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 Assessment of blast results is a significant approach for the improvement of 
mining operations. The different procedures for investigating rock fragmentation 
have their limitations, causing different variation prediction errors. Thus every 
technique is site-explicit, and applicable for a few explicit purposes. This work 
evaluates the existing empirical blast fragmentation model predictions in the case 
study of small-scale dolomite quarries. An attempt is made to compare the prediction 
accuracy of the modified Kuz-Ram model, Lawal 2021 model, and Kuznetsov-
Cunningham-Ouchterlony (KCO) model with the WipFrag© analysis result and 
proposed artificial neural network (ANN) models. The prediction error analysis of 
the current models and that of the new proposed ANN models is evaluated using the 
three model assessment indices. The assessment indices uncover that the KCO model 
when compared to the modified Kuz-Ram model has the least error for most blast 
round percentage passing size predicted. However, the proposed artificial neural 
network models show high prediction exactness in predicting blast fragment mean 
size than the existing empirical models. Therefore, the proposed ANN models can be 
used to improve the productivity of small-scale dolomite blasting operation results 
for practical purposes. 
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1. Introduction 
The mining operation activities are well-known 

to take place in large- and small-scale capacities 
depending on the working operation strength. 
Steven has noted that Africa has gained more 
ground in small-scale mining activities as most 
activities in the continent are practiced in rural 
areas by local miners with limited training, 
financial capacity, and mining types of equipment 
[1]. Small-scale mines have a great affinity to 
contribute significantly to national socio-
economic development including poverty 
alleviation role through employment provision, 
contributing to national incomes, and contributing 
to state revenues. Small-scale miners also lack 
professionalism with limited mining engineers 
and expertise. Blasting operations in small-scale 
mines and quarries are done haphazardly with 
different consequences to the environment, the 
surroundings, and even distant communities and 

to the miners themselves. Jug et al. have indicated 
that making blast activity profitable is one of the 
approaches to limiting extra expense increment on 
downstream operations like mucking, loading, 
pulverizing, and processing [2].  Kulatilake et al. 
have also stated that when blasting operation 
results give undesired fragmentation, it affects 
mine operation efficiency and delays in materials 
handling [3]. Dinis et al. have explained further 
that 15% to 20% of open-pit mine operation 
expenses are represented by drilling and blasting 
operation costs [4]. Small-scale mine blasting 
operation improvement using model 
implementation is important in light of the fact 
that is critical for profitability and safety 
production maximization [5-7]. According to 
Mutinda et al. the rock fragmentation model is a 
fundamental tool in blasting operation for design 
and parameter simulation [8]. Various attempts 
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had been made to develop several prediction 
models for blast particle size distribution 
including the use of artificial intelligence 
algorithms and soft computing approaches [9].  
Moreover, the development of fragmentation 
models provides innovative solutions to blasting 
problems such as the improvement of mine to mill 
fragmentation products [9, 10]. Many authors' 
works have revealed that the activities in large-
scale mines differ in size, nature, and utilization 
of equipment compared with small-scale mining 
industries. Most large-scope mine blasting activity 
includes the use of equipment capable of drilling 
long and big diameter holes to accommodate a 
large volume of explosives unlike small-scale 
mining companies with a handheld pneumatic 
jackhammer. Small-scale mining activities had 
made high commitments to the national economy 
in the past in spite of less research work zeroing 
in on its improvement [1]. The fragmentation of 
rock mass in small-scale mines using explosive 
provides an important solution to the run-off-mine 
productivity but limited understanding of the 
effect of blast design controllable parameter on 
the blast result have been given little attention 
from the researchers. Improving blast activity in a 
small diameter drill hole is important to enhance 
the operation result. Therefore, a rapid and 
reliable technique is required for assessing the 
blast results that can be justified with existing 
traditional methods for high prediction efficiency. 
This research work is necessitated by the need to 
evaluate the existing empirical fragmentation 
models on small-scale mine blasting operations 
and compare them with modern models. The 
study objectives are to determine the prediction 
performance of the Modified Kuz-Ram model, 
Kuznetsov-Cunningham-Ouchterlony (KCO) 
model, and Lawal [11] model for small diameter 
drill hole marble blast mean fragment size using 
selected quarries in southwest Nigeria as a case 
study. The second section of the study develops a 
proposed artificial neural network model for 
predicting blast means fragmentation size 
prediction, which is finally compared with the 
existing models. 

2. Mine blast fragment size model review 
The availability of various developed models for 

the prediction of blast fragmentation size 
distribution has been noted by Babaeian et al. 
[12]. These models can be categorized into the 
empirical and mechanistic base on the prediction 
result nature [13]. According to Franklin et al. on 

