Document Type : Original Research Paper


1 Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran


Signal analysis approaches are a powerful and widely used tool in processing multi-spectral satellite images for detection of alteration zones. The main goal of this work is application of the spectrum-area fractal methodology based on the Landsat 8 OLI satellite images’ data for separation alteration zones for iron oxides at the Tarom region (NW Iran). These alteration zones, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NWDI) are detected using the band-ratio and band combination methods. Then the calculated values are categorized by Spectral Angle Mapper (SAM), k-means, and S-A fractal model. Considering a positive correlation of iron oxides alterations along with magnetite mineralization as an index of mineralization at the studied region, the promising areas are classified by a decision-making model using the TOPSIS method with an acceptable accuracy for presenting in the exploration models.


[1]. Sabins, F.F. (1999). Remote Sensing for Mineral Exploration. Ore Geology Reviews. 14, 157-183.
[2]. Zhang, X, Pazner M, and Duke N. (2007). Lithologic and Mineral Information Extraction for Gold Exploration using ASTER Data in the South Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing. 62, 271-282.
[3]. Beiranvand Pour, A. and Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews. 44, 1-9.
[4]. Aramesh Asl, R., Afzal, P., Adib, A., and Yasrebi, A.B. (2015). Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arab J Geosci.; 8, 2997–3006.
[5]. Yazdi, Z., Jafari Rad, A., Aghazadeh, M., and Afzal, P. (2018). Alteration Mapping for Porphyry Copper Exploration Using ASTER and QuickBird Multispectral Images, Sonajeel Prospect, NW Iran. Journal of the Indian Society of Remote Sensing. 46 (10), 1581–1593.
[6]. Fakhari, S., Jafarirad, A., Afzal, P., and Lotfi, M. (2019).  Delineation of hydrothermal alteration Zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran. Iranian Journal of Earth Sciences. 11, 80-92.
[7]. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., and Jafari, M.R. (2019). Determination of Hydrothermal Alteration Zones by Remote Sensing Methods in Tirka Area, Toroud, NE Iran. Journal of the Indian Society of Remote Sensing. 47, 1817–1830.
[8]. Sadeghi, B., Khalajmasoumi, M., Afzal, P., Moarefvand, P., Yasrebi, A.B., Wetherelt, A., Foster, P., and Ziazarifi, A., 2013 ‘Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1:100000 mapping sheet of Central Iran’, Journal of African Earth Sciences, vol. 85, September 2013, pp. 103–114.
[9]. Sadeghi, B., Khalajmasoumi, M., Moarefvand, P., and Afzal, P., 2012 ‘Extraction of iron alterations from ASTER SWIR and ETM+ data from Esfordi 1:100000 sheet (Central Iran)’, International Mining Congress & Expo, Tehran, Iran.
[10]. Rahimzadegan, M. and Sadeghi, B., 2016 ‘Development of the iterative edge detection method applied on blurred satellite images: state of the art’, Journal of Applied Remote Sensing, Vol. 10 (3) 035018 doi: 10.1117/1.JRS.10.035018.
[11]. Rahimzadegan, M., Sadeghi, B., Masoumi, M., and Taghizadeh Ghalehjoghi, S. 2015 ‘Application of target detection algorithms to identification of iron oxides using ASTER images: a case study in the North of Semnan province, Iran’, Arabian Journal of Geosciences, Vol. 8, issue 9, pp. 7321–7331.
[12]. Babaei, K. and Sadeghi, B., 2010 ‘Discrimination of alteration zones from ASTER SWIR data in the lead and zinc abandoned area of RoknAbad in Ardabil province’, International Mining Congress & Expo, Tehran, Iran.
[13]. Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., and Sadeghi, B., 2012 ‘Processing and Comparison of Airborne Magnetic and ETM+ Data for Identification of Alteration Zones, Sarajeh 1:100000 Sheet, Qom’, Journal of Exploration Geology, 5th year | 4th issue, pp. 31–43.
[14]. Stocklin, J. (1968). Structural History and Tectonic of Iran: A Review. American Association of Petroleum Geologists Bulletin, USA, 52, 1229-1258.
[15]. Nabatian, Gh. and Ghaderi, M. (2013). Oxygen isotope and fluid inclusion study of the Sorkheh-Dizaj iron oxideapatite deposit, NW Iran. International Geology Review. 55(4), 397-410.
[16]. Nabatian, Gh., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V., and Honarmand, M., (2014). Geology, alteration, age and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran. Mineralium Deposita, 49, 217–234.
