
mining method, subtle differences in the
characteristics of each deposit can usually be
perceived only through a detailed analysis of the
available data.

It becomes the responsibility of the geologists
and engineers to work together to ensure that all
factors are considered in the mining method
selection process. One of the common techniques
to select the optimal mining method is the
Analytical Hierarchy Process (AHP). AHP is a
widely used multiple criteria decision-making tool,
firstly proposed by Saaty [2]. The traditional AHP
method is problematic in that it uses an exact value
to express the decision-maker’s opinion in a
comparison of alternatives. Especially, the AHP
method is often criticized due to its use of
unbalanced scale of judgments and its inability to
adequately handle the inherent uncertainty and
imprecision in the pair-wise comparison process
[3]. Ataei et al. [4] have used the analytic hierarchy
process to choose the best mining method.
Jamshidi et al. [5] have applied the analytic
choose the

hierarchy process to optimal
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underground mining method in the Jajarm bauxite
mine. Bitarafan and Ataei [6] have selected an
appropriate mining method in anomaly No. 3 of the
Gol-Gohar iron mine using fuzzy multiple attribute
decision-making method. Naghedehi et al. [7] have
suggested the fuzzy AHP (FAHP) method for
selection of a suitable mining method for Bauxite
ore deposit in Iran.

Dehghani et al. [1] have chosen the most optimal
mining method in the Gol-Gohar mine using the
Grey and TODIM (an acronym in Portuguese, i.e.
Tomada de Decisdo Interativa Multicritério)
decision-making techniques. Namin et al. [8] have
proposed a new model to select the mining method
based on the fuzzy TOPSIS. Samimi Namin et al.
[9] have investigated the application of several
such as AHP,

decision-making techniques

TOPSIS, and PROMETHEE to select an
appropriate  mining method in Iran. Also
Bogdanovic et al. [10] have applied the

PROMETHEE and analytic hierarchy process
methods to determine an appropriate mining
method in the Coka Marin mine in Serbia. Azadeh
et al. [11] have presented a new method to select a
mining method based on the improved Nicholas
technique. Ataei et al. [12] have applied the Monte
Carlo analytic hierarchy process method to select
the best mining method in the Jajarm bauxite mine.
Gelvez et al. [13] have used the analytic hierarchy
process and the VIKOR methods to choose the
optimal mining method in the coal mine in
Colombia. Besides, Karimnia and Bagloo [14]
have applied the analytical hierarchy process to
choose the optimal extraction method in a salt mine
in Iran. Yavuz [15] has used the AHP method to
choose a suitable underground mining method for
a lignite mine located in Istanbul. Chen et al. [16]
have compared the results of the TOPSIS method
with those for the AHP-VICOR method in the
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mining method selection problems. The results of
this work showed that the proposed model could
predict a mining method with more precision. Ataei
et al. [17] have also used TOPSIS to do the same
for the Jajarm mine in Iran. Nourali ef al. [18] have
used a Hierarchical Preference Voting System
(HPVS) for the MMS problem that uses a Data
Envelopment Analysis (DEA) model to produce
weights associated with each ranking place.

However, the aforementioned operators and
methods have some drawbacks as follow: An
important topic in hesitant fuzzy group decision-
making (HFGDM) problems is how to determine
the weights of both attributes and decision-makers.
All the aforementioned operators and methods only
consider the situations where the attribute weights
are completely known or partially known, and the
decision-makers’ weights are completely known.
Furthermore, these weight vectors are provided by
the decision-makers in advance, and therefore, are
more or less subjective and insufficient.

Recently, some studies have been devoted to
address this issue, and developed some completely
unknown weight generation processes within the
hesitant fuzzy environment. Hu et al. [19] have
constructed the entropy weight model to determine
the attributes weights based on the proposed
entropy measures. Liu et al. [20] have taken
advantage of the linear programming technique for
of  preference
(LINMAP) to determine the attribute weights

multi-dimensional  analysis
objectively in the hesitant fuzzy multiple attribute
decision-making. Xu and Zhang [21] have
established an optimization model based on the
maximizing deviation method to determine the

optimal relative weights of attributes under hesitant

fuzzy environment. However, the above-
mentioned weight generation methods only
investigated  multi-attributes  single  person
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decision-making with hesitant fuzzy information,
and did not consider multi-criteria group decision-
making (MCGDM)
information. In addition, in a MCGDM with

with  hesitant  fuzzy
hesitant fuzzy information, because the experts
have their own inherent value systems and
consideration, and thus the disagreement among
the experts are inevitable, in such a case, consensus
turns out to be very important in group decision-
making. The existing weight generation methods in
Refs. [19-21] did not consider any consensus issue.

To address this issue, Zhang [22] has developed
two non-linear optimization models for MCGDM
problems with hesitant fuzzy information, one
minimizing the divergence among the individual
hesitant fuzzy decision matrices, and the other
minimizing the divergence between each
individual hesitant fuzzy decision matrix and the
collective hesitant fuzzy decision matrix, from
which two exact formulae were obtained to derive
the decision-makers’ weights and attributes,
respectively. However, the operation and the
methods in [22] did not consider that the decision-
makers’ weights mutually differed because the
decision-makers had their own inherent value
systems and consideration, and the weights of the
attributes were related to the number of the
decision-makers, and they decreased the
computational the
weighting methods in Refs. [19-21] but they

the

complexity than existing

increased computational complexity in
practical applications.