blast fragmentation, the empirical models are 
identified as those estimation models that 
accommodate the blast design parameters such as 
burden, spacing, and powder factors with different 
units for the prediction of blast fragmentation 
results [14]. The mechanistic models adopt 
basically two approaches in blast fragmentation 
prediction. The model evaluates blast productivity 
from the perspective of the explosive energy 
distribution during blast detonation through either 
fundamental principles of physics or the dynamic 
of explosive wave and gas energy utilization. 
Ouchterlony and Sanchidrián have indicated that 
this blast fragmentation model technique requires 
a large number of numerical techniques, which 
makes its prediction process require intense 
iteration and unnecessarily long computation 
times [13]. The high complexity of the dataset 
required for mechanistic models limited its 
application in mine sites. Mutinda et al. have 
noted that the blast fragmentation empirical model 
requires the collection of historical and 
experimental field blast information, which is 
subjected to scientific fitting and computational 
articulation approaches [8]. The adoption of 
empirical models back dates to the 1970 model 
developed by da Gama [15] for the prediction of 
blast fragmentation size adoption explosive 
energy, rock characteristics, and charge needed as 
the predicting variables. Figure 1 presents the 
chronological development of the empirical 
models for blast fragmentation improvement. The 
two well-identified blast fragmentation prediction 
models are Kuznetsov-Cunningham-Ouchterlony 
(KCO) and Modified Kuz-Ram models MKM. 
The two models were developed and put into use 
by Cunningham in 2005 [8, 13, and 16] to reduce 
the number of oversize materials delivered during 
blasting, and illuminate the mine administrator 
regarding the reasonable blast properties that are 
probably going to bring about the ideal fragment 
size. [17] has mentioned that, apart from these 
well-known models, other newer techniques for 
examining blast fragments have been recently 
proposed such as artificial neural networks 
(ANNs) models [9,18] and multivariate regression 
(MVR) [19]. 

2. Materials and methodology 

Improvement of mining blast operation results 
has taken different approaches including the 
adoption of models proposed by several authors 
from different 1900s till date [13]. One major 
limitation of the empirical model is the site 
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limitation and operation-specific constraint. A 
successful blast operation always requires a safe 
and profitable technique to minimize explosive 
energy loss to blast environmental challenges. 
Fifty-six (56) blasting operations resulting from 
six pits belonging to different local miners at 

Fanalou dolomite quarry in Atte and Ikpeshi, 
Akoko Edo, Nigeria were used in this work. 
Figure 2 shows the mine blast design pattern. The 
descriptive statistics of the blast charge design 
parameter for the blast rounds captured for this 
study are presented in Table 1. 

Table 1. Descriptive statistics of blast charge design parameter datasets. 

 
The blast images captured from the mine were 

analyzed with the Wipfrag software to measure 
the blast fragment size distribution. Fifty-six 
images were captured in accordance with [35]. 
Fifty of the images were used for the proposed 
ANN model development, and six were used for 
the existing empirical model evaluation. The 
image analysis software was used to determine the 
size distribution curve of the blast images 
captured from the mine blast rounds. Maerz 
described an image analysis software package 
such as WipFrag software that uses a grayscale 
technique as a state of art image-based gravimetry 
image processing package [35]. To predict the 

blast fragmentation size distribution in this study 
using the existing empirical models, six blast 
rounds were monitored, and the blast design 
parameters, explosive properties, and rock 
properties were measured (please see Figure 3). In 
the case study mine, the mine working bench 
height was 1.5 m and about 22.5 m in depth.  The 
drilling operation is performed by pneumatic 
Jackhammer in conjunction with 8.6 bar diesel air 
compressor. The mined rock mass rating was 
evaluated using the Bieniawski RMR rating, the 
formation has a rough surface, no separation, 
unweathered wall rock surface, no infilling, and 
persistence length of 1-3 m [36]. 

 D( m) B/De B (m) S(m) PF 
(kg/m3) 

Explosive load 
weight (kg) CCL (m) BCL (m) 

Blast mean 
size (mm) 

Max 0.04 30 1.2 1.3 1.80 1.06 0.38 0.46 483.2 
Min 0.04 15 0.6 0.7 0.44 0.51 0.12 0.22 122.62 
Average 0.04 20.86 0.83 1.06 0.77 0.85 0.22 0.42 328.64 
Variance - 6.910 0.011 0.013 0.039 0.01 0.005 0.01 5660.21 
Standard deviation - 2.63 0.11 0.12 0.20 0.10 0.077 0.083 75.23 
CCL= Length of ammonium nitrate fuel oil charge, Lexp= Bottom charge length (primary charge) 
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Figure 1. Early fragmentation empirical models for blast fragmentation prediction. 

•Limitation: This model had a disadvantage in that it neglects the effect of stemming 
length, spacing, bench height, and does not include non-uniformity and uniformity 

predictions factors [12].

Microcomputer simulation model  and Communion Theory model
(Da Gama [20] and Da Gamma [15] )

•Limitation: This model did not perform much better in predicting particle size 
distribution [12].

•Factors considered: Type of explosives, rock mass classification, influence of applied 
blast energy, and evaluation of uniformity and non-uniformity of fragmentation

Larsson et al. and Kuznetsov 1973 models
[21-22]

•Ouchterlony and Sanchidrián [13]

1.1983 Kuz-Ram model by Cunningham [23] (First generation 
vision)

2.  Cunningham [25] model adopting Lilly [24] blastability index 
(Second generation version)

3.Cunningham [16] presented the third generation of his Kuz-Ram 
model

•Model origination: From adjustment to Larson’s model [16, 26, 27].
•Limitation: This model also had its drawbacks, in that the assumption of the rocks’ 

features was an approximation. Also the predicted dimensions of fragmented rocks were 
smaller than the actual values [12].

1987 Sve- DeFo  Model by Kou and Rustan  

•Otterness et al. [28]and Stagg et al. [29].
•Chung and Katsabanis [26] verified the accuracy of Kuz-Ram model adopting [28] 

dataset. They introduce A value as an improvement to Kuz-Ram model

Work by US Bureau of Mines and Chung and Katsabanis

•Crush zone model (CZM) and the two-component model (TCM) [30-34].

