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 This work aims to investigate the geochemical signatures of the Cu porphyry deposit 
in the Dalli area using the geochemical soil samples. At the first step, the geochemical 
data was opened using the Centered Log-Ratio (CLR) transform method. Then those 
outlier samples that reduce the accuracy of the geochemical models were detected and 
removed using the Mahalanobis Distance (MD) method. We applied the Principal 
Component Analysis (PCA) and Geochemical Mineralization Prospectivity Index 
(GMPI) methods on the cleaned transformed geochemical dataset. The PCA method 
identified five principal components (PCs), from which PC1 including Cu, Au, and 
Mo, are specified as the mineralization factor (MF). The GMPI approach can improve 
the multivariate geochemical signature in geochemical mapping. Hence, the GMPI 
values of the samples were calculated based on the score values of MF (Cu, Au, Mo). 
The results convey that the large values of GMPI (MF) (Cu, Au, Mo) strongly correlate 
with the quartz diorite porphyry rocks and potassic alteration zones. The GMPI (MF 
(Cu, Au, Mo)) index was modeled using the Concentration-Number (C-N) fractal 
method. The C-N fractal model identified four geochemical populations based on the 
different fractal dimensions. The geochemical anomaly map of GMPI (MF) (Cu, Au, 
Mo) was delineated using these classified populations. The obtained promising areas 
were validated adequately by more detailed exploration works and deep drilled 
boreholes as well. The Cu-Au mineralization potential parts are appropriately mapped 
by this hybrid method. The results obtained demonstrate that this scenario can be 
adequately used for geochemical mapping on local scales. 
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1. Introduction 

Commercially mineral deposits are generally 
prospected using the geoscience datasets such as the 
geological, geochemical, and geophysical data. 
Concerning the conceptual exploration models of ore 
deposit types, the relevant data is gathered and 
processed to produce the spatial geo-information. 
This valuable information aims to specify the 
anomaly areas that have more chance of associating 
with a probable mineral deposit [1, 2]. The 
geochemical anomalies are the enriched 

concentration areas of some indicator or pathfinder 
elements related to the ore-forming. The importance 
of geochemical anomaly mapping is undeniable for 
mineral prospectivity mapping [3, 4]. The anomalous 
areas in various media (e.g. soils, rocks, and stream 
sediments) are distinguishable from the background 
when the threshold values are correctly identified [1, 
5]. The geochemical anomaly mapping and 
geochemical society discrimination have always 
been fundamental challenges in a geochemical data 
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analysis [6–8]. The threshold value modeling can be 
carried out via two groups of methods: traditional 
and modern types, which are also known as the 
frequency-based and spatial frequency-based 
approaches, respectively [1, 6, 9, 10].  

In addition to data frequency, which is merely an 
essential parameter for traditional approaches, 
modern methods consider some other types of geo-
information. Geographical coordinate of samples, 
geometrical aspects like shape, orientation, and 
fractal dimensions of geochemical anomalies are the 
most critical spatial features taken into account by 
modern methods. 

The geochemical anomaly mapping methods are 
based on the uni-element and multi-element analysis 
approaches.  

PCA, as a familiar multi-element technique, has 
been frequently applied to study the inter-element 
relationships of the geochemical datasets [11–16]. 
The inter-element variations that reflect the dominant 
geochemical process can be recognized using PCA 
[1]. PCA has been utilized for the geochemical 
interpretation and identification of paragenetic 
elements of mineralization in the spatial domain [11, 
17], frequency domain [18], and wavelet domain [19, 
20]. In this work, the extracted MF from PCA was 
modeled using GMPI.  

The GMPI introduced by Yousefi et al. is a 
technique for fuzzifying the geochemical data [21]. 
They demonstrated that applying GMPI as the fuzzy 
weight of samples could increase and enhance the 
geochemical anomaly intensity. Some studies have 
applied GMPI as evidential scores to improve 
geochemical prospecting [22–26]. The GMPI values 
as the multi-element signatures can be modeled using 
the anomaly separation methods such as fractal 
geometry approaches.  

The fractal/multi-fractal methods have been 
extensively applied to classify the geochemical data 
based on the fractal geometry dimensions. The scale-
independency of geochemical patterns allows those 
areas with various intensities, in terms of element 
concentration, to be identified by the fractal 
geometry theory [10, 27–30]. Fractal-based 
geochemical data processing has been accomplished 
by various techniques such as the number-size model 
[31], concentration–number (C-N) [32, 33], 
concentration-area [27, 34, 35], concentration–
distance [36], spectrum-area [37–40], and 
concentration-volume [41]. The combination of 
fractal models with machine learning methods has 

also been used for anomaly mapping [42, 43]. 
Hassanpour and Afzal [44] have proposed the C-N 
fractal method for modeling the geochemical data 
and separating the geochemical anomalies. Shahbazi 
et al. have demonstrated that the mineralization 
phases could be determined by the C-N multi-fractal 
modeling [45]. 

Pre-processing of data is also not being ignored 
before the data processing phase. Outlier values 
detection is an essential task for the pre-processing 
of geochemical data, performed by various 
approaches.  

Since the concentration values of geochemical 
samples are compositional data, interpretation of this 
type of data in the Hilbert space using the standard 
statistical analysis methods does not result in 
desirable and accurate outputs [46]. It has been 
demonstrated that statistical correlation analysis of 
geochemical data can produce more informative 
results when the log-ratio transformed data is utilized 
[47]. Simply speaking, when a transformation 
algorithm is firstly performed on data, and after that, 
the data correlation is calculated; the results reflect 
much better information about groups of chemical 
elements of the studied area [46]. 

The aim of this work is geochemical anomaly 
separation by integrating some classic and modern 
analytical methods. In the first step, the geochemical 
composition data was opened and cleaned using the 
CLR transform approach and Mahalanobis Distance 
(MD) method, respectively. The pre-processing 
phase was followed by performing PCA on the 
previous transformed data to extract more 
informative components. The GMPI method was 
applied to enhance the exploration probability on the 
regional scale. Still, in this investigation, we used this 
method for prospectivity mapping of Cu, Au, and Mo 
mineralization on the local scale. Then the fractal 
model was performed on the multivariate 
geochemical signature for classifying the GMPI (Cu, 
Au, Mo) and geochemical targeting. The principal 
aim of this investigation is to delineate multi-element 
anomalies of Cu, Mo, and Au in the local scale 
explorations using a hybrid method by integrating 
GMPI, PCA, and C-N fractal model based on the 
cleaned CLR transformed dataset.  

2. Geological setting 
Dalli area contains a porphyry mineralization type 

of Cu-Au, namely Dalli. The area, which is located 
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in the Markazi province of Iran, is a part of the west 
edge of the Uromieh-Dokhtar magmatic belt [48]. 
This belt that is extended about 400 Km from NW to 
SE of Iran, contains the alkaline and calk-alkaline 
intrusive-volcanic rocks and some important mines 
such as Sarcheshmeh, Meiduk, Darreh-Zereshk, 
Kahang, and Sungun [49].  

The primary constructing rocks of the Dalli district 
are Eocene volcanic and pyroclastics formations 
including andesitic to basaltic lava and andesitic to 
rhyodacitic pyroclastics. These formations are 
intruded by Oligo-Miocene medium basic intrusive-
igneous rocks (diorite, quartz diorite, and tonalite), 
and some volcanic rocks (andesite, ignimbrite, and 
porphyry andesite) can be locally seen (Figure 1). 
These formations due to the influence of 
hydrothermal solutions have been completely altered 
to the potassic, silicic, phillic, argillic, and propylitic 
alterations at an area of about 3 by 6.5 Km [50]. The 
geological studies confirmed that the disseminated 
mineralization was mainly related to the potassic, 
silicic, and locally phillic zones [51]. It was 
deposited during penetration of some intrusive quartz 
dioritic stocks and dykes to andesitic volcano rocks 
via a faulted zone with a width of 3 Km and an 
azimuth of 55°. 

Dalli is divided into the northern and southern hills. 
The southern deposit is an area of about 190 m by 
200 m. Its principal characteristic features are 
intensive potassic and locally phillic and silica 
alteration zones due to the emplacement of a dioritic 
intrusion [50]. This hill includes outcrops of oxide-
type minerals of Cu and Au, e.g. malachite, azurite, 
cuprite, hematite, and goethite. This zone, with an 
average grade of 1 ppm and 0.4% for Au and Cu, 
respectively, extends nearly to the depth of 50 m. The 
supergene zone, by strong chalcocite and malachite 
mineralization and about 3.5% and 1 ppm of Cu and 
Au, has formed at a depth of 50 m to 60 m 
(approximately 8 m). These zones are followed by a 
hypogene zone composed of approximately 0.65 
ppm and 0.45% of Au and Cu. The evidence of ore 
minerals (chalcopyrite, pyrite, bornite, magnetite, 
and native gold) has been confirmed via drilled 

boreholes up to 350 m. The reserve of the southern 
part, up to 350 m, has been estimated to be about 38 
million tons containing 60 ppm and 0.45% of Au and 
Cu. 

Dalli’s northern mineralization has occurred in an 
area about twice of the southern hill. The supergene 
zone in the northern hill is weak compared to the 
south of region. The concentration of Au is the same 
in both parts but the northern area is weaker in terms 
of Cu concentration (about 0.2%). The northern 
deposit has been estimated to contain about 50 
million tons of ores. According to the estimated 
reserve of the entire area, Dalli is classified as a 
world-class deposit [52, 53]. 

3. Methodology 
3.1. CLR transform 

The log-ratio transformation method is categorized 
as Additive Log-Ratio transformation (ALR), 
Centered Log-Ratio transformation (CLR), and 
Isometric Log-Ratio transformation (ILR) [35, 46].  
The CLR method is preferred to eliminate the effect 
of the closed data due to some reasons [54]. For 
example, a useful fact to ignore the ALR is its 
dependency on personal experience [44-47], as well 
as ILR, is somewhat complicated, and interpretation 
of its outputs does not perform readily because of the 
dimensionality reduction of data [56–58]. 

CLR is a log-ratio transformation method. 
According to the CLR theory, the logarithm of 
variables is firstly calculated, then the result obtained 
for each variable is divided by the geometric mean of 
the same variable (Equation 1). Unlike ALR, not 
elimination of any variables is an advantage for CLR. 
However, the impossibility of many multivariate 
statistical analysis methods to utilize CLR’s output 
can still be considered a significant disadvantage 
[54]. 

퐶퐿푅 (푥) = 푙푛
푥
∏ 푥

, … , 푙푛
푥
∏ 푥

   (1) 
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Figure 1. Geological map of northern part of the Dalli area (scale 1:1000: revised based on [52]. 

3.2. Data cleaning 

The outliers are the data that does not follow the 
general pattern of the majority of the data, and are far 
from the dataset. The outliers can increase error rates 
and crate remarkable during the data processing 
statistical methods [59].  

A popular multivariate distance measured based on 
the covariance matrix is MD. MD is calculated as the 
following equation: 

푀퐷 = ((푥 − 푡) 퐶 (푥 − 푡)) /  (2) 

where xi, t, and C are the multivariate samples, 
estimated multivariate location, and covariance 
matrix, respectively. The values almost have a chi-
square distribution when the multivariate data is 
distributed normally. The multivariate outliers with 
large MD can be distinguished from the normal data 
based on the chi-square distribution [60].  
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A constant percentile of the 휒2 distribution is 
utilized to isolate the outliers from the non-outliers. 
The samples are separated into groups of outlier and 
normal data using the threshold value calculated by 

휒 .  . 휐 is the degree of freedom of variables, 

and 훼 is the significance level for a fixed quantile 
[61]. 

3.3. GMPI approach 
GMPI is a technique introduced by Yousefi et al. 

[21] to transform scores of the PCA method into the 
fuzzy scale. The GMPI method has important 
advantages in geochemical prospecting. This 
multivariate approach reduces the dimensions of 
geochemical data, and detects the paragenetic and 
effective elements in the mineralization phase. The 
geological phenomena and geochemical societies 
can be interpreted using the results of GMPI [62]. 
PCA, a usual multivariate method to analyze the 
geochemical data, generates outputs known as the 
sample’s score, which indicates the relative 
importance of each sample.  

PCA as a multi-element analysis method has been 
applied to interpret the geochemical data in the 
spatial, frequency, and wavelet domains [15, 19, 63].  

PCA applies the correlation matrix of all elements 
to determine the number of uncorrelated principal 
components (PCs) (equals to the number of 
elements), where the first and last PCs have the 
highest and least proportion of the total variance, 
respectively [1].  

The mineralization factor can be detected and 
extracted using the rotated component matrix of 
PCA. The new score for each sample is calculated in 
the new rotated domain based on the Varimax. These 
absolute scores are considered new geochemical 
multi-element features [64, 65].  