To address this issue, in this paper, we define n-
dimensional hesitant fuzzy environment on number
of the decision-makers, and develop the methods to
determine the decision-makers’ weights for each
attribute and set of whole attributes based on
simple average operation. Then we calculate the

weights of the attributes based on the score
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function for each attribute and set of whole
attributes with the decision-makers’ weights, and
we chose the optimal mining method in the apatite
mine using TOPSIS decision-making technique.
The main advantages of these methods in relation
to the other prevalent methods are to apply the
distance numbers, to consider the intensity of
criteria changes, and high accuracy in decision-
making. The outcome of such decision-making
systems is to obtain the best results in the light of
considering all the technical, economic, and safety

criteria.

2. Methodology
2.1. HFGDM method
2.1.1. Hesitant fuzzy sets (HFS)

Torra [23] has proposed the notion of hesitant
fuzzy sets to manage the situations in which several
numerical values are possible for the definition of
the membership of an element to a given set.

Definition 1. [23] Given a fixed set X, then a
hesitant fuzzy set (HFS) on X is in terms of a
function that when applied to X returns a subset of
[0, 1].

To be easily understood, Xia and Xu [24],
express HFS by mathematical symbol:

E=(<x,hz(x)>|lxe X) (1)
where hy(x) is a set of some values in [0, 1],

denoting the possible membership degree of the

element x€Xto the set E. For convenience, Xia and

Xu [24] have called h=hg(x) a hesitant fuzzy
element (HFE), and H the set of all HFEs.
(1) ne={] _l-7},
(i) moh, = Unehpyz ey

(1ii) hy :U

{71 Vv 72}=

71€h 26 {71 AT } )

Xia and Xu [24] have defined the following

comparison rules for HFEs:
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Definition 2. [24] Fora HFE h, S(h) = hi Xa?
E

is called the score function of 4, where /g is the
number of the elements in /. For two HFEs A, and
hy, if S(y)>S(hy) then h >hy,, and if
S(m)=5S(hy) then iy :’h2 .

2.1.2. Group decision-making methods to
determine weights of multiple attributes under

n-dimensional hesitant fuzzy environment

In this section, we propose the group decision-
making methods to determine the weights of
multiple attributes in case that the hesitant fuzzy
environment is given as n-dimensional hesitant
fuzzy environment by »n decision-makers.

In real practical situations, the decision-makers’
hesitant weights for each attribute may differ with
one another because the decision-makers have
different experiences and specialties. Therefore, in
order to determine more reasonable decision-
makers’ weights for set of the whole attributes, it
should be considered the decision-makers’ hesitant

weights for each attribute.

To address this issue, suppose as follow:

(1) Importance degrees of the attributes differ
with one another according to the alternatives.

(1i) Evaluation levels of the decision-makers for
set of the whole attributes are related to the
evaluation levels of the decision-makers for each
attribute.

(iii) Attribute weights for some alternatives are
related to the number of the decision-makers.

Let Z={z,25,--,z,} be a set of the decision

makers and Xz{xl,xz,m X } be a set of

> m

attributes (attribute set).

Let hj:{hjl,hjz,-n,hjn} be the hesitant

evaluation for the importance weights of j-th
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attribute x; by n decision-makers. Thus 4; is an
element in the n-dimensional hesitant fuzzy
environment for x;, and H = {i,hy,--,h,,} is the set
of all elements in the n-dimensional hesitant fuzzy
environment for x; on X = {x;,x5,, X, }-
According to the n-dimensional hesitant fuzzy
environment, #; may be an element in n-
dimensional hesitant fuzzy set, n-dimensional
interval-valued hesitant fuzzy set or n-dimensional
hesitant triangular fuzzy set. According to the
opinions of n decision-makers, the values of all
h ji ;k=1,2, ..., n may be the same. In case hj
k=1,2, ..., nhave the same values for j-th attribute
x; , the hesitant degree for j-th attribute x; is the

same hesitant degree for 7 j .

In case the decision-makers evaluate the hesitant
degrees for the attribute differently, we may have a
single hesitant degree for the attribute as the mean
of the different hesitant evaluation values.

It is possible to construct the set of elements in #-
dimensional hesitant fuzzy environment for a
single attribute according to the number of the
decision-makers.

If k-th decision-maker evaluates the hesitant
degree for j-th attribute x; as 0.46, 0.5 and 0.58,
then we can change the hesitant degree into the
mean value 0.513.

This main idea is based on that the varied hesitant
evaluation values of decision-maker should be
distributed to environs of mean value.

To determine weights of multiple attributes with
decision-makers’ weights under n-dimensional
hesitant fuzzy set, we define the n-dimensional
hesitant fuzzy set following as:

Definition 3. Given mapping hp that when
applied to attribute set X = {x;,x5,--,x,,} returns a
subset of n-dimensional values in [0,1] by set
then

Z=1{z,25,-,z,} of decision-makers,
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mapping /g determine the n-dimensional hesitant
fuzzy set (n-DHFS) E, on X, and we call
hg (x;), x; € X(j=12,---,m)a
function of n-DHFS E,

membership

To be easily understood, we express n-DHFS by
the mathematical symbol:

E, =(<x,hg (x;)>|x; € X, j=12,--,m) )

where %y (x) is a subset of some n-dimensional

values in [0, 1], denoting the possible membership
degree of the element x; € X' to the set £, . For

convenience, we call h;=hg (x;),(j=1,2,",m)
element of n-dimensional hesitant fuzzy set (n-

DHFS) for jattribute x; and H, the set of all n-

DHEFS.