Julius Kruttschnitt Mineral Research Centre (JKMRC) Models
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Figure2. Case study mine blast design pattern. 

The rock comprises massive dolomitic marble 
with RMR 65 according to Bieniawski rock mass 
classification. The packaged emulsion gel 
explosive and ANFO are used in the mine for 
their basting operation. The company makes use 
of a staggered drilling pattern as shown in Figure 
2. The blasts are initiated by a non-electric 
solacord having 6800m/s VOD detonate 
instantaneously under the No.6 detonator. The 
density and UCS of the dolomite rock sample are 
2800 kg/m3 and 44.39 MPa, respectively, as tested 
according to [37, 38] standard. 

 
Figure3. A flow chart of empirical modeling work. 

2.1. Application of existing empirical 
fragmentation modelsin blasting 
2.1.1. Kuznetsov-Cunningham-Ouchterlony 
(KCO) model 

The Swebrec work provides a replacement 
equation for the Rosin-Rammler general equation 
adopted in the Kuz-Ram model; the Swebrec 
result is shown in Equation (1) (also see Figure1). 
Swebric function includes three parameters: the 
mean size of the material size (X50) going through 
the essential crusher gape, (XMax) denotes the 
maximum block size, and b indicated curve 
undulation parameter similar to and depending on 
the uniformity index of the Kuz- Ram model [6, 
39]. 

P(x) =  
(1) 

 
where P(x) denotes the percentage fraction of 

fragments passing sieve size X, and b signifies the 
curve undulation parameter. XMax is the maximum 
blast fragment size (considered as the S or B 
length). 

B= 2퐼푛2 퐼푛 푛 (2) 

where n is the uniformity index calculated using 
Equation (3) 

n = [2.2 − 14 ( )] [0.5 (1 + ( )]0.5 [1 − ( )] 
(3) 

× [abs( ) + 0.1]0.1[( )] 

Blast fragmention 
size prediction 
using existing 

empirical models

Rock Properties 
and discontinuity 
property dataset

Blast parameters, blast 
images, and primary 

crusher property

Blast fragmentation 
images collection and 

WipFrag analysis 
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where B denotes the burden (m), S depicts the 
spacing (m), D indicates the hole diameter (mm), 
W denotes the standard deviation of drilling 
accuracy (m), BCL means the bottom charge 
length (m), CCL means the column charge length 
(m), L depict the total length of the drilled hole 
(m), and H means the bench height (m). Eq. 4 
shows the general Kuznetsov equation. 

X50 =퐴K-0.8×Q1/6 ( ) 19/20 (4) 

where A is the rock factor calculated using 
Equation (5), Q is that the mass of explosive been 
utilized in kg, K is that the powder factor (specific 
charge) in kg/m3, and REE is that the relative 
effective energy of the explosive; this is often 
derived by dividing absolutely the weight strength 
of the explosive in use by absolutely the weight 
strength of ANFO and multiply by 100%. 

A=0.06(RMD+RDI+HF) (5) 

where HF indicates the hardness factor, and 
RMD is the rock mass description. When rock is 
powdery and friable RMD is equal to 10, when 
joints are vertical RMD is assigned the same 
value as JF; when the rock mass is massive, RMD 
is 50. JF is the joint factor, calculated using 
Equation (6): 

JF = (JCF×JPS) +JPA (6) 

where JCF depicts the joint condition factor to 
which 1 is assigned for tight joints, 1.5 for relaxed 
joints, and 2 for gouge-filled joints, JPS denotes 
the vertical joint plane spacing; [8] indicated that 
JPS is 10 when Sj< 0.1 m, 20 if Sj is assigned 
value between 0.1 and 0.3 m, 50 if Sj is an 
assigned value between 0.3 and 0.95 √BS, and 80 
if Sj> √BS. JPA represents the joint plane angle; 
Mutinda et al. have noted that the value of JPA 
when the joints dip out-of-face is assigned value 
20, when striking perpendicular to the face, JPA 
value is assigned value 30, and when the joints 
dip into the face it assigned value 40. RDI depicts 
the rock density influence in kg/m3, defined by 
Equation (6) [8]. 

RDI = (25×ϑ) -50 (7) 

where ϑ denotes the rock density in kg/m3. 
In order to predict the blast fragmentation size 

distribution of small-scale mine employing KCO 

model, the rock parameter, explosive property, 
and blast design parameters presented in Table 2 
into Equation 1-7. 

2.1.2. Modified Kuz-Ram model 
The Modified Kuz-Ram (MKM) model is an 

improved version of the first Kuz-Ram model 
with adjusted values of 0.073 introduced to the 
mean size equation of the initial Kuz-Ram model 
[6]. The uniformity index of the Kuz-Ram model 
was also modified. The modified Kuz-Ram model 
as compared with the ordinary Kuz-Ram model 
has a better prediction of fine materials. The 
Cunningham's uniformity index Equation 3 
remains unchanged for the modified Kuz-Ram 
model. Rosin-Rammler’s equation for percentage 
passing is determined using Equation (7). 
Faramarz et al. have also noted that Equation (7) 
is important in characterizing the muck pile size 
distribution [40]. 