The obtained scores were applied to calculate 
GMPI using a logistic sigmoid function, as below 
[21]: 

퐺푀푃퐼 =  
푒

1 + 푒  (3) 

where FS is the score of each sample. It has been 
demonstrated that utilizing GMPI as the fuzzy 
weight of samples can increase and enhance the 
geochemical anomaly intensity [21, 23–25, 66, 62]. 

3.4. Concentration-number (C-N) fractal method 

The fractal/multi-fractal geometry theory is 
applied to analyze scale-independent and self-similar 
shapes or phenomena [63]. If geochemical 
landscapes tend to pose self-similar and scale-
independent properties [64], thus can be analyzed by 
the theory of non-Euclidean fractal geometry. As a 
result, the anomalous areas are distinguished from 
the background based on the fractal dimensions [1]. 
Since the 1980s, various fractal/multi-fractal-based 
approaches have been established in various 
geoscience fields, namely geology, petrology, 
geophysics, geochemistry, etc. [7, 65, 66]. 
Concentration-Number (C-N) multifractal method 
has been frequently used to analyze the geochemical 
samples and separate them into the background and 
anomalous areas [32]. This model has been 
constructed on the relation as below: 

푁(≥ 휌) ∝ 휌  (4) 

where 푁(≥ 휌) indicates the number of samples 
having concentration values greater than the 
concentration (휌), and the fractal dimension is 훽. 
When the exponential relationship between 푁 and 휌 
is plotted on a log-log graph, the slope of the resulted 
straight line is the fractal dimension (훽) of that 
individual concentration (휌). In the simplest 
situation with two populations including one 
background and one anomalous area, two straight 
lines are formed with different slopes representing 
the two populations, namely anomaly and 
background with greater and lower slopes, 
respectively. Finally, the broken point of the lines is 
assigned to the threshold concentration value, which 
is applied to separate the background and anomalous 
areas [1].  

4. Results and Discussion 

For geochemical exploration in the Dalli area, 165 
systematic soil samples (50 × 50 m) with a fraction 
of -200 were taken and analyzed for 45 elements by 
ICP-MS (Inductively Coupled Plasma Mass 
Spectrometry) in AMDEL Lab in Australia. 

In this work, the CLR transform, MD, PCA, GMPI, 
and fractal geometry methods were performed on the 
geochemical data for mineral potential mapping. The 
flowchart of the applied scenario for geochemical 
data modeling is indicated in Figure 2.  
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Figure 2. Flowchart of the applied scenario for geochemical anomaly mapping. 

4.1. Cleaning of log-ratio transformed 
geochemical data 

The geochemical data are known as the 
compositional data. Hence, misleading 
interpretations may be created when applying 
standard statistical analysis to the original dataset. 
Accordingly, CLR transform based on Equation 1 is 
used on raw assays to achieve the correct 
representation of relationships between the elements 
in this investigation.  

The outlier values strongly affect multivariate 
statistical results and provide unrealistic information 
from the dataset. To overcome this issue and to clean 

the log-ratio transformed data, the MD method was 
performed for the detection of normal and outlier 
data. The MD follows a 휒2 distribution and can 
effectively separate the most excessive outliers.  

Twelve samples were detected as the outlier data 
from 163 samples based on significance level 0.001, 
which gives a 99.9% quantile. This threshold 
properly facilitated outlier removal in multivariate 
geochemical data. The sampling grid of geochemical 
data containing outlier and non-outlier (normal) data 
and the spatial distribution of outliers are depicted in 
Figure 3.  
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Figure 3. Location of geochemical samples (normal and outlier samples are shown). 

The MD values of the geochemical samples and 
separated normal and outlier samples based on the 

threshold of  휒 . .  are shown in Figure 4. 

4.2. Extraction of MF using PCA 

Distinguishing the mineralization and paragenetic 
elements and recognizing the relationships between 
the elements are vital for the improvement of 
multivariate geochemical prospectivity mapping. 
After opening the geochemical data using CLR 
transformation and cleaning the dataset from 
outliers, the PCA method was applied to extract the 
principal factors related to the 29 logarithmic 
elemental concentration data. The attributes of MF 
and paragenetic elements can be identified using 
PCA. The factor scores of samples were calculated 
using the Varimax rotation and Kaiser normalization 
methods. For this aim, firstly, the Kaiser 
normalization was performed on the CLR 
transformed data, then the Varimax method was used 
for rotating axes. PCA appropriately reduced the 
dimensions of features and created PCs in a new 
space. PCA method extracted five PCs from 29 initial 
features based on the eigenvalues of more than one, 
and the other components were ignored. The rotated 
component matrix related to the elements created by 
PCA is shown in Table 1. Rotation was converged in 
6 iterations. The mineralization elements of Cu, Au, 

and Mo affect PC1 with a negative sign. PC 1, 2, and 
3 have been plotted in a new rotated space, and the 
mineralization elements of Cu, Au, and Mo have 
been discriminated in Figure 5. 

The variances and cumulative variances of the 
deriving PCs are shown in Figure 6. These five PCs 
contain 81% of the total variance related to the 
dataset.  

Figure 6 indicates a decreasing trend for the 
variance values from PC5 to PC1 that demonstrates 
that PC1 has an essential role in the geological and 
mineralization phenomena in this area. The factor 
scores of elements greater than 0.6 were considered 
for analyzing the extracted PCs and their important 
elements. The mineralization elements of Au, Cu, 
and Mo play an essential role in constructing the first 
PC. The rotated component matrix indicates the 
absolute factor loadings of these elements in PC1 are 
more than 0.6. Hence, PC1, which shows 34% of the 
variance of the dataset, was detected as MF of Au, 
Cu, and Mo. The MF(Au, Cu, Mo) is more important out 
of the other PCs and includes the higher variations of 
the dataset. The mineralization elements of Au, Cu, 
and Mo hold negative loadings in MF. Figure 7 
shows the negative factor loadings of elements in 
PC1. The elements of Au, Cu, and Mo have no 
significant signature on the other PCs. MF(Au, Cu, Mo) 
as a multi-element index intensifies the geochemical 
anomaly signature, and improves the prospectivity 
mapping.  
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Figure 4. MD values of geochemical samples (normal and outlier samples are shown). 

Table 1. Rotated component matrix created by PCA (mineralization elements of Cu, Au, and Mo affect PC1 with 
negative sign). 

 Principal component 
 1 2 3 4 5 

Au -0.743 -0.232 0.486 0.068 0.166 
Al 0.386 0.820 -0.169 -0.135 -0.148 
As 0.753 -0.135 -0.136 -0.134 -0.164 
B 0.801 0.036 -0.346 0.087 -0.054 
Ba 0.143 0.742 -0.221 0.289 -0.036 
Ca 0.366 0.170 -0.666 -0.067 0.457 
Ce 0.160 -0.124 0.068 0.932 0.121 
Co 0.620 0.504 -0.021 -0.315 -0.119 
Cr 0.830 0.087 0.039 0.201 0.163 
Cu -0.772 -0.118 0.438 0.141 0.272 
Fe -0.233 0.405 0.750 -0.057 -0.010 
Ga 0.011 0.837 0.170 -0.126 -0.124 
K 0.062 0.719 0.214 0.271 0.356 
La 0.107 -0.124 -0.022 0.928 0.119 
Li 0.714 0.522 -0.296 0.185 -0.027 
Mg 0.116 0.867 -0.075 0.036 0.388 
Mn 0.845 0.303 0.191 0.068 -0.005 
Mo -0.657 0.214 0.245 0.060 -0.298 
Na 0.399 0.677 0.010 -0.413 -0.216 
Ni 0.928 0.072 -0.177 0.182 -0.002 
P -0.009 0.016 0.739 0.056 0.114 
Pb 0.292 0.369 -0.025 -0.307 -0.723 
Sc -0.280 0.887 -0.076 0.013 -0.056 
Sr .585 .252 -.626 -.273 -0.046 
Ti -0.372 0.465 0.414 0.184 0.589 
V -0.129 0.702 0.517 -0.167 -0.031 
Y -0.036 0.443 0.107 0.763 -0.049 
Zn 0.399 0.675 0.319 -0.051 -0.178 
Zr 0.759 -0.093 0.128 0.163 -0.352 
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Figure 5. Component plots in rotated space for PC1, 2, and 3, mineralization elements were discriminated. 

 
Figure 6. Variances and cumulative variances of deriving PCs from PCA. 
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The PC1 as MF(Au, Cu, Mo)  was selected for 
calculating the GMPI values, and anomaly map was 
obtained based on the absolute factor scores of 
MF(Au, Cu, Mo).  

PCA decreases the discrimination of geochemical 
societies, and intensifies the geochemical anomalies.  

4.3. Fractal modeling of GMPI(MF) for cleaned log-
ratio data 

The results of PCA indicate that mineralization 
paragenetic elements include Cu, Au, and Mo. 
Hence, PC1 as MF(Au, Cu, Mo)  was selected for 
prospectivity mapping.  

After identifying the PC containing the 
mineralization elements, multi-element MF was 
transformed into a new rotated space. The 
geochemical anomalies are improved and intensified 
using this transferring in this space.  

The GMPI values were obtained using the 
following logistic sigmoid equation: 

퐺푀푃퐼(MF( . . )) =
푒 ( . . )

1 + 푒 ( . . )
 (5) 

The negative MF scores of samples were used for 
GMPI calculation because the mineralization 
elements of Au, Cu, and Mo hold negative loadings 
for MF in the rotated component matrix.  

The GMPI values were interpolated by the Kriging 
method for geochemical mapping (Figure 8). This 
map indicates the spatial distribution of GMPI and 
the situation of promising areas. The GMPI results 
have detected a NE-SW trend for anomaly zones and 
precisely convey that high anomaly values have 
occupied the central part of the area. The GMPI 
model of MF as a multi-element geochemical 
signature based on the CLR transformed data can 
adequately highlight the potential areas for future 
detailed exploration. 

 
Figure 7. Factor loadings of elements in rotated component matrix relevant to MF obtained by PCA. 

The obtained GMPI (MF(Au, Cu, Mo)) values were 
categorized using C-N fractal modeling. Figure 9 
illustrates four geochemical societies with 
multifractal nature for GMPI. In a logarithmic fractal 
plot, the slopes of fitted straight lines convey the 
fractal dimensions of various geochemical 
populations. The threshold values can also be 
obtained using the breakpoints in this diagram.  

Three threshold values for GMPI (MF(Au, Cu, Mo)) 
consisting of 0.815, 0.656, and 0.545 were identified 
in this log-log fractal plot. These thresholds separate 
four geochemical populations of background, weak 
anomaly, moderate anomaly, and high anomaly. The 
first class including the GMPI values less than 0.545 
is related to the background population, and the other 
three classes are relevant to the geochemical 
anomalies. 
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Figure 8. GMPI anomaly mapping based on MF(Cu-Au-Mo). 

 
Figure 9. Log-log plot of C-N fractal modeling of GMPI (MF (Cu-Au-Mo)). 

The four geochemical populations of background, 
weak anomaly, moderate anomaly, and high anomaly 
were discriminated and mapped in Figure 10. This 
figure shows the multivariate geochemical 
prospectivity map obtained from C-N fractal 
modeling of GMPI MF (Cu-Au-Mo). The high 
anomalous area of GMPI is located in the central part 
of the district, which is proposed as a high potential 
area for detailed exploration in the future. The 

moderate and weak anomalies have a distinctive NE-
SW trend and cover more extensive parts of the 
studied area. The intermediate and high anomaly 
areas have the most important priority for deep 
explorations such as drilling boreholes and 
geophysical studies. Generally, the most promising 
parts with high mineralization potential are in the 
center of the area.  
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Figure 10. Multivariate prospectivity map obtained from C-N fractal modeling of GMPI MF(Cu, Au, Mo). 

4.4. Assessment of obtained promising targets 

The fractal modeling of GMPI (Cu, Au, Mo) indicated 
that there were moderate and high anomaly 
populations in CLR transformed dataset. These 
significant moderate and high anomalies have been 
extended in the central parts of the area. The field 
observations and detailed studies indicated an oxide 
zone with obvious Au and Cu mineralization 
outcrops in these anomaly parts. Several surface 
trenches were drilled on high potential targets for 
prospecting the alteration and mineralization and 
evaluating the anomaly areas.  

Trench 04 (TR04) drilled on the anomaly area 
(Figure 10) includes the quartz diorite porphyry 

rocks and a small extent of andesite rock. The high 
and moderate potassic and weak phillic and chlorite 
alterations were observed in this trench. In this part, 
we are facing a mineralized zone. The mineralization 
veinlets of malachite, silicified, and iron oxide are 
abundant. The grade of Au is even more than two 
ppm, and there is a high correlation between Cu and 
Au.  

Trench 3940 (TR 3940) drilled in the northern part 
of the central anomaly (Figure 10) also confirms a 
mineralized zone in the obtained geochemical 
anomaly map. The concentration distribution of the 
Au and Cu elements is illustrated in Figure 11. 

 
Figure 11. Concentration distribution of Au and Cu elements in trench 3940. 
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The two boreholes of DDH3 and DDH4 were 
designed and drilled based on the situation of surface 
mineralization and the trend of TR04 and TR05 
(Figure 10). 

These boreholes indicated that there were three 
mineralization zones consisting of supergene, 
transition, and hypogene at the depth. Like surface 
studies, the potassic and phillic alterations are shown 
in quartz diorite porphyry, and andesite rocks have 
been altered to propylitic and chloritic alterations.  

In these boreholes, various minerals consisting of 
malachite, azurite, cuprite, smithsonite, and 
hemimorphite were seen in the oxidized zone. 

Magnetite and iron oxides are extended in oxidation 
and transition zones. Malachite, native Cu and 
bornite hold a specific sequence at the depth.  

Figure 12 illustrates the concentration distribution 
of Au and Cu elements in borehole DDH4. The 
results show a notable increasing trend for the Cu and 
Au grades and chalcopyrite mineral at the beginning 
of the hypogene zone. The Mo concentration shows 
a rising trend from surface to depth, and an 
enrichment zone of Mo was shown at the high depth. 
Distinctive relationships between the mineralization 
elements of Cu, Au, and Mo are shown based on deep 
investigations.  

 
Figure 12. Concentration distribution of Au and Cu elements in Borehole DDH4.  

The detailed exploration works correctly confirm 
the obtained geochemical map, and demonstrate that 
the fractal modeling of GMPI on cleaned and 
transformed data could be helpful for introducing the 
high potential targets. The hybrid approach applied 
in this investigation provided favorable results. It 
could model the geochemical distribution of 
paragenesis elements on the local scale based on two 
transformation functions of CLR and GMPI.   

4.5. Correlation with specific geological 
evidences 

There is a notable correlation between the results of 
the fractal model of GMPI and geological evidences, 
especially in mineralization zones. The significant 
moderate and high anomalies obtained by fractal 
modeling of GMPI (Cu, Au, Mo) have been extended in 
the central parts of the area and overlapped on quartz 
diorite porphyry and andesite rocks. The Dalli area 

has been affected by intrusive and volcanic masses 
of the Tertiary period. This area is mainly covered by 
igneous rocks such as diorite, quartz diorite, tonalite, 
and andesite, which have been altered to potassic, 
siliceous, phillic, argillic, and propylitic alterations 
under the influence of hydrothermal solutions. These 
solutions have caused the mineralization of copper 
and gold in potassic, siliceous, and phillic alterations. 
The Cu and Au mineralizations are related to the 
quartz diorite stocks that encompass the quartz 
veinlets and quartz–magnetite stockwork zones. 
Mineralization is also shown in the contact of the 
quartz diorite and Andesite rocks. Petrographic 
studies also confirm that the quartz diorite, quartz 
Monzonite, and andesite units are mineralization 
host rocks. Chalcopyrite, bornite, chalcocite, 
malachite, pyrite, and iron oxide minerals are also 
observed in these parts. The field observations show 
that the potassic alteration has covered the obtained 
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anomaly areas with high intensity, and weak phillic 
and chlorite alterations are also seen in these parts. 

6. Conclusions 

In this work, a hybrid approach including the C-N 
fractal model, PCA, and GMPI methods was 
performed for geochemical anomaly defining in the 
Dalli Cu porphyry mineralization area. 

These methods were applied on the centered log-
ratio transformed data, and the geochemical outliers 
were detected and rejected. The PCA method 
extracted five PCs from the cleaned and CLR 
transformed geochemical dataset. The paragenetic 
elements of Cu, Au, and Mo constructed PC1 as 
MF(Cu, Au, Mo), and then the GMPI values of this factor 
were calculated and modeled using the C-N fractal 
method. The C-N fractal modeling of GMPI (MF(Cu, 

Au, Mo)) identified four geochemical populations 
consisting of geochemical background, and weak, 
moderate, and high anomalies. The promising 
geochemical targets delineated by this hybrid 
approach were adequately validated by more detailed 
surface exploration works and deep boreholes. The 
obtained multivariate anomalies are properly 
associated with the potassic and phillic alterations 
and mineralization zones. The results demonstrate 
fractal modeling of GMPI values can improve the 
multivariate geochemical signature in geochemical 
mapping. The obtained results indicated that this 
hybrid scenario was practical for anomaly definition, 
and was helpful for geochemical data modeling in 
various exploratory stages, especially on the local 
scale. 

References 
[1]. Carranza, E.J.M. (2008). Geochemical anomaly and 
mineral prospectivity mapping in GIS. Elsevier. 

[2]. Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., 
Nykänen, V., Hronsky, J.M., and Mihalasky, M.J. (2021). 
Data analysis methods for prospectivity modelling as 
applied to mineral exploration targeting: state-of-the-art 
and outlook. Journal of Geochemical Exploration, 229, 
106839. 

[3]. Seyedrahimi-Niaraq, M., and Mahdiyanfar, H. (2021). 
Introducing a new approach of geochemical anomaly 
intensity index (GAII) for increasing the probability of 
exploration of shear zone gold 
mineralization. Geochemistry. 81(4): 125830. 

[4]. Yousefi, M. (2017). Analysis of zoning pattern of 
geochemical indicators for targeting of porphyry-Cu 

mineralization: a pixel-based mapping approach. Natural 
Resources Research. 26 (4): 429-441. 

[5]. Plant, J.A., and Hale, M. (1994). Introduction: the 
foundations of modern drainage geochemistry. 
In Handbook of Exploration Geochemistry (Vol. 6, pp. 3-
9). Elsevier Science BV. 

[6]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., and 
Mihalasky, M.J. (2019). Stream sediment geochemical 
data analysis for district-scale mineral exploration 
targeting: Measuring the performance of the spatial U-
statistic and CA fractal modeling. Ore Geology 
Reviews, 113, 103115. 

[7]. Zuo, R., and Wang, J. (2016). Fractal/multifractal 
modeling of geochemical data: A review. Journal of 
Geochemical Exploration, 164, 33-41. 

[8]. Salimi, A., and Rafiee, A. (2022). A grid interpolation 
technique for anomaly separation of stream sediments 
geochemical data based on catchment basin modelling, U-
statistics and fractal. Earth Science Informatics, 15(1), 
151-161. 

[9]. Yang, L., Wang, Q., and Liu, X. (2015). Correlation 
between mineralization intensity and fluid–rock reaction 
in the Xinli gold deposit, Jiaodong Peninsula, China: 
constraints from petrographic and statistical 
approaches. Ore Geology Reviews, 71, 29-39. 

[10]. Cheng, Q., Agterberg, F.P., and Bonham-Carter, 
G.F. (1996). A spatial analysis method for geochemical 
anomaly separation. Journal of Geochemical exploration. 
56 (3): 183-195. 

[11]. Chen, Y.Q., Zhao, B.N., Chen, C., Zhao, B.B., and 
Zhao, P.D. (2022). Identification of ore-finding targets 
using the anomaly components of ore-forming element 
associations extracted by SVD and PCA in the Jiaodong 
gold cluster area, Eastern China. Ore Geology 
Reviews, 144, 104866. 

[12]. Yin, B., Zuo, R., Xiong, Y., Li, Y., and Yang, W. 
(2021). Knowledge discovery of geochemical patterns 
from a data-driven perspective. Journal of Geochemical 
Exploration, 231, 106872. 

[13]. Almasi, A., Jafarirad, A., Afzal, P., and Rahimi, M. 
(2015). Prospecting of gold mineralization in Saqez area 
(NW Iran) using geochemical, geophysical and geological 
studies based on multifractal modelling and principal 
component analysis. Arabian Journal of Geosciences. 8 
(8): 5935-5947. 

[14]. Chen, Y., Zhang, L., and Zhao, B. (2019). 
Identification of the anomaly component using BEMD 
combined with PCA from element concentrations in the 
Tengchong tin belt, SW China. Geoscience Frontiers. 10 
(4): 1561-1576. 



Mahdiyanfar and Amir Salimi Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

835 

[15]. Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, 
S., Li, W., and Qinglin, X. (2011). A spatially weighted 
principal component analysis for multi-element 
geochemical data for mapping locations of felsic 
intrusions in the Gejiu mineral district of Yunnan, 
China. Computers and Geosciences. 37 (5): 662-669. 

[16]. Zheng, C., Liu, P., Luo, X., Wen, M., Huang, W., 
Liu, G., and Albanese, S. (2021). Application of 
compositional data analysis in geochemical exploration 
for concealed deposits: A case study of Ashele copper-
zinc deposit, Xinjiang, China. Applied 
Geochemistry, 130, 104997. 

[17]. Elghonimy, R., and Sonnenberg, S. (2021). A 
Principal Component Analysis Approach to 
Understanding Relationships Between Elemental 
Geochemistry Data and Deposition, Niobrara Formation, 
Denver Basin, CO. In SPE/AAPG/SEG Unconventional 
Resources Technology Conference. OnePetro. 

[18]. Shahi, H., Ghavami, R., and Rouhani, A.K. (2016). 
Detection of deep and blind mineral deposits using new 
proposed frequency coefficients method in frequency 
domain of geochemical data. Journal of Geochemical 
Exploration, 162, 29-39. 

[19]. Shahi, H., Ghavami, R., Rouhani, A.K., Kahoo, 
A.R., and Haroni, H.A. (2015). Application of Fourier and 
wavelet approaches for identification of geochemical 
anomalies. Journal of African Earth Sciences, 106, 118-
128. 

[20]. Shahi, H., Ghavami, R., and Rouhani, A.K. (2016). 
Comparison of mineralization pattern of geochemical data 
in spatial and position-scale domain using new DWT-PCA 
approach. Journal of the Geological Society of India. 88 
(2): 235-244. 

[21]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, 
E.J.M. (2012). Geochemical mineralization probability 
index (GMPI): a new approach to generate enhanced 
stream sediment geochemical evidential map for 
increasing probability of success in mineral potential 
mapping. Journal of Geochemical Exploration, 115, 24-
35. 

[22]. Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., 
Ghasemzadeh, S., and Daneshvar Saein, L. (2019). 
Delineation of podiform-type chromite mineralization 
using geochemical mineralization prospectivity index and 
staged factor analysis in Balvard area (SE Iran). Journal of 
Mining and Environment. 10 (3): 705-715. 

[23]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. 
J. M. (2014). Application of staged factor analysis and 
logistic function to create a fuzzy stream sediment 
geochemical evidence layer for mineral prospectivity 
mapping. Geochemistry: Exploration, Environment, 
Analysis. 14 (1): 45-58. 

[24]. Yousefi, M., and Carranza, E.J.M. (2015). 
Fuzzification of continuous-value spatial evidence for 
mineral prospectivity mapping. Computers and 
Geosciences, 74, 97-109. 

[25]. Yousefi, M., and Carranza, E.J.M. (2017). Union 
score and fuzzy logic mineral prospectivity mapping using 
discretized and continuous spatial evidence 
values. Journal of African Earth Sciences, 128, 47-60. 

[26]. Saadati, H., Afzal, P., Torshizian, H., and Solgi, A. 
(2020). Geochemical exploration for lithium in NE Iran 
using the geochemical mapping prospectivity index, 
staged factor analysis, and a fractal model. Geochemistry: 
Exploration, Environment, Analysis, 20(4), 461-472. 

[27]. Cheng, Q. (1999). Spatial and scaling modelling for 
geochemical anomaly separation. Journal of Geochemical 
exploration. 65 (3): 175-194. 

[28]. Goncalves, M.A., Mateus, A., and Oliveira, V. 
(2001). Geochemical anomaly separation by multifractal 
modelling. Journal of Geochemical Exploration. 72 (2): 
91-114. 

[29]. Sim, B.L., Agterberg, F.P., and Beaudry, C. (1999). 
Determining the cutoff between background and relative 
base metal smelter contamination levels using multifractal 
methods. Computers and Geosciences. 25 (9): 1023-1041. 

[30]. Ouchchen, M., Boutaleb, S., Abia, E.H., El Azzab, 
D., Miftah, A., Dadi, B. and Abioui, M. (2022). 
Exploration targeting of copper deposits using staged 
factor analysis, geochemical mineralization prospectivity 
index, and fractal model (Western Anti-Atlas, 
Morocco). Ore Geology Reviews, 143, 104762. 

[31]. Agterberg, F.P. (1996). Multifractal modelling of the 
sizes and grades of giant and supergiant deposits. Global 
tectonics and metallogeny, 131-136. 

[32]. Mao, Z., Peng, S., Lai, J., Shao, Y., and Yang, B. 
(2004). Fractal study of geochemical prospecting data in 
south area of Fenghuanshan copper deposit, Tongling 
Anhui. Journal of Earth Sciences and Environment. 26 (4): 
11-14.  

[33]. Ghannadpour, S.S., and Hezarkhani, A. (2022). 
Delineation of geochemical anomalies for mineral 
exploration using combining U-statistic method and 
fractal technique: UN and UA models. Applied Earth 
Science. 131 (1): 32-48.  

[34]. Cheng, Q., Agterberg, F.P., and Ballantyne, S.B. 
(1994). The separation of geochemical anomalies from 
background by fractal methods. Journal of Geochemical 
exploration. 51 (2): 109-130. 

[35]. Khammar, F., Yousefi, S., and Joonaghani, S.A. 
(2021). Analysis of lithogeochemical data using log-ratio 
transformations and CA fractal to separate geochemical 



Mahdiyanfar and Amir Salimi Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

836 

anomalies in Tak-Talar, Iran. Arabian Journal of 
Geosciences. 14 (8): 1-15. 

[36]. Li, C., Ma, T., and Shi, J. (2003). Application of a 
fractal method relating concentrations and distances for 
separation of geochemical anomalies from 
background. Journal of Geochemical exploration. 77 (2-
3): 167-175. 

[37]. Cheng, Q., Xu, Y., and Grunsky, E. (2000). 
Integrated spatial and spectrum method for geochemical 
anomaly separation. Natural Resources Research. 9 (1): 
43-52. 

[38]. Koohzadi, F., Afzal, P., Jahani, D., and Pourkermani, 
M. (2021). Geochemical exploration for Li in regional 
scale utilizing Staged Factor Analysis (SFA) and 
Spectrum-Area (SA) fractal model in north central 
Iran. Iranian Journal of Earth Sciences. 13(4): 299-307.  

[39]. Mahdiyanfar, H. (2020). Prediction of economic 
potential of deep blind mineralization by Fourier 
transform of a geochemical dataset. Periodico di 
Mineralogia. 90 (1). 

[40]. Heidari, S.M., Afzal, P., Ghaderi, M., and Sadeghi, 
B. (2021). Detection of mineralization stages using 
zonality and multifractal modeling based on geological 
and geochemical data in the Au-(Cu) intrusion-related 
Gouzal-Bolagh deposit, NW Iran. Ore Geology 
Reviews, 139, 104561. 

[41]. Afzal, P., Alghalandis, Y.F., Khakzad, A., 
Moarefvand, P., and Omran, N.R. (2011). Delineation of 
mineralization zones in porphyry Cu deposits by fractal 
concentration–volume modeling. Journal of Geochemical 
exploration. 108 (3): 220-232. 

[42]. Afzal, P., Farhadi, S., Boveiri Konari, M., 
Shamseddin Meigooni, M., and Daneshvar Saein, L. 
(2022). Geochemical anomaly detection in the Irankuh 
District using Hybrid Machine learning technique and 
fractal modeling. Geopersia. 

[43]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar 
Saein, L., and Sadeghi, B. (2022). Combination of 
Machine Learning Algorithms with Concentration-Area 
Fractal Method for Soil Geochemical Anomaly Detection 
in Sediment-Hosted Irankuh Pb-Zn Deposit, Central 
Iran. Minerals. 12 (6): 689. 

[44]. Hassanpour, S., and Afzal, P. (2013). Application of 
concentration–number (C–N) multifractal modeling for 
geochemical anomaly separation in Haftcheshmeh 
porphyry system, NW Iran. Arabian Journal of 
Geosciences. 6 (3): 957-970. 

[45]. Shahbazi, S., Ghaderi, M., and Afzal, P. (2021). 
Prognosis of of gold mineralization phases by multifractal 
modeling in the Zehabad epithermal deposit, NW 
Iran. Iranian Journal of Earth Sciences. 13 (1): 31-40. 

[46]. Leung, R., Balamurali, M., and Melkumyan, A. 
(2021). Sample truncation strategies for outlier removal in 
geochemical data: the MCD robust distance approach 
versus t-SNE ensemble clustering. Mathematical 
Geosciences. 53 (1): 105-130. 

[47]. Garrett, R.G., Reimann, C., Hron, K., Kynčlová, P., 
and Filzmoser, P. (2017). Finally, a correlation coefficient 
that tells the geochemical truth. Explore, 176, 1-10. 

[48]. Shafiei, B., Haschke, M., and Shahabpour, J. (2009). 
Recycling of orogenic arc crust triggers porphyry Cu 
mineralization in Kerman Cenozoic arc rocks, 
southeastern Iran. Mineralium Deposita. 44 (3): 265-283. 

[49]. Waterman, G.C., and Hamilton, R.L. (1975). The Sar 
Cheshmeh porphyry copper deposit. Economic Geology. 
70 (3): 568-576. 

[50]. Asadi, H.H., Porwal, A., Fatehi, M., Kianpouryan, 
S., and Lu, Y.J. (2015). Exploration feature selection 
applied to hybrid data integration modeling: Targeting 
copper-gold potential in central Iran. Ore Geology 
Reviews, 71, 819-838. 

[51]. Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P., and 
Jourdan, F. (2013). Petrology and geochemistry of calc-
alkaline volcanic and subvolcanic rocks, Dalli porphyry 
copper–gold deposit, Markazi Province, 
Iran. International Geology Review. 55 (2): 158-184. 

[52]. Asadi Haroni, H. (2008). First stage drilling report 
on Dalli porphyry Cu-Au prospect, Central Province of 
Iran. Technical of Iran, Isfahan, Report, 1, 24. 

[53]. Asadi, H.H. (2008). Final exploration report of Dalli 
porphyry Cu–Au deposit. Markazi province. Technical 
Report. Dorsa Pardazeh Company, Isfahan, Report 01. 

[54]. Aitchison, J. (1982). The statistical analysis of 
compositional data. Journal of the Royal Statistical 
Society: Series B (Methodological). 44 (2): 139-160.  

[55]. Carranza, E.J.M. (2011). Analysis and mapping of 
geochemical anomalies using logratio-transformed stream 
sediment data with censored values. Journal of 
Geochemical Exploration. 110 (2): 167-185. 

[56]. Graffelman, J., Pawlowsky-Glahn, V., Egozcue, J.J., 
and Buccianti, A. (2018). Exploration of geochemical data 
with compositional canonical biplots. Journal of 
geochemical exploration, 194, 120-133. 

[57]. Filzmoser, P., and Hron, K. (2008). Outlier detection 
for compositional data using robust 
methods. Mathematical Geosciences. 40 (3): 233-248. 

[58]. Owen, D.D.R., Pawlowsky‐Glahn, V., Egozcue, J.J., 
Buccianti, A., and Bradd, J.M. (2016). Compositional data 
analysis as a robust tool to delineate hydrochemical facies 
within and between gas‐bearing aquifers. Water 
Resources Research. 52 (8): 5771-5793. 



Mahdiyanfar and Amir Salimi Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

837 

[59]. Begashaw, G.B., and Yohannes, Y.B. (2020). 
Review of outlier detection and identifying using robust 
regression model. International Journal of Systems 
Science and Applied Mathematics. 5 (1): 4-11. 

[60]. Filzmoser, P., Reimann, C., and Garrett, R. G. 
(2004). A multivariate outlier detection method (pp. 18-
22). na. 

[61]. Rousseeuw, P.J., and Van Zomeren, B. C. (1990). 
Unmasking multivariate outliers and leverage 
points. Journal of the American Statistical association. 85 
(411): 633-639. 

[62]. Farzamian, M., Rouhani, A. K., Yarmohammadi, A., 
Shahi, H., Sabokbar, H. A., and Ziaiie, M. (2016). A 
weighted fuzzy aggregation GIS model in the integration 
of geophysical data with geochemical and geological data 
for Pb–Zn exploration in Takab area, NW Iran. Arabian 
Journal of Geosciences. 9 (2): 1-17. 

[63]. Mahdiyanfar, H. (2020). A Critique on Power 

Spectrum–Area Fractal Method for Geochemical 
Anomaly Mapping. Journal of Analytical and Numerical 
Methods in Mining Engineering. 10 (25): 33-41. 

[64]. Mahdiyanfar, H. (2021). Identification of Buried 
Metal Ore Deposits using Geochemical Anomaly Filtering 
and Principal Factors of Power Spectrum. Journal of 
Mining and Environment. 12 (1): 205-218. 

[65]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., and 
Mokhtari, A.R. (2022). Integrating principal component 
analysis and U-statistics for mapping polluted areas in 
mining districts. Journal of Geochemical 
Exploration, 234, 106924. 

[66]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., 
Khalajmasoumi, M., Zarifi, A. Z. and Yasrebi, A.B. 
(2016). Delineation of geochemical anomalies based on 
stream sediment data utilizing fractal modeling and staged 
factor analysis. Journal of African Earth Sciences, 119, 
139-149. 



  1401شماره سوم، سال  زدهم،ی، دوره سزیستپژوهشی معدن و محیط -نشریه علمی  هدیان فر و سلیمیم
  

 

  

هاي حاصله از داده GMPIهاي با استفاده از مدل سازي فرکتالی داده هاي ژئوشیمیاییشناسایی ناهنجاري
 سازي مس پورفیري ژئوشیمیایی تبدیل یافته لگاریتمی میان مرکز مطالعه موردي: کانی

  

  2امیر سلیمی و *1فرحسین مهدیان

  عالی گناباد، گناباد، ایران گروه مهندسی معدن، مجتمع آموزش .1
  دانشگاه زنجان، زنجان، ایرانگروه مهندسی معدن، دانشکده مهندسی،  .2

  07/09/2022، پذیرش 21/05/2022ارسال 

  hssn.mahdiyanfar@gmail.com* نویسنده مسئول مکاتبات: 

  

  چکیده:

سایی شنا شیمیایی هايشاخص هدف از این تحقیق  ساردر  ژئو ستفاده با دالی پورفیري مس کان شده از محیط هاينمونه از ا شت  س خاك ژئوشیمیایی بردا  در .تا
 هايمدل دقت که خارج از ردیف و پرت هاينمونه ســپس .شــدند باز )CLRتبدیل لگاریتمی میان مرکز ( روش از اســتفاده با ژئوشــیمیایی هايداده نخســت، گام

 GMPI شاخص و )PCAاصلی ( مؤلفه آنالیز هايروش در ادامه .گردیدند حذف و شناسایی ماهالانوبیس فاصله روش از استفاده با دهندمی کاهش را ژئوشیمیایی
 آنهامیان  از که گردید اصلی مؤلفه 5موفق به شناسایی  PCA روش .شدند اعمالهاي پرت از داده شده و پاك یافتهتبدیل ژئوشیمیایی هايداده مجموعه روي بر

 در را متغیره چند هاي ژئوشیمیاییتواند شاخصمی GMPI روش .انتخاب شد )MFسازي ( کانی فاکتور عنوان بهمولیبدن است  و طلا مس، شامل مؤلفه اول که
شه شیمیایی برداري نق ساس مقاد GMPIر ین رو مقادیاز ادهد.  را بهبود ژئو سازير ینمونه ها بر ا صر  فاکتور کانی  سبه لیبدن مو و مس، طلاعنا ج ینتا .گردیدمحا

ــت آمده  ــان بدس ــنگ GMPIر بزرگ یکه مقاد دادنش ــدت با س ــانیوریکوارتز د يریپورف يهابه ش ــ یت و مناطق دگرس ــتگ یکپتاس ــازي مدل دارد. یهمبس س
ستفاده از   GMPI (MF(Cu, Au, Mo) (شاخص سه روش با ا شیمیایی بر -) انجام گرفت. مدل فرکتالی عیارN-C( عدد-عیار یفراکتالهند تعداد چهار جامعه ژئو

سایی کرد.  شنا ساس ابعاد فرکتالی مختلف  شه ناهنجارا ش ينق ساس  GMPI (MF(Cu, Au, Mo)( ییایمیژئو سیم گردید. مناطق امید ت یجمع 4 بر ا مذکور تر
سیل کانیاي عمیق مورد اعتبارسنجی قرار گرفت. بخشهتر و همچنین حفاريبخش بدست آمده بوسیله کارهاي اکتشافی تفصیلی طلا به -سازي مسهاي با پتان

 يبردارشهنقتواند براي دهد که این روش به صورت موفقیت آمیزي میآمده نشان میصورت مناسبی با استفاده از این روش ترکیبی مشخص گردید. نتایج بدست
  .قرار گیرداستفاده مورد  یمحل يهااسیدر مق ییایمیژئوش

  .ژئوشیمیایی مدل فراکتالی، سازي مدل هاي خارج از ردیف،داده تشخیص ناهنجاري ژئوشیمیایی، نقشه برداري کلمات کلیدي:
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