Let the
By =Wishypoeesy b By, €001 (G=1,2,,m, k=1,--m) of a

given element
n-DHFE for attribute x; permits duplication of

hj; on the attribute set X, where 4 is related to

an opinion of k-th decision-maker for j-th attribute
X j-
In real situations, the hesitant opinion of the

decision-makers for j-th attribute x; may differ

J

with one another because the decision-makers may
come from different fields, and thus have different
experiences and specialties. Therefore, the
decision-makers’ weights may differ with one
another for one attribute.

We can define the k£-th decision-maker’s weight

for element £ B of n-DHF' for j-th attribute x; as

follows:

s k=120, j=12,---,m)

L@
Wi = 1= D i) = g 3)
=1

where w’jk(jzl,z,-n,m) is the weight of

hesitant evaluation level degree of the k-th
decision-maker to £ .
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By considering the conditions w; >0 and

J
ijk =1(j=1.2,---,m), the k-th decision-maker’s
P

weight wy to element /; of a n-DHFS for j-th

attribute x j is determined as:
n
_ ! !
Wik =Wk ijp
p=l

(k = 1727”'7}17 j = 1727”'7"1)

If the hesitant evaluation level degrees of the

decision-makers are all the
hjy=hj=-=h;, then wy =L,k=12,---,n.

same, l.e.
The main idea of (3) is that the hesitant
evaluation level degree for the attribute approach
to the mean value, the larger the decision-makers’
weights for the attribute become.
Definition 4. The hesitant fuzzy score function

with the weights to 4; for j-th attribute x; is

defined as follows:

1< .
SCh) =3 Wy hji > ( =1,2,000m) 4
k=1

If the hesitant evaluation level degrees of the

all the
hjy=hjy =--hj, =h}, Sth;)=h) is completed.

decision-makers are same, 1i.e. if

All the aforementioned operators and methods
only consider the decision-makers’ weights where
an attribute is fix.

In real situations, the hesitant opinion of
decision-makers for each other different attributes
may differ with one another to the fact that the
decision-makers may come from different fields,
and thus have different experiences and specialties.

Therefore, the decision-makers’ weights for
every attributes on set of whole attributes may
differ with one another.

Then we can define the weights of hesitant
evaluation level degrees of decision-makers for
H, toset H,={h,hy,-h,} of elements of all n-
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dimensional hesitant fuzzy set (n-DHFEs) as

follows:
, 1<
Wi :l—le|S(hj)_hjk|]7(k:17277”) (5)
j=1

Determining a weight w; of hesitant evaluation
level degree of decision-maker for H, , wy of the

k-th decision-maker to element % g of n-DHF'S for

n
wy 20 and ZWk:I might
k=1

J-th attribute x;

satisfy, then w, =w; Zw’p(kzl,z,---,n) is
p=l

completed.

Definition 5. Let given set H,, = {iy, hy,---,h,,} of
all elements of n-dimensional hesitant fuzzy set (n-
DHFEs) on attribute set X = {x;, x5, x,, .

We define the hesitant fuzzy score function with

weights for attributes x;(j=12,--,m) on H, as

follows:

1< )
S (H ) == wiehji (] =1,2,0,m) ©6)
k=1

If so, we can rank the xj(j=12,-,m) in

descending order according to the values of
S;j(H,) (j=12,--,m). Then we can decide the

weights ij (j=1,2,---,m) of importance degree

to each attribute on attribute set X = {xl,xz,- . ~,xm}
as follow:

™)

W, =S,(H,) ;S,(H,,) L(=12,0m), Wy, 20 ZIW =1

2.1.3. Steps of determining weight of multiple

attributes

Based on the above analysis, we next develop an
approach to the GDM problem to determine
weights of multiple attributes with n-dimensional
hesitant fuzzy information, which is composed of
the following steps:

Step 1. For a GDM problem to determine weights
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of multiple attributes with n-dimensional hesitant
fuzzy information, the all decision-makers evaluate

as hesitant value in [0,1] for each attribute

xj(j=12,--,m) and then n-dimensional hesitant

B

fuzzy sets h;(j=1,2,---,m) constructs for each
attribute x i (=12,-,m), and determine the set
H, ={h,hy, -, h,} ofall n-DHFEs.

Step 2. Calculate the weight wj of the k-th
decision-maker to element 4; of n-DHFS for j-th

attribute x; using Equation (3), so that

J
n

Wi, >0, Zij =1(j=1,2,---,m) satisfy.
k=1

Step 3. Calculate the hesitant fuzzy score

function values with weights for attributes x; of
hj(j =12, m) using Equation (4).

Step 4. Calculate the weights wy, (k=1,2,---,n) of
hesitant evaluation level degrees of decision-

makers for H, using Equation (5), so that w;, >0
n
and ZWk =1 satisfy.
k=1
Step 5. Calculate the hesitant fuzzy score

function values with weights for attributes
x;(j=12,-,m) on H, by using Equation (6), and

calculate the weights ij(j:l,z,-.-,m) of

importance degree to each attribute for attribute set

X ={x,,X5,"-,x,, } using Equation (7).

2.2. TOPSIS Method

Technique for ordering preference by similarity
to an ideal solution (TOPSIS) is a classic Multi
Attribute Decision Making (MADM) method
developed by Hwang and Yoon [25]. TOPSIS
helps the decision-makers develop issues to
analyze, compare, and rank according to their
alternate ratings.

TOPSIS is based on the concept of the closest

alternative choice of a positive ideal solution (PIS)

Journal of Mining & Environment, Vol. 13, No. 2, 2022

and furthest from the negative ideal solution (NIS).
The sum of the highest values of each attribute is
called a positive ideal solution (PIS). The sum of
the lowest values of each attribute is called the
negative ideal solution (NIS). Based on a
comparison of the relative distance of PIS and NIS,
alternative priority arrangements can be achieved
[16, 26, 27]. TOPSIS advantages: (1) Human
choice is represented by logical thinking, (2) The
concept is simple and easy to understand, (3) The
computing process can be easily programmed into
a spreadsheet, (4) Be able to measure the relative
performance of decision alternatives in simple
mathematical form [28].

TOPSIS method includes six stages for solving
decision-making problem [23, 29]:
Step 1: Converting decision-making matrix to a

normalized matrix using Equation (8):

7.
ij mo )
4
whereasi=1,2,..,n;andj=1,2, ..., m
Step 2: Create a normalized weighted decision
matrix.

Normalized weighted decision matrix.
Yig =Wx, Ty )

Step 3: Determines the matrix of positive ideal
solutions (PIS) and the negative ideal solution
matrix (NIS).

Normalized weights in the decision matrix (y;)
are used to determine the positive ideal solution
(A7) and the negative ideal solution (4).

AJr:(ler’y;""y;) (10)
A" :(yf’yga"'y;)
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vy ={(maxy, 1 e, ) (miny, 152, )}
yj ={(miinyg,- |y J,(mflxyg,- FE Jz)}

Step 4: Determine the distance between each

(1)

alternative from a positive ideal solution matrix
and a negative ideal solution matrix. The distance
between the i-th alternative and the positive ideal

solution as:

m

=30 -y (12)

J=1

The distance between A; alternatives with the

negative ideal solution value is formulated as:

m

D=3 (,-v) (13)

=

Step 5: Calculating the closeness coefficient of
each alternative from D" and D",
The closeness coefficient of alternative is given
as:
D

C/l=—-"— (14)
D! +D;

Step 6: Ranking alternatives

Journal of Mining & Environment, Vol. 13, No. 2, 2022

The C;" sequence is used to rank so that the best
alternative is the shortest distance to the positive
ideal solution and has the furthest distance to the

negative-ideal solution.

3. Model of mining method selection in Apatite
mine using HFGDM-TOPSIS method
3. 1 Description of studied site

In order to investigate the competence of this
technique for the MMS problem, we chose an
Apatite mine to conduct a case study, which is
located in west of the DPR Korea. The three-
dimension model of the orebody and main
development workings including shaft and drifts is
shown in Figure 1. As shown in this figure,
entrances of main shaft are elevation +285 m,
respectively, and level height for mining blocks is
50 m. As of now, ore mining and tunneling at the
mine are carried out on levels 50 mand 100 m. The
collapse of surface ground caused by mining
activities is allowable, the effect of ground water is
taken no account, because there are no rivers and

geological faults, industry buildings and domestic

houses in the mining area.

Figure 1. 3-Dimension model of the orebody and main development workings in an Apatite mine.

The physical and mechanics parameters such as

deposit geometry (type of deposit, slope of deposit,

thickness of orebody and depth below the surface)

and rock mass characteristics are shown in Table 1.
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Table 1. Some information about apatite mine.

Type of deposit

layer lattice

Slope of deposit 45~60°
Thickness of orebody 16~22 m
orebody Depth below the surface 80~120 m
Mineable reserve 35,700,000 t
Production rate 500,000 t

Hanging wall Rock Mass Rating (RMR) 35

Geo-mechanical data  Footwall RMR 40
Orebody RMR 55
Hydrogeology Hydrogeology conditions Dry

3.2. Model of mining method selection

For selecting the most economical and
appropriate mining method using the HFGDM-
TOPSIS method, in the first stage, all alternatives
and decision attributes are determined.

Characteristics that have a major impact on the

mining method selection include:

- Physical and mechanical characteristics of the
deposit such as ground conditions of the ore
zone, general shape, ore thickness, dip, plunge,
depth below the surface, hanging wall, and
footwall, grade distribution, and quality of
resource. The basic components that define the
ground conditions are: shear strength of rock
material, natural fractures and discontinuities,
orientation, length, spacing, and location of
major geologic structures, in situ stress,

hydrologic conditions, etc.

- Economic factors such as capital cost, mining cost,
mineable ore tons, orebody grades, and mineral

value.

- Technical factors such as mine recovery, dilution,
flexibility of methods, machinery, and mining

rate.

- Productivity factors such as annual productivity,
equipment efficiency, and environmental

considerations.

In this regard, in order to form the initial
decision-making matrix, the parameter type of
deposit, slope of deposit, thickness of orebody,
depth below the surface, grade distribution,
hanging wall RMR, footwall RMR, ore body
RMR, recovery, capital cost, mining cost, annual
productivity, and environmental impact were
selected as the effective factors involved in
choosing the mining method. Likewise, the mining
methods including sub-level stoping, sub-level
caving, block caving, cut and fill, shrinkage
stoping, stope and pillar, and stull stoping were
selected as the extraction options.

The hierarchical structure of the problem is

shown in Figure 2.

‘ Mining Method ‘

x )] o ] e

el ][

[ Xo | X | Xn |-\'l: ||-\'|3 |

i

Ay | A,

a] [ar]

A

Ag

]

Figure 2. Hierarchical structure of decision problem.

whereas X;-type of deposit, X- slope of deposit,

E Corresponding author: huch8272@star-co.net.kp (U. Chol Han).

