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 The noise of drilling in the dimension stone business is unbearable for both the 
workplace and the people who work there. In order to reduce the negative effects 
drilling has on the health of the environment, the drilling noise has to be measured, 
assessed, and controlled. The main purpose of this work is to investigate an 
experimental-intelligent method to predict the noise value of drilling in the dimension 
stone industry. For this purpose, 135 laboratory tests are designed on five types of 
rocks (four types of hard rock and one type of soft rock): and their results are measured 
in the first step. In the second step, due to the unpredicted and uncertain issues in this 
case, artificial intelligence (AI) approaches are applied, and the modeling is conducted 
using three intelligent systems (IS): namely an adaptive neuro-fuzzy inference system-
SCM (ANFIS-SCM): an adaptive neuro-fuzzy inference system-FCM (ANFIS-FCM): 
and the radial basis function network (RBF) neural network. 75% of the samples are 
considered for training, and the rest for testing. Several models are constructed, and 
the results indicate that although there is no significant difference between the models 
according to the performance indices, the proposed construction of ANFIS-SCM can 
be considered as an efficient tool in the evaluation of drilling noise. Finally, several 
scenarios are designed with different input modes, and the results obtained prove that 
the types of rock and the drill bits are more important than the operational 
characteristics of the machine. 
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1. Introduction 
Consumer demand for dimension stone in the 

global building and civil engineering industries has 
been increasing consistently over the last several 
decades [1]. This is clear from how quickly tools 
and methods for working with dimension stone 
have changed in the last few decades. Noise 
pollution is a major form of environmental 
pollution with potential effects on the health of 
humans and other living organisms [2-7]. Although 
the expansion of this industry has had many 
economic benefits, these developments have 
always faced many challenges [8]. One of these 
challenges is the evaluation and control of the noise 
value of drilling in the dimension stone industry. 

Noise exposure, whether it is audible or not, can 
lead to hearing loss, problems with hearing, trouble 
sleeping, more stress hormones being released, 
heart problems, irritability, and other mental health 
issues. Over the last century, the advent and 
growing use of many types of machines and 
vehicles has transformed the human life. 
According to the World Health Organization 
(WHO): noise pollution is the third most common 
environmental risk factor, after air and water 
pollution [9]. Noise pollution has a wide range of 
adverse effects on not only humans but also other 
living organisms. Extensive studies, especially in 
the field of occupational exposure, indicate that 

mailto:Sina.shaffieehaghshenas@unical.it
http://www.jme.shahroodut.ac.ir


Mikaeil et al. Journal of Mining & Environment, Vol. 13, No. 3, 2022 
 

694 

noise directly affects the human auditory system. 
One of the major types of noise is the noise 
generated by drill bit-rock surface interactions 
during drilling operations [10]. Drilling noises are 
known to have adverse effects on the workers. The 
characteristics of these noises can also serve as an 
indicator of the performance of drilling tools [11]. 
Noises and acoustic waves are often used to figure 
out what is wrong with machines, and less often, to 
figure out what rocks are like [12]. Obert and 
Duvall (1941) (1942) have used acoustic emissions 
(sound waves) to predict the blast characteristics of 
rock in mining operations [13, 14]. Later, other 
researchers studied the changes in the acoustic 
wave amplitude in a frequency band with the 
increase in stress [15-18]. In the studies conducted 
by Zborovjan (2002) and Zborovjan et al. (2003): 
the hidden Markov model of acoustic signals in 
different types of rock has been used to identify the 
type of rock for drilling operations [19-20]. Gradl 
et al. (2008) have used a standard microphone to 
record and analyze the vibrational properties of the 
noise made when the bit hit the rock during drilling 
[10]. Vardhan et al. (2009) have tried to use the 
sound level produced during drilling in a laboratory 
scale rock sample to estimate the compressive 
strength and abrasion resistance of the rock [21]. 
Yilmaz and Kaynar (2010) have used Artificial 
Neural Networks (ANNs) of the Multi-Layer 
Perceptron (MLP) and Radial Basis Function 
(RBF) types and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) to predict soil swelling, and 
compared the results with the results of traditional 
multiple regression [22]. In a study by Kumar et al. 
(2011): they developed a general prediction model 
for the relationships between the sound level 
generated during the drilling of sedimentary rocks 
and their physical-mechanical properties such as 
uniaxial compressive strength, tensile strength, and 
porosity [23].  Kumar et al. (2013) have used soft 
computing techniques such as multiple regression 
and artificial neural networks to predict rock 
properties based on a set of inputs including drill 
rotation speed, penetration rate, drill bit diameter, 
and equivalent sound level during drilling [24]. 
Kahraman et al. (2013) have used the measured 
sound levels to predict the abrasion resistance of 
rocks [25]. In a study by Masood (2015): the sound 
level generated during the excavation of igneous 
rocks with a portable drilling machine was 

modeled [26]. Delibalta et al. (2015) have used the 
noise levels measured during the diamond sawing 
process to predict the physical and mechanical 
properties of the sawed rock [27]. Kivade et al. 
(2015) have developed an ANN model for 
predicting the properties of sedimentary rock based 
on the penetration rate and sound level generated 
during percussive drilling [28]. In another study, 
Kumar et al. (2019) have developed a new method 
for estimating rock properties based on the 
dominant frequencies of the noise produced during 
the diamond core drilling operation [29]. In a series 
of studies by Yari and Bagherpour (2018, 2019): 
the Fourier transform was used to model the 
relationship between the rock mass characteristics 
and the dominant frequencies of the sound waves 
generated during drilling [30-32]. Piri et al. (2021) 
have studied and compared the sound levels 
generated during drilling with three types of bit in 
three hard rock samples [33].  