Rx = [-0.693( )n] (7) 

Xm = 0.073BI( )0.8 ×Qe
1/ 6 ( )-19/30 (8) 

n` = 1.88 × n× BI-0.12 (9) 

BI = 0.5(RMD+ JPS+ JPA+ RDI + HF) (10) 

Where Xm denotes the mean fragment size, cm; 
BI depict the blastability index, Vo means the 
volume of rock broken by one blast hole, m3, Qe 
represents the mass of explosive in each hole, kg; 
SANFO denotes the relative weight strength of the 
explosive to ANFO, n means the uniformity 
index, n` represents the modified uniformity index 
and RMD, JPS, JPA, RDI, and HF have the same 
meanings as defined in Equations (5-6) 

The volume of the rock broken by one blast hole 
Vo (m3) can be found by Equation (11). 

Vo = B × S× H (11) 

In order to predict blast fragmentation size 
distribution of small scale mine employing 
modified Kuz-Ram model, the rock parameter, 
explosive property and blast design parameters 
presented in Table 1-2 into Equation 7-11. 

 

 

 



Olamide Taiwo Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

633 

Table 2. Dolomite rock characteristics and model parameters. 
Blast No. RDI RMD JPS JPO HF BI Vo Qe n' N 

Pit 1 20 50 20 10 34 67 0.8911 0.86 1.98 1.74 
Pit 2 19.75 50 20 10 34 66.875 0.8645 0.72 2.05 2.01 
Pit 3 19 50 20 10 34 66.5 0.945 0.51 2.52 1.81 
Pit 4 20.1 50 20 10 34 67.05 1.056 0.87 2.15 2.16 
Pit 5 20.1 50 20 10 34 67.05 1.04 0.956 2.15 1.9 
Pit 6 20.1 50 20 10 34 67.05 1.016 0.89 2.22 1.85 

 
2.1.3. Lawal2021 new modified Kuz-Ram 
model 

The drilling and blasting design parameters 
obtained from the Limestone quarry data from 
[41] and iron ore mine data from [42] were used 
by Lawal [11] to modify the Kuz-Ram model. 
This research work modified the prediction of the 
fragment size by the Kuz-Ram model using the 
results of the image analysis and the least square 
method of error minimization present in Equation 
12. The modification introduced a new land 
coefficient of the rock factor of 0.03739 contrary 
to one proposed by Lilly [24]. The newly 

proposed model has an overall percentage error 
difference between the proposed model and the 
actual value to be about 3.5%, while having 65% 
accuracy to the Kuz-Ram model [11]. Equation 13 
presents the original Kuz-Ram model, and 
Equation 14 presents Lawal [11] modified Kuz-
Ram model. 

Fo=∑ (풏
풊 ퟏ 푋표 − 푋푛)2 (12) 

where Fois the objective function of the least 
square method of error minimization,Xois the 
actual results, and Xn the new model prediction 
result. 

 

X50 =0.06(RMD+JF+RDI+HF)K-0.8×Q1/6 ( )19/30 (13) 

Xnew= 0.03739[(RMD+JF+RDI+HF)K-0.8×Q1/6 ( )19/30] (14) 

 
In order to predict the blast fragmentation size 

distribution of small scale mine employing 
Lawal[11] modified Kuz-Ram model, the rock 
parameter, explosive property and blast design 
parameters presented in Table 1-2 into Equation 
14. 

2.2. Application of artificial neural network 
approach in predicting blast fragmentation  

The artificial neural network (ANN) modeling 
technique learns from the data samples presented 
to the system; it adopts this data to adjust their 
weights in an attempt to capture the relationship 
between the historical set of the model inputs and 
the corresponding outputs. Fifty-six input and 
output data used in this study was extracted from 
the blast records of the Fanalou Company Nigeria 

limited located in Edo state, Nigeria. The model 
flow sheet is presented in Figure 4. 

The ANN model proposed in this work was 
trained with 40 datasets, validated with 5 datasets, 
and tested with 5 datasets. The model was trained 
using a MATLAB-based ANN tool. The model 
with a 6-6-1 (6-input 6-neurons 1-output) 
architecture structure trained with the Levenberg-
Marquardt algorithm was found to be optimum 
(Figure 5c). The training performance, regression 
curve, and architecture structure is presented in 
Figure 5 (a-b). The bias and weight of the 
optimum ANN model are substituted into 
Equation 15 to obtain the applicable mathematical 
equations present in Equation 16. The extracted 
Equation 16 was compared with the existing 
model using new six blasting datasets. 

 

pj=fsig/purlin{b0+∑ [푓푠푖푔(bnk + ∑ wikҐi)w푘 ×. . . ]} (15) 

 
where b0 is the bias in the output layer, wk is the 

weight of the connection between the kth of the 
hidden layer and the single output neuron, n is the 
number of neurons in the hidden layer, bnk is the 
bias in the kth neuron of the hidden layer, wik is the 

weight of the connection between the ith input 
parameter and the hidden layer, Γi is the input 
variable I, pj is the output variable, and fpurlin and 
fsig are the linear and non-linear transfer functions, 
respectively. 
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Figure 4. A flowchart of ANN model development. 

 
 

(a) (b) 

 
(c) 

Figure 5. ANN training performance (a), optimum model regression curve (b), and ANN model architecture (c). 
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X50=193.1Tanh (∑ 퐾푖 − 1.33081) + 315.81 (16) 

K1=0.071833Tanh (-3.34025B/De-0.5345S/B+2.0561PF+0.0549ECW+0.3870CCL-0.6659BCL-1.9479)  
K2=1.37751Tanh (-2.2095B/De-1.9309S/B+0.1790PF+0.7189ECW+0.2432CCL-0.6573BCL+0.7358)  
K3= 1.5086Tanh (0.0669B/De-1.2418S/B-3.1964PF+1.5283ECW-0.3934CCL+2.4292BCL+0.4609)  
K4=1.5086Tanh (-1.5693B/De+2.6793S/B+1.1071PF+0.0415ECW-0.0257CCL-1.7074BCL-0.7962)  
K5=-1.6021Tanh (-0.3537B/De+0.1709S/B+0.8585PF-1.2947ECW-0.1624CCL-1.6767BCL-2.4068)  
K6=1.9552Tanh (0.5520B/De-5.1015S/B-0.6960PF-0.6825ECW+2.7092CCL+0.2510BCL+0.8187)  

 
where B/De is the burden to diameter ratio, S/B 

is the spacing to burden ratio, PF is the powder 
factor in kg/m3, ECW is the explosive charge 
weight in kg, CCL is the drill column charge 
length in m, BCL drill bottom charge length in m, 
and X50 is the blast fragment mean size. 

 

 

3. Results and discussion 
3.1. Wipfrag analysis and model size 
distribution result 

Figure 6 presents the size distribution curve 
result from the image analysis software. The 
result from the Wipfrag analysis indicated that the 
mine blast result had poor to moderate 
fragmentation with uniformity index (n) ranging 
from 1.11 to 1.67 [23]. 

 

   
Blast 1 Blast 2 Blast 3 

   
Blast 4 Blast 5 Blast 6 

Figure 6.WipFrag analysis result for blast images. 
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Figure 7 presents the predicted particle size 
distribution for interpolation of the two existing 
empirical models obtained using Equation 1 and 
Equation 7 with the result from the image analysis 
software. The curve interpolation result shows 
that the existing models have poor prediction 
performance for the six blast rounds. The 

company's primary crusher gape size was 
identified to be 350mm, materials bigger than this 
size is considered to be a boulder, those within the 
size range are considered to be the optimum size, 
and those smaller to be the undersize materials. 
The two models underestimated fine materials in 
most blast rounds, as shown in Figure 7(a-f). 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Relationship between predicted and actual %passing for (a) blast 1, (b) blast 2, (c) blast 3, (d) blast 4, 
(e) blast 5, and (f) blast 6. 
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3.2. Model comparative analysis 
The prediction performance comparison of the 

newly proposed ANN model and the existing 
fragmentation models was done with new six blast 
rounds. The prediction result from the models was 
presented in Figure 8 and Table 3. The prediction 

correlation coefficient (R2) of the modified Kuz-
Ram, KCO and the Lawal [11] models are 0.79, 
0.86, and 0.82, respectively, while the correlation 
coefficient of the newly proposed ANN models is 
0.98. Table 3 shows the prediction result of the 
existing and newly proposed models. 

Table 3. Prediction result of existing and new proposed models. 

Blasts ID Actual Wipfrag 
X50 (mm) 

MKM X50 
(mm) 

KCO X50 
(mm) 

Lawal[11] X50 
(mm) 

ANN 
X50 (mm) 

BT1 396.58 382.702 354.6163 196.0161 385.9566 
BT2 387.89 426.85 381.7574 218.6283 382.6537 
BT3 469.88 498.24 478.0767 255.1935 467.5579 
BT4 392.14 430.65 393.7873 220.5746 379.6081 
BT5 418.97 467.7022 435.423 239.5524 394.3984 
BT6 509 517.5695 493.7069 265.0939 502.6328 

 

  
(a) (b) 

Figure 8. Comparison between new proposed model and existing models (a) model prediction relationship with 
measured mean size, (b) model prediction performance evaluation using least square error analysis correlation 

coefficient. 

The Lawal [11] model underestimated the blast 
mean size with a 45.7% deviation from the 
Wipfrag measured values, as presented in Figure 
8a. The modified Kuz-Ram model overestimated 
the actual blast mean size with a 5.9% deviation 
from the Wipfrag measured values. The least-
square error correlation coefficient of the 
proposed ANN models was revealed in Figure 8b 
to be 0.98, which is closer to unity. Based on this 
comparison, the ANN models were revealed to 
predict the blast means size better than the 
existing models with a lower coefficient of 
correlation. 

4. Model error analysis 
To accurately evaluate the existing models' 

prediction error, four model error assessment 
indices were used to assess the model predicted 

values. The error analysis indices used are Root 
mean square error (RMSE), the goodness of fit 
(R2), mean absolute error (MAE), and value 
account for (VAF). 

RMSE is an applied statistical index that shows 
the fitted standard deviation of the variation 
between two values obtained from different 
models; it is calculated using Equation (17). 

RMSE= 
∑ ( )^  (17) 

The goodness of fit (correlation coefficient R2) 
Equation 18 was adopted in this work to examine 
the model fitness and prediction correlation 
strength. 

R2 = [1 − ∑ ( )

∑ ( )
] (18) 
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MAE is a widely adopted model error analysis 
indicator that expresses the mean absolute error of 
model predicted values. It also gives close 
reflection of the exact predictive value 
relationship with the actual value. MAE is 
calculated using Equation (19). 

MAE= ∑ /퐴푖 − 푃푖/ (19) 

where Pi indicates the predicted value, andAi 
indicates the actual value. 

 
 

Figure 9. Model error analysis comparison result. 

The predicted values from the existing models 
that form the new proposed artificial neural 
network models and also the actual mean size 
measure by the Wipfrag software were substituted 
into Equations 17-19 to determine RSME, R2, and 
MAE in this work. Figure 9 presents the error 
analysis result of the existing and proposed 
models. The results displayed in Figure 9 affirm 
that the ANN models predict the blast 
fragmentation mean size with lower RMSE, and 
MAE, and with a high goodness of fit in all the 
six blast rounds. 

5. Conclusions 
In the small-scale mining industry, the 

operations are carried out based on little 
professionalism due to the availability of cheap 
and sophisticated innovation and technology. 
Blast operation optimization using local existing 
blast design ideas is one of the great challenges 
faced by small-scale mines. As a result of the 
limitation to advance software and technology, 
artisanal and small-scale mine blasting engineers 
decide to make use of the traditional approach to 
design and predict blast operation results. 

In this work, the author proposed an artificial 
neural network technique for the prediction of 
small-scale dolomite blast mean size. The 
prediction accuracy of three existing empirical 
models was also evaluated and compared with the 
proposed model. The ANN techniques employed 

in this work were collected from the blast 
operation carried out in six pits in Fanalou quarry 
at Akoko Edo Nigeria. Six independent variables 
and six neuron architectures were used to mimic 
the predicted blast mean size database. 

The proposed model shows a higher prediction 
performance in estimating small diameter 
dolomite blast mean size than KCO, modified 
Kuz-Ram, and Lawal 2021 models. 

It was obtained that the KCO model had RSME 
=19.89, MAE=14.95, the goodness of fit of 86.20, 
the modified Ku-Ram model has RSME =32.778, 
MAE=29.50, the goodness of fit of 79.20, the 
Lawal [11] model RSME =198.36, MAE=196.57, 
the goodness of fit of 82.60, and the proposed 
ANN models have RSME =12.56, MAE=10.28, 
the goodness of fit of 98.0. Other artificial 
intelligence (AI) modeling techniques like 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 
and others are recommended to improve blast 
mean size prediction. However, the performance 
of the ANN proposed model is satisfactory, and 
can be used for practical purposes. 

6. Acknowledgments 

The author registers his profound gratitude to 
Engineer Fatia Jimoh, the chief operating officer 
of Fanalou Company limited for his technical 
support in data acquisition. The author wishes to 
express his deep appreciation to Engr. Abdulkair 
Babatunde, School Mines, China University of 



Olamide Taiwo Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

639 

Mining & Technology, Xuzhou China for fruitful 
discussions and for reading the early version of 
the draft. 

References 
[1]. Steven, J. (2013). Ergonomic Hazards Associated 
with Small Scale Mining in Southern 

Africa, International Journal of pure and applied 
Sciences and technology. 15 (2): pp. 8-17. 

[2]. Jug, J. (2017). Fragment size distribution of blasted 
rock mass, IOP Conference Series, Earth and 
Environmental Science. 95 (4): pp.1–9. 

[3]. Kulatilake, P.H.S.W., Wu, Q., Hudaverdi, T. and 
Kuzu, C. (2010). Mean particle size prediction in rock 
blast fragmentation using neural networks, Engineering 
Geology. 114 (3-4): pp. 298-311. 

doi:10.1016/j.enggeo.2010.05.008. 

[4]. Dinis, C. and Da Gamaand Lopez Jimeno, C. 
(1993). Rock fragmentation control for blasting cost 
minimization and environmental impact a battement, 
Procs. 4th International Symposium on Rock 
Fragmentation by Blasting (Fragblast-4).Vienna, 
Austria, pp. 273-280. 

[5]. Workman, L. and Eloranta, J. (2003). The effects 
of blasting on crushing and grinding efficiency and 
energy consumption, In: Proc 29th Con Explosives and 
Blasting Techniques, Int Society of Explosive 
Engineers, Cleveland OH. pp. 1–5. 

[6]. Gheibie, S.,Aghababaeia, H.,Hoseinieb, S.S.H. and 
Pourrahimianc, Y. (2009). Modified Kuz 

Ram fragmentation model and its use at the Sungun 
Copper Mine, International Journal of Rock Mechanics 
and Mining Sciences. 46 (6): pp. 967–973. 

[7]. Moray, S. (2006). Energy efficiency opportunities 
in the stone and asphalt industr, In: 

Proceedings of the Twenty-Eighth Industrial Energy 
Technology Conference, New Orleans, LA. pp.71–83.  

[8]. Mutinda, E.K.,Alunda, B.O.,Maina, D.K. and 
Kasomo, R.M. (2021). Prediction of rock 
fragmentation using the Kuznetsov-Cunningham-
Ouchterlony model, The Journal of the Southern 
African Institute of Mining and Metallurgy, 121p. 
https://doi.org/10.17159/2411. 

[9]. Tiile, R.N. (2016). Artificial neural network 
approach to predict blast-induced  groundvibration, 

Airblast and rock Fragmentation. Masters Theses. 
Missouri university ofscience and Technology, Faculty 
of the Graduate School, Department of Mining 
Engineering: Missouri. 7571 p.  

[10]. Petrosyan, M.I. (2018). Model investigations of 
parameters of rock breakage by blasting. 

Rock Breakage by Blasting, Routledge. pp. 75–104. 

[11]. Lawal, A.I. (2021). A new modification to the 
Kuz-Ram model using the fragment size predicted by 
image analysis, International Journal of Rock 
Mechanics and Mining. 
doi:10.1016/j.ijrmms.2020.104595. 

[12]. Babaeian, M., Ataei, M., Sereshki, F., Sotoudeh, 
F. and Mohammadi, S. (2019). A new framework for 
evaluation of rock fragmentation in open pit mines. 
Journal of Rock Mechanics and Geotechnical 
Engineering. 11 (2): pp. 325–336. 

[13]. Ouchterlony, F. and Sanchidrián, J.A. (2019). A 
review of development of better prediction equations 
for blast fragmentation, Journal of Rock Mechanics 
and Geotechnical Engineering. 11 (5): pp.1094–1109.  

[14]. Franklin, J.A., Kemeny, J.M. and Girdner, K.K. 
(1986).  Evolution of system: A Review Proceedings of 
the FRAGBLAST 5 Workshop on Measurement of 
Blast Fragmentation, Montreal, Quebec, Canada, pp. 
47-52. 

[15]. Da Gamma, C.D. (1983). Use of Comminution 
Theory to Predict Fragmentation of Jointed 

Rock Masses Subjected to Blasting. In: Proceedings of 
the First International Symposium on Rock 
Fragmentation by Blasting, Lulea, Sweden, pp. 565–
579. 

[16]. Cunningham, C.V.B. (2005). The Kuz-Ram 
fragmentation model–20 years on, Proceedings of the 
3rd European Federation of Explosives Engineers 
World Conference on Explosives and Blasting, 
Brighton. 4, pp. 201–210. 

[17]. Abuhasel, K.A. (2019). A comparative study of 
regression model and the adaptive neuro-fuzzy 
conjecture systems for predicting energy consumption 
for jaw crusher, Applied Sciences. 9 (18): pp. 3916. 

[18]. Sayadi, A.,Monjezi, M., Talebi, N. and 
Khandelwal, M. (2013). A comparative study on the 
application of various artificial neural networks to 
simultaneous prediction of rock fragmentation and 
backbreak, Journal of Rock Mechanics and 
Geotechnical Engineering. 5 (4): pp.318-324.  

[19]. Cardu, M.,Coragliotto, D. and Oreste, P. (2019). 
Analysis of predictor equations for determining the 
blast-induced vibration in rock blasting, International 
Journal of Mining Science and Technology. 29 (6): 
905pp. 

[20]. Da Gamma, C.D. (1984). Microcomputer 
simulation of rock blasting to predictfragmentation, 
Proceedings of the 25th U.S. Symposium on Rock 
Mechanics,Evanston, Illinois, pp. 1018-1030. 

[21]. Larsson, B., Hemgren, W., and Brohn, C.E. 
(1973). Styckefallsutredning. Skanska, 
Cementgjuteriet. 

https://doi.org/10.17159/2411.


Olamide Taiwo Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

640 

[22]. Kuznetsov, V.N. (1973). The Mean Diameter of 
the Fragments Formed by Blasting of Rock. Soviet 
Mining Sci.Part 2, pp. 39–43. 

[23]. Cunningham, C.V.B. (1983). The Kuz-Ram 
model for prediction of fragmentation from blasting. 
In: Proceedings of the 1st international symposium on 
rock fragmentation by blasting. Sweden: Luleå 
University of Technology. P. 439-453. 

[24]. Lilly, PA. (1986). An empirical method of 
assessing rock mass blastability. In: Proceedings of the 
large open pit mine conference. Carlton, Australia: 
AusIMM. pp. 89-92. 

[25]. Cunningham, C.V.B. (1987). Fragmentation 
estimations and the Kuz-Ram model e four years on. 
In: Proceedings of the 2nd international symposium on 
rock fragmentation by blasting. p. 475-487. 

[26]. Chung, S.H. and Katsabanis, P.D. (2000). 
Fragmentation prediction using improved engineering 
formulae. Fragblast. 4 (3): pp. 198–207. 

[27]. Sanchidrián, J.A., Segarra, P. and López, L.M. 
(2006). A practical procedure for the measurement of 
fragmentation by blasting by image analysis. Rock 
Mechanics and Rock Engineering. 39 (4): pp. 359–382. 

[28]. Otterness, R.E., Stagg, M.S., Rholl, S.A. and 
Smith, N.S. (1991). Correlation of shot design 
parameters to fragmentation. In: Proceedings of the 7th 
annual symposium on explosives and blasting 
Technology. International Society of Explosives 
Engineers (ISEE), pp. 90-179. 

[29]. Stagg, M.S., Rholl, S.A., Otterness, R.E. and 
Smith, N.S. (1990). Influence of shot design 
parameters on fragmentation. In: Proceedings of the 
3rd international symposium on rock fragmentation by 
blasting. Carlton, Australia: AusIMM. p. 7-311. 

[30]. Djordjevic, N. (1999). Two-componentmodel of 
blast fragmentation. In: Proceedings of the 6th 
international symposium on rock fragmentation by 
blasting, Johannesburg: The Southern African Institute 
of Mining and Metallurgy (SAIMM). p. 9-213. 

[31]. Kanchibotla, S.S., Valery, W. and Morell, S. 
(1999). Modelling fines in blast fragmentation and its 
impact on crushing and grinding. In: Proceedings of 
the explosive, Carlton, Australia: AusIMM. p. 44-137. 

[32]. Thornton, D.M., Kanchibotla, S.S. and Esterle, 
J.S. (2001). A fragmentation model to estimate  

ROM size distribution of soft rock types, In 
Proceedings of the 27th annual conference on 
explosives and blasting Technology. ISEE. pp. 41-53. 

[33]. Esen, S., Onederra, I. and Bilgin, H.A. (2003). 
Modelling the size of the crushed zone around a 
blasthole. International Journal of Rock Mechanics and 
Mining Sciences. 40 (4): pp. 485-495. 

[34]. Onederra, I., Esen, S. and Jankovic, A. (2004). 
Estimation of fines generated by blasting applications 
for the mining and quarrying industries. Mining 
Technology. 113 (4): pp.237-247. 

[35]. aerz, N.H. (1996). Image Sampling Techniques 
and Requirements for Automated Image Analysis of 
Rock Fragments, In: Proceedings of ISRM/Fragblast 5 
Workshop and Short Course on Fragmentation 
Measurement . Montreal, A.A. Balkema. 

[36]. Bieniawski, Z.T. (1989). Engineering Rock Mass 
Classifications. In A Complete Manual for Engineers 
and Geologists in Mining, Civil and Petroleum 
Engineering, Toronto: John Wiley & Sons.  

[37]. ISRM (1981). Rock characterization, testing and 
monitoring. In: Brown, E.T. (Ed.). ISRM suggested 
methods. Commission on Testing Methods, 
International Society for Rock Mechanics (ISRM), 
Pergam on Press, Oxford, UK.pp. 75-105. 

[38]. ISRM (2007). The ISRM suggested method for 
rock characterization, testing and monitoring: Eds.R. 
Ulusay and J.A Judson, IRSM. pp. 1974-2006. 

[39]. Sanchidrián, J.A.and Ouchterlony, F. (2017). A 
distribution-free description of fragmentation by 
blasting based on dimensional analysis, Rock 
Mechanics and Rock Engineering, 50(4), pp. 781–806. 

[40]. Faramarz, F.,Mansouri, H. and Ebrahimi, F.M.A. 
(2013). A Rock Engineering System Based Model to 
Predict Rock Fragmentation by Blasting, International 
Journal of Rock Mechanics and Mining Science, 60, 
pp. 82-94. 

[41]. Tosun, A., Konak, G., Toprak, T., Karakus, D. 
and Onur, A.H. (2014). Development of the Kuz-Ram 
model to blasting in a limestone quarry. Arch Min 
Science. 59 (2): pp. 477–488. 
[42]. Shad, H.I.A., Sereshki, F., Ataei, M., and 
Karamoozian, M. (2018).  Investigation of rock blast 
fragmentation based on specific explosive energy and 
in-situ block size. International Journal of Mining and 
Geological Engineering, pp.52–1:1–6. 



  1401وم، سال سشماره  زدهم،ی، دوره سزیستپژوهشی معدن و محیط -نشریه علمی  ویتا دیاولام
 

 

  

و  ریتصو لیموجود با نرم افزار تحل یتجرب يهامدل سهیکوچک: مقا اسیدر مق تیانفجار دولوم يوربهبود بهره
 یمصنوع یشبکه عصب يهامدل

  

 *ویتا دیاولام بِلِسینگ

   هیجریفدرال، آکوره، ن يمعدن، دانشگاه فناور یگروه مهندس

  22/08/2022، پذیرش 23/03/2022ارسال 

  taiwoblessing199@gmail.com* نویسنده مسئول مکاتبات: 

  

  چکیده:

خود را دارند که موجب بروز  يهاتیسنگ، محدود شیخردا یمختلف بررس يهااست. روش يمعدنکار اتیبهبود عمل يمهم برا کردیرو کیانفجار  جینتا یابیارز
 شیخردا ینیبشیپ یتجرب يهاکار مدا نیچند هدف مشخص قابل استفاده است. ا یمعدن تیسا کی يبرا یهر روش نی. بنابراشوندیم ینیبشیمختلف پ يخطاها

، و مدل Lawal 2021، مدل Kuz-Ramشده مدل اصلاح ینیبشی. دقت پکندیم یابیارز تیمعادن دولوم يمطالعه مورد يکوچک برا اسیسنگ را در مق
Kuznetsov-Cunningham-Ouchterlony (KCO) لیتحل جیبا نتا WipFrag ©یمصنوع یشبکه عصب هايمدل و )ANN( استفاده از سه  باشده است.  سهیمقا

 دهندینشان م یابیارز يهاپرداخته شد. شاخص دیجد يشنهادیپ ANN يهاو مدل یفعل يهامدل ینیبشیپ يخطا يسهیو مقا لیمدل به تحل یابیشاخص ارز
شبکه  يهاحال، مدل نیدارد. با ا راز انفجا یناش شیدرصد ابعاد خردا ینیبشیپ يخطا را برا نیکمتر Kuz-Ramشده با مدل اصلاح سهیدر مقا KCOکه مدل 

. دهندیموجود نشان م یتجرب يهااز انفجار نسبت به مدل یناش شیابعاد خردا نیانگیم ینیبشیرا در پ ییبالا ینیبشیدقت پ يشنهادیپ یمصنوع یعصب
مورد استفاده قرار  ياهداف کاربرد يکوچک برا اسیمق در تیانفجار دولوم اتیعمل جینتا يوربهبود بهره يبرا توانندیم يشنهادیپ ANN يهامدل ن،یبنابرا

  .رندیگ

  .انفجار يساز نهیبه ،یمصنوع یانفجار، شبکه عصبخردایش ناشی از  يهاکوچک، انفجار، مدل اسیاستخراج در مق کلمات کلیدي:
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