Xs- thickness of orebody, Xs- depth below the
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surface, Xs-hanging wall RMR, Xs-footwall RMR,
Xs-ore body RMR, Xs-grade distribution, Xo-
recovery, Xjo-capital cost, X;;-mining cost, Xi,-
annual productivity, Xis-environmental impact;
A;-sub-level stoping, As-sub-level caving, As-
block caving, As-cut and fill, As-shrinkage stoping,
Ag-stope and pillar, As-stull stoping

4. Mining Method Selection Using HFGDM -
TOPSIS Method

4.1. Determination of weight of attributes using
HFGDM

Using HFGDM, the weights of 13-attributes are
determined by 5-steps in Section 2.1.3.

Step 1. If determine set
Hy = {hl,hz,h3,h4,h5,h6,h7,h8,h9,h10,h11,hlz,hn}
of elements of 5-dimensional hesitant fuzzy set for
set
X = {xlaxzax3ax4ax5axsax7ax8ax9axloaxllaxlzaxm}

Journal of Mining & Environment, Vol. 13, No. 2, 2022

of attributes and set Z={z,z5,25,24,25} of
decision-makers.

The decision-makers use the linguistic variables
to evaluate the importance of attributes and the
ratings of alternatives with respect to various
attributes. In this work, to select the optional
mining method for the studied mine, in order to
idea of HFGDM-TOPSIS, we

deliberately transform the existing precise values

illustrate the

to seven-levels, fuzzy linguistic variables; very low
(VL), low (L), middle Low (ML), middle (M),
middle high (MH), high (H), and very high (VH),
where VL =[0, 0.1], L=[0.1,0.3], ML =[0.3, 0.4],
M =104, 0.6], MH =[0.6, 0.7], H=[0.7, 0.9], and
VH=1[009,1].

The importance linguistic values of the attributes

determined by these five decision-makers are listed
in Table 2.

Table 2. Importance linguistic values of attributes (x;) from five decision-makers (z)).

Importance linguistic values of attributes

Decision-makers

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
el M VH M ML H M MH ML VH M H H H
o) ML H M L H M MH ML VH M H VH MH
3 M H MH L MH MH H ML H H VH H H
4 ML H MH ML H M H L VH MH VH H H
75 M VH MH L H M MH ML VH M H MH H

The importance values of attributes evaluated by

five decision-makers are illustrated in Table 3.

Table 3. Set H = {h,h,, hy,hy, hs,hg, by, g by, g o By s | of elements of 5-DHFS.

Decision- Importance linguistic values of attributes
makers X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
71 0.5 0.95 0.5 0.35 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.8 0.8
o) 0.35 0.8 0.5 0.2 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.95 0.65
e 0.5 0.8 0.65 0.2 0.65 0.65 0.8 0.35 0.8 0.8 0.95 0.8 0.8
74 0.35 0.8 0.65 0.35 0.8 0.5 0.8 0.2 0.95 0.65 0.95 0.8 0.8
75 0.5 0.95 0.65 0.2 0.8 0.5 0.65 0.35 0.95 0.5 0.8 0.65 0.8

Here, the elements of 5S-DHEFS are as follow:
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h, =(0.5,0.35,0.5,0.35,0.5), h, = (0.95,0.8,0.8,0.8,0.95),

hy = (0.5,0.5,0.65,0.65,0.65), h, = (0.35,0.2,0.2,0.35,0.2),
hs = (0.8,0.8,0.65,0.8,0.8), &, = (0.5,0.5,0.65,0.5,0.5),

h, = (0.65,0.65,0.8,0.8,0.65), i, = (0.35,0.35,0.35,0.2,0.35),
hy = (0.95,0.95,0.8,0.95,0.95), i, = (0.5,0.5,0.8,0.65,0.5),
h,, =(0.8,0.8,0.95,0.95,0.8), ,, = (0.8,0.95,0.8,0.8,0.65),
h, =(0.8,0.65,0.8,0.8,0.8)

Step 2. Calculate the weights wj of the k-th using Equation (3), SO that
.. . . 5
decision-maker to element h; of 5-dimensional w, > 0, ijk =1(j=12,--,13) satisty.
hesitant fuzzy set (5-DHFS) for j-th attribute x; k=1
(Table 4)

Table 4. Decision-makers’ weights w, (j=1,2,---13, k=1,2,3,4,5) forh,.

. Attributes
Decision-makers
Wik Wi Wik Wi Wsj Wek Wik W8k Wojc W10k Wik Wik W13k
wit 0.203 0.196 0.196 0.196 0204 0.204 0203 0.204 0204 0.204 0203 0213 0.204
wj2 0.196 0.203 0.196 0.203 0.204 0.204 0203 0.204 0204 0.204 0.203 0.181 0.185
wj3 0.203 0.203 0.203 0.203 0.185 0.185 0.196 0.204 0.185 0.177 0.196 0213 0.204
Wja 0.196 0.203 0.203 0.196 0204 0.204 0.196 0.185 0.204 0.211 0.196 0213 0.204
Wis 0.203 0.196 0.203 0.203 0.204 0.204 0.203 0.204 0.204 0.204 0.203 0.181 0.204
Step 3. Calculate the hesitant fuzzy score using Equation (4).

function values with weights for attributes x; of 4;

S(h;)= (0.0882,0.1718,0.1182,0.0518,0.1545,0.1055,0.1418,0.0645,0.1845,0.117,0.1718,0.16,0.1545)

Step 4. Calculate the weights w (k=1,2,3,4, 5) Step 5. Calculate the hesitant fuzzy score function
of hesitant evaluation level degrees of decision- values with weights for attributes x; on H, by
makers for /5 using Equation (5), so that w, >0 using Equation (6) and calculate the weights W, of

5 . importance degree to each attribute for set
and ;Wk =1 satisfy. X ={x,,X,,-,x,} of attributes using Equation

w, =0.199, w, =0.2134, w, =0.1895, w, =0.1943, (%); =0.2038

S, (hs) = (0.0878,0. 17210.1176,0.05180.1543,0.1057,0.1415,0.0642,0.1843,0.1172,0.1715,0.1603,0.1 536)

(15)
VVX/ = (0.0522,0.1023,0.0699,0.0308,0.0918,0.0628,0.0841,0.0382,0.1096,0.0697,0.102,0.0953,0.0913)
4.2 Selection of optimal mining method using The decision matrix is made by calculating
weight of the 7-alternatives (mining methods) for
TOPSIS method each attributes using the HFGDM method.
The optimal mining system is selected by the The importance linguistic values of the 7-
TOPSIS methods of 6-steps in Section 2.2. alternatives for the type of deposit (x1) determined

. .. . these fi isi i i .
Step 1, making of the decision matrix. by these five decision makers are listed in Table 5
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Table S. Importance linguistic values of 7-alternatives (;) for type of deposit (x;) determined by 5-decision-

makers (z:).

Importance linguistic values of 7-alternatives for the type of deposit (x1)

Decision-makers

ai a as a4 as Aae ai
71 M VH M ML H M MH
2 ML H M L H M MH
3 M H MH L MH MH H
4 ML H MH ML H M H
5 M VH MH L H M MH

of 7-altenatives calculated for the type of deposit
(x1) using 5-steps in Sec 2.1.3 are illustrated in
Table 6.

The importance values of 7-alternatives (a;) for
type of deposit (x1) evaluated by five decision-
makers are illustrated in Table 6. The weights (ai1)

Table 6. Weights (ai;) of 7-altenatives for the type of deposit (x;).

Importance linguistic values of 7-alternatives for the type of deposit (x1)

Decision-makers

ai a as aq as [113 ai
Z1 0.8 0.8 0.65 0.8 0.8 0.35 0.8
z 0.8 0.8 0.65 0.8 0.8 0.5 0.8
zZ3 0.95 0.8 0.8 0.8 0.8 0.35 0.65
Z4 0.8 0.8 0.65 0.95 0.95 0.35 0.8
Zs 0.8 0.65 0.65 0.95 0.8 0.5 0.8
ail 0.1612 0.1496 0.1321 0.1668 0.1610 0.0797 0.1496

Like the preceding the weights (a;;) of 7- illustrated in Tables 7-17.

altenatives calculated for each attributes (x;) are

Table 7. Weights (ai;) of 7-altenatives for slope of deposit (x).

Decision-makers

Importance linguistic values of 7-alternatives for slope of deposit (x2)

ai a2 as a4 as ae ai
el 0.95 0.95 0.65 0.8 0.8 0.35 0.65
o) 0.95 0.8 0.8 0.95 0.95 0.35 0.5
3 0.8 0.8 0.8 0.95 0.95 0.35 0.5
4 0.95 0.8 0.65 0.8 0.95 0.35 0.65
5 0.8 0.95 0.65 0.8 0.8 0.5 0.65
an 0.1718 0.1662 0.1369 0.1659 0.1717 0.0734  0.1141

Table 8. Weights (ai;) of 7-altenatives for thickness of orebody (x3).

Decision-makers

Importance linguistic values of 7-alternatives for thickness of orebody (x3)

ai a as a4 as [113 ai
u 0.95 0.8 0.65 0.8 0.65 0.35 0.8
2 0.95 0.65 0.65 0.8 0.8 0.2 0.65
3 0.8 0.65 0.5 0.65 0.65 0.2 0.8
4 0.8 0.65 0.5 0.8 0.65 0.2 0.8
5 0.8 0.8 0.65 0.8 0.5 0.35 0.65
ais 0.1876 0.1549 0.1284 0.1682 0.1422 0.0562  0.1625
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Table 9. Weights (ai,) of 7-altenatives for depth below the surface (x,).

Importance linguistic values of 7-alternatives for depth below the surface (xs)

Decision-makers

ai a as a4 as ae ai
71 0.8 0.5 0.35 0.8 0.95 0.65 0.65
o) 0.8 0.35 0.2 0.8 0.95 0.5 0.65
3 0.8 0.35 0.2 0.95 0.8 0.65 0.8
“ 0.95 0.5 0.35 0.8 0.8 0.5 0.8
75 0.8 0.5 0.35 0.8 0.95 0.65 0.8
Aais 0.1803 0.0949 0.0623 0.1807 0.1936 0.1278 0.1604

Table 10. Weights (ais) of 7-altenatives for hanging wall RMR (xs).

Importance linguistic values of 7-alternatives for hanging wall RMR (xs)

Decision-makers

a a as as as 113 ai
el 0.65 0.35 0.2 0.8 0.5 0.5 0.2
2 0.8 0.35 0.2 0.65 0.8 0.35 0.2
3 0.8 0.5 0.5 0.8 0.65 0.35 0.35
4 0.8 0.5 0.35 0.8 0.8 0.5 0.35
5 0.8 0.35 0.35 0.8 0.65 0.5 0.35
ais 0.2100  0.1109  0.0855 0.2103 0.1851 0.1204 0.0778

Table 11. Weights (ais) of 7-altenatives for footwall RMR (xy).

Importance linguistic values of 7-alternatives for footwall RMR (x)

Decision-makers

ai a as aq as [113 ai
el 0.65 0.5 0.5 0.8 0.8 0.35 0.35
o) 0.65 0.5 0.5 0.65 0.65 0.5 0.5
3 0.8 0.8 0.5 0.65 0.65 0.35 0.35
4 0.8 0.65 0.65 0.8 0.8 0.5 0.5
75 0.65 0.65 0.65 0.65 0.8 0.5 0.5
ai6 0.1684 0.1469 0.1321 0.1688 0.1756 0.1041 0.1041

Table 12. Weights (ai7) of 7-altenatives for ore body RMR (x).

Importance linguistic values of 7-alternatives for ore body RMR (x7)

Decision-makers

ai a as a4 as Aae ai
71 0.8 0.65 0.5 0.8 0.65 0.35 0.35
o) 0.95 0.5 0.35 0.8 0.8 0.35 0.5
3 0.95 0.5 0.5 0.8 0.65 0.5 0.5
4 0.8 0.65 0.5 0.95 0.8 0.5 0.2
5 0.8 0.5 0.35 0.8 0.65 0.35 0.5
ai7 0.2038 0.1328  0.1040 0.1967 0.1682 0.0967 0.0978

Table 13. Weights (ais) of 7-altenatives for grade distribution (xs).

Importance linguistic values of 7-alternatives for grade distribution (xs)

Decision-makers

ai a as a4 as [113 ai
el 0.8 0.5 0.35 0.65 0.8 0.8 0.5
o) 0.65 0.35 0.2 0.8 0.65 0.65 0.5
3 0.8 0.5 0.35 0.65 0.65 0.65 0.65
74 0.65 0.35 0.35 0.65 0.8 0.8 0.5
s 0.65 0.5 0.5 0.8 0.8 0.65 0.5
ais 0.1695 0.1044 0.0826 0.1704  0.1765 0.1698 0.1268
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Table 14. Weights (aiy) of 7-altenatives for recovery (xo).

Decision-makers

Importance linguistic values of 7-alternatives for recovery (x»)

ai a as a4 as [113 ai
71 0.65 0.5 0.35 0.95 0.65 0.35 0.8
2 0.65 0.5 0.35 0.95 0.65 0.2 0.65
3 0.5 0.5 0.5 0.95 0.65 0.35 0.65
4 0.5 0.35 0.35 0.8 0.5 0.35 0.8
5 0.5 0.35 0.35 0.8 0.5 0.2 0.65
a9 0.1451 0.1133 0.0987 0.2307 0.1525 0.0748 0.1849

Table 15. Weights (ai10) of 7-altenatives for capital cost (x;).

Importance linguistic values of 7-alternatives for capital cost (x10)

Decision-makers

ai a as a4 as [113 ai
el 0.65 0.65 0.5 0.35 0.95 0.5 0.35
2 0.8 0.65 0.5 0.35 0.95 0.35 0.35
3 0.65 0.65 0.5 0.5 0.8 0.5 0.5
74 0.65 0.8 0.65 0.5 0.95 0.35 0.35
s 0.5 0.65 0.5 0.35 0.95 0.35 0.5
aio 0.1621 0.1694 0.1319 0.1017 0.2300 0.1023 0.1026

Table 16. Weights (ai1) of 7-altenatives for mining cost (xy;).

Decision-makers

Importance linguistic values of 7-alternatives for mining cost (xu)

ai a2 as a4 as (113 ai
u 0.65 0.8 0.8 0.5 0.65 0.65 0.35
2 0.8 0.8 0.8 0.65 0.5 0.5 0.35
3 0.65 0.65 0.8 0.5 0.8 0.5 0.2
4 0.65 0.8 0.8 0.65 0.65 0.5 0.35
5 0.5 0.65 0.65 0.5 0.65 0.65 0.5
ain 0.1562 0.1776  0.1853  0.1053 0.1571 0.1345 0.0840

Table 17. Weights (ai;;) of 7-altenatives for annual productivity (x;,).

Importance linguistic values of 7-alternatives for annual productivity (x12)

Decision-makers

ai a as a4 as [113 ar
41 0.8 0.8 0.8 0.65 0.5 0.65 0.5
2 0.8 0.95 0.8 0.65 0.5 0.65 0.35
23 0.95 0.8 0.95 0.8 0.5 0.8 0.35
N 0.8 0.8 0.8 0.65 0.35 0.65 0.5
25 0.8 0.8 0.8 0.65 0.35 0.65 0.5
aiyy 0.1752 0.1761 0.1752 0.1434 0.0926 0.1434 0.0941

Table 18. Weights (aii3) of 7-altenatives for environmental impact (x;3).

Importance linguistic values of 7-alternatives for environmental impact (x13)

Decision-makers

ay a as a4 as (53 a
el 0.8 0.65 0.5 0.95 0.8 0.8 0.8
o) 0.8 0.5 0.5 0.95 0.8 0.8 0.65
3 0.65 0.5 0.35 0.95 0.65 0.95 0.65
74 0.8 0.35 0.35 0.8 0.8 0.8 0.8
75 0.8 0.35 0.35 0.8 0.8 0.8 0.8
ainz 0.1580 0.0951 0.0833 0.1824 0.1580 0.1711 0.1521

According to Tables 6-18, the decision matrix is
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Table 19. Normalized decision matrix.

. Attributes
Alternatives
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
ai 0.1612 0.1718 0.1876 0.1803 0.210 0.1684 0.2038 0.1695 0.1451 0.1621 0.1562 0.1752 0.1580
a 0.1496 0.1662 0.1549 0.0949 0.1109 0.1469 0.1328 0.1044 0.1133 0.1694 0.1776 0.1761 0.0951
as 0.1321 0.1369 0.1284 0.0623 0.0855 0.1321 0.1040 0.0826 0.0987 0.1319 0.1853 0.1752 0.0833
as 0.1668 0.1659 0.1682 0.1807 0.2103 0.1688 0.1967 0.1704 0.2307 0.1017 0.1053 0.1434 0.1824
as 0.161 0.1717 0.1422 0.1936 0.1851 0.1756 0.1682 0.1765 0.1525 0.230 0.1571 0.0926 0.158
as 0.0797 0.0734 0.0562 0.1278 0.1204 0.1041 0.0967 0.1698 0.0748 0.1023 0.1345 0.1434 0.1711
ar 0.1496 0.1141 0.1625 0.1604 0.0778 0.1041 0.0978 0.1268 0.1849 0.1026 0.084 0.0941 0.1521
Step 2: According to Table 19, Equations (9) and formed in Table 20.
(15), normalized weighted decision matrix is
Table 20. Weighted decision matrix.
. Attributes
Alternatives
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

ai 0.0084 0.0176 0.0131 0.0056 0.0193 0.0106 0.0171 0.0065 0.0159 0.0113 0.0159 0.0167 0.0144
a 0.0078 0.0170 0.0108 0.0029 0.0102 0.0092 0.0112 0.0040 0.0124 0.0118 0.0181 0.0168 0.0087
as 0.0069 0.0140 0.0090 0.0019 0.0078 0.0083 0.0088 0.0032 0.0108 0.0092 0.0189 0.0167 0.0076
as 0.0087 0.0170 0.0118 0.0056 0.0193 0.0106 0.0166 0.0065 0.0253 0.0071 0.0107 0.0137 0.0167
as 0.0084 0.0176 0.0099 0.0060 0.0170 0.0110 0.0142 0.0067 0.0167 0.0160 0.0160 0.0088 0.0144
ae 0.0042 0.0075 0.0039 0.0039 0.0110 0.0065 0.0081 0.0065 0.0082 0.0071 0.0137 0.0137 0.0156
ar 0.0078 0.0117 0.0114 0.0049 0.0071 0.0065 0.0082 0.0048 0.0203 0.0071 0.0086 0.0090 0.0139
Step 3: According to Table 20, Equations (10) and (11), PIS(4") and NIS(4") follow as:

At = (v vs, v )=(0.0087 ,0.0176 ,0.0131 ,0.006 ,0.0193 ,0.011 ,0.0171 , 16)

0.0067 ,0.0253 ,0.016 ,0.0189 ,0.0168 ,0.0167 )
4= (. ys.yn )= (0.0042 ,0.0075 ,0.0039 ,0.0019 ,0.0071 ,0.0065 ,0.0081 , a7
0.0032 ,0.0082 ,0.0071 ,0.0086 ,0.0088 ,0.0076 )
Step 4: According to Table 20, Equations (12), alternative follows as:
(13), (16) and (17), the distance between each

D/ = (0.0208,0.0523,0.0702,0.0238,0.0304,0.0832,0.0719) (18)

D = (0.0896,0.0582,0.0403,0.0866,0.08,0.0273,0.0386) (19)

Step 5: According to Equations (14), (18) and (19), the closeness coefficient of each alternative follows as;

C' = (0.81 13,0.5266,0.3647,0.7843,0.7245,0.2472,0.3495) (20)
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According to the closeness coefficient of 7-
alternatives, the order of these alternatives is
A>A>As>Ar>A3>A7>Asg.

The sub-level stoping method is selected as its
closeness coefficient has the highest value. In other
words, the first alternative is closer to PIS and
farther from NIS.

The result calculated from FAHP [7] using the

above-mentioned model and conditions is as
follows.
Ci= (0.757, 0.625, 0.547, 0.741, 0.712, 0

0.484, 0.536)

The order of these alternatives is 41> A4> As>
Ar> A3> A7> As.

From the above calculating result, we can find
that the proposed method in this study is in good
agreement with the results obtained from FAHP.

5. Conclusions

MMS is one of the most important and the most
essential of decisions of a mining project that have
a significant influence on the all of the mine
decision-making problems.

In this work, the best mining method for Apatite
mine was selected using HFGDM-TOPSIS based
on the viewpoints of the experts considering 13-
criteria and 7-alternatives. After calculating the
priority of the alternatives, the feasible mining
methods for this mine were ranked. The results
obtained showed that the sub-level stoping method
with the priority of 0.8113 was the best for the
studied mine.

The results indicated that by application of
HFGDM-TOPSIS for the MMS problem, some
difficulties related to the previous methods could
be reduced. Moreover, the proposed approach
could be applied simply in GDM with too many
decision-makers and taken into account large
amount of uncertain information. Hence, it is
expected that this method will be applied to various
problems of multi-criteria decision-making in
mining engineering.
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