[17]. Khanmohamadi, N., Khakzad, A., and Izadyar, J. (2010). Mineralogy texture and genesis of Zaker iron- apatite deposit (NE Zanjan). Scientific Quarterly Journal, Geosciences. 76, 119-126 (in Persian with English abstract).
[18]. Nabatian, Gh., Ghaderi, M., Daliran, F., and Rashidnejhad Omran, N. (2012). Sorkheh-Dizaj Iron Oxide–Apatite Ore Deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran. Resource Geology. 63 (1), 42–56.
[19]. Nabatian, Gh., Ghaderi, M., Neubauer, F., Honarmand, M., Liu, X., Dong, Y., Jiang, S.Y., Von Quadt, A., and Bernroider, M. (2014). Petrogenesis of Tarom high-potassic granitoids in the Alborz Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos. 184-187, 324- 345.
[20]. U.S. Geological Survey. (2015. 2016). Landsat—Earth observation satellites (Ver. 1.2, April 2020). U.S. Geological Survey Fact Sheet. 3081, 4 p. (USGS-EROS;
[21]. Hewson, R.D., Cudahy, T.J., Mizujiko, S., Ueda, K., and Mauger, A, L. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnmona province of Australia. Remote Sensing of Environment. 99,159-172.
[22] Kumar, C., Shetty, A., Raval, S., Champati Ray, P.K., and Sharma, R. (2014). Sub-pixel mineral mapping using EO-1 Hyperion hyperspectral data. International Archives of the Photogrammetry, Remote Sensing and Spatial Sciences. XL-8, 455-461.
[23]. Clark, R.N. (1999). Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in: Rencz, A. (Ed.), Manual of Remote Sensing, Vol. 3. Wiley and Sons Inc., New York. pp. 3-58.
[24]. Rowan, L., Hook, S.J., Abrams, M.J., and Mars, J.C. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system Econ Geol Bull Soc Econ Geol. 98 (5), 1019–1027.
[25]. Yamaguchi, Y., Kahle, A.B., Kawakami, T., and Paniel, M., (1998). Overview of the advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 36 (4), 1062–1071
[26]. Han, T. and Nelson, J. (2015). Mapping hydrothermally altered rocks with Landsat 8 imagery: A case study in the KSM and Snow field zones, northwestern British Columbia. British Columbia Geol. Surv. 103–112.
[27]. Mwaniki, M. W., Moeller, M. S., and Schellmann, G. (2015). A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya Int. Arch Photogramm. Remote Sens. Spat. Inf. Sci. 40, 897.
[28]. Van Der Meer, F. (2004). Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 5, 55–68.
[29]. Ali, A. S. and Beiranvand Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan. Int. J. Basic Appl. Sci. 3, 199.
[30]. Ducart, D. F., Silva, A. M., Toledo, C. L. B., and Assis, L. M. D. (2016). Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Braz. J. Geol.; 46, 331–349.
[31]. Prost, G. L. (2002). Remote Sensing for Geologists: A Guide to Image Interpretation, CRC Press. 2nd edn.
[32]. Miyatake, S. (2002). Regional Lineament analysis and alteration mineral mapping for intrusive related copper exploration in the Myanmar central volcanic belt. Proc. 23rd Asian Conf. on Remote Sensing. pp. 1-4 (CD-ROM).
[33]. Ren, D. and Abdelsalam, M. G. (2001). Optimum index factor (OIF) for ASTER data: examples from the Neoproterozoic Allaqi Suture, Egypt. Proc. Geol. Soc. Am. p. 123.
[34]. Kruse F. A., Lefkoff A. B., Boardman J. B., Heidebrecht K. B., Shapiro A. T., Barloon P. J., Goetz A. F.H. (1993). The Spectral Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sensing of Environment, Special issue on AVIRIS. V. 44, 145-163. 
[35]. Van der Meer F. and De Jong S. (2003). Imaging Spectrometery. Basic Principles and Prospective Applications, 4. Kluwer Achademic Publishers, Dordrecht/ Boston/London. 35.
[36]. Gao, B.-C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 58: 257-266.
[37]. Bannari, D. Morin, F. Bonn, and A. R. Huete. (1995). A review of vegetation indices, Remote Sensing Reviews. 13:1-2, 95-120.
[38]. Drineas, P., Frieze, A., Kannan, R., Vempala, S., and Vinay V. (1999). Clustering large graphs via the singular value decomposition. Machine Learn. 56 (1-3), 9-33.
[39]. Meila, Marina. (2006). The uniqueness of a good optimum for k-means. In: Proc. 23rd Internat. Conf. Machine Learning. pp. 625-632.
[40]. Sadeghi, B. (2020) Quantification of Uncertainty in Geochemical Anomalies in Mineral Exploration. PhD thesis, University of New South Wales.
[41]. Heidari, S.M., Afzal, P., Ghaderi, M., and Sadeghi, B. 2021 ‘Detection of mineralization stages using zonality and multifractal modeling based on geological and geochemical data in the Au-(Cu) intrusion-related Gouzal-Bolagh deposit, NW Iran’, Ore Geology Reviews. (
[42]. Sadeghi, B. 2021 ‘Simulated-multifractal models: a futuristic review of multifractal modeling in geochemical anomaly classification’, Ore Geology Reviews. (
[43]. Sadeghi, B. (2021) Spectrum-Area Method. In: Daya Sagar B., Cheng Q., McKinley J., Agterberg F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham.
[44]. Jain, Anil K., Dubes, Richard C. (1988). Algorithms for Clustering Data. Prentice Hall.
[45]. Koohzadi, F., Afzal, P., Jahani, D., and Pourkermani, M. (2021). Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (S-A) fractal model in north central Iran. Iranian Journal of Earth Sciences. 13, 299-307.
[46]. Afzal P, Harat H, Fadakar Alghalandis Y, and Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Geochemistry 73(4):533–543.
[47]. Apple, J.M. (1991). Plant layout and material handling. Krieger.
[48]. Goetschalckx, M. (1992). An interactive layout heuristic based on hexagonal adjacency graphs. European Journal of Operational Research. 63 (2), 304-321.
[49]. Salo, A.A. (1995). Interactive decision aiding for group decision support. European Journal of Operational Research. 84 (1), 134-149.
[50]. Kim, S.H., S.H. Choi, and J.K. Kim. (1999). An interactive procedure for multiple attribute group decision making with incomplete information: Range-based approach. European Journal of Operational Research. 118 (1), 139-152.
[51]. Heragu, S.S. and A. Kusiak. (1991). Efficient models for the facility layout problem. European Journal of Operational Research. 53 (1), 1-13.
[52]. Chan, F.T., K.W. Lau, P.L.Y. Chan, and K.L. Choy. (2006). Two-stage approach for machine-part grouping and cell layout problems. Robotics and Computer-Integrated Manufacturing. 22 (3), 217-238.
[53]. Hwang, C.-L. and K. Yoon. (1981). Multiple attribute decision-making. Springer.
[54]. Lai, Y.-J., T.-Y. Liu, and C.-L. Hwang. (1994). Topsis for MODM. European Journal of Operational Research. 76 (3), 486-500.
[55]. Chen, S.-J.J., C.-L. Hwang, M.J. Beckmann, and W. Krelle. (1992). Fuzzy multiple attribute decision making: Methods and Applications, SpringerVerlag New York, Inc.
[56]. Zeleny M. and J.L. Cochrane. (1973). Multiple criteria decisions-making. McGraw-Hill New York. Vol 25.
[57]. Shih, H.-S. (2008). Incremental analysis for MCDM with an application to group TOPSIS. European Journal of Operational Research. 186 (2): 720-734.
[58]. Shih, H.-S., H.-J. Shyur, and E.S. Lee. (2007). An extension of TOPSIS for group decision-making. Mathematical and Computer Modelling. 45 (7): 801-813.
[59]. Shyur, H.-J. and H.-S. Shih. (2006). A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling. 44 (7): 749-761.
[60]. Tzeng, G.-H., C.-W. Lin, and S. Opricovic. (2005). Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy. 33 (11), 1373-1383.
[61]. Lin, M.-C., C.-C. Wang, M.-S. Chen, and C.A. Chang. (2008). Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry. 59 (1), 17-31.
[62]. Karray, F., E. Zaneldin, T. Hegazy, A.H. Shabeeb, and E. Elbeltagi. (2000). Tools of soft computing as applied to the problem of facilities layout planning. Fuzzy Systems. IEEE Transactions. 8 (4): 367-379.
[63]. Grobelny, J. (1987). The fuzzy approach to facilities layout problems. Fuzzy Sets and Systems. 23 (2): 175-190.
[64]. Yang, T. and C.-C. Hung. (2007). Multiple-attribute decision making methods for plant layout design problem. Robotics and Computer-Integrated Manufacturing. 23 (1): 126-137.
[65]. Yang, T. and P. Chou. (2005). solving a multi-response simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in Simulation. 68 (1): 9-21.
[66]. Ataei M. Multi-criteria decision making. Shahrood: Shahrood university of technology; 2010.