Reviewing the past studies shows that, even 
though a lot of research works has been done in this 
area, more research work is required to find out if 
intelligent ways can be used to cut down on the 
noise pollution caused by the stone industry. 

2. Methodology  
This work aimed to investigate the factors 

affecting the sound level generated in this industry. 
To reach this goal, 135 lab tests were done on three 
groups of hard rock (granite) samples using a drill 
machine with different production rates, rotation 
speeds, and drill bits with different levels of 
hardness. The noise made during each test was 
measured. In order to achieve the best mapping 
between the input and output data, the measured 
data was analyzed using three intelligent methods: 
Adaptive Neuro-Fuzzy Inference System-
Subtractive Clustering Method (ANFIS-SCM): 
Adaptive Neuro-Fuzzy Inference System-Fuzzy c-
means (ANFIS-FCM): and RBF artificial neural 
network. Next, the models developed by these 
methods were examined and compared in order to 
determine which one performed better in 
predicting the noise level. Finally, the chosen 
model was used to examine the factors that 
influenced the noise value of drilling in multiple 
scenarios. A diagram of the stages of this work is 
illustrated in Figure 1. 
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Figure 1. Research methodology flow chart. 

2.1. Laboratory and field studies  

This work used three types of drill bits in the 
tests: a bit with WC coating, a bit with TiSiAl 
coating, and a bit with Diamond-DLC coating. Five 
kinds of rocks including Khoshaintat granite, 
Khorramdarreh granite, white Natanz granite, 

Nehbandan granite, and marble, were used in these 
tests. A drilling machine made to measure the 
drilling parameters was used to drill into these 
rocks. Before the tests, four primary mechanical 
properties of the rocks were measured. The results 
of these rock mechanics measurements are given in 
Table 1. 

Table 1. Important mechanical properties of rocks. 
Young’s 

modulus (GPa) 
Mohs 

hardness (N) 
Schmiazek abrasivity 

factor (N/mm) 
Uniaxial compressive 

strength (MPa) 
Name of 
quarry 

Commercial 
name 

28.9 5.65 10.42 133 Khoshtinat Granite 
36.5 5.67 11.1 141 Khoramdareh Granite 
43 5.7 13.4 150 Sefid natanz Granite 
39 5.95 14.84 155 Nehbandan Granite 

31.6 3.1 0.105 68 Salsali Marble 
 

All drilling tests were performed in a laboratory. 
The sound generated during the drilling of different 
rocks with different drill bits was measured by a 
sound level meter. 

Since noise was measured at a certain time, the 
average amount of noise measured for each sample 
of rock was written down for each drilling test, 
taking into account the different operational 
parameters and the hardness of the drill bit. For 
example, the mean value was 92.79 for Nehbandan 
granite rock drilled with a drill with a Diamond-
DLC coating at a penetration rate of 18 mm/min 

and a rotation speed of 950 rpm. Since the base 
noise level of the test environment and the drilling 
machine was measured to be 75–80 dB, before any 
analysis or comparison, the average of these 
figures (77.5 dB) was deducted from all measured 
noise levels. The results of the measured noise for 
Nehbandan granite rock with respect to various 
operational parameters and drill bit hardness are 
presented in Table 2. 

Figure 2 displays a picture of the drilling 
machine, the rock samples, the drill bits, and the 
noise level meter used in the work. 
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Table 2. Results of measured noise for Nehbandan granite rock. 

Bit Penetration rate 
(m/min) 

Speed of rotation 
(rpm) 

Noise value 
(db) 

Environment noise value 
(db) 

Noise value of drilling 
(db) 

TiAlSi 

12 × 10ିଷ 
850 88.45 77.5 10.95 
900 87.88 77.5 10.38 
950 89.41 77.5 11.91 

18 × 10ିଷ 
850 89.67 77.5 12.17 
900 88.86 77.5 11.36 
950 89.74 77.5 12.24 

24 × 10ିଷ 
850 88.08 77.5 10.58 
900 90.55 77.5 13.05 
950 91.03 77.5 13.53 

Diamond-
DLC 

12 × 10ିଷ 
850 92.04 77.5 14.54 
900 93.86 77.5 16.36 
950 92.42 77.5 14.92 

18 × 10ିଷ 
850 92.39 77.5 14.89 
900 94.27 77.5 16.77 
950 92.79 77.5 15.29 

24 × 10ିଷ 
850 93.29 77.5 15.79 
900 92.67 77.5 15.17 
950 93.24 77.5 15.74 

WC 

12 × 10ିଷ 
850 95.4 77.5 17.9 
900 96.18 77.5 18.68 
950 98.28 77.5 20.78 

18 × 10ିଷ 
850 95.75 77.5 18.25 
900 96.2 77.5 18.7 
950 98.13 77.5 20.63 

24 × 10ିଷ 
850 96.95 77.5 19.15 
900 97.7 77.5 20.2 
950 98.56 77.5 21.06 

 
Figure 2. An overview of a) drilling machine; b) rock samples c) drill bits; and d) noise measurement device. 
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2.2. Intelligent systems  
2.2.1. Radial basis function network (RBF) 
neural network 

In recent decades, artificial neural networks have 
greatly contributed to progress in many fields of 
science and engineering, as well as technological 
advancement in a wide range of industries [34-45]. 
The Radial Basis Function (RBF) neural network 
is a strong and effective artificial neural network 
that can solve many complex problems. This 
network is a feed-forward network. Most feed-
forward networks have three layers: the input layer, 
the hidden layer, and the output layer. It was 

introduced by Moody and Darken in 1980 [46-47]. 
The input layer transforms the input data into a 
vector of real numbers, which is then processed by 
a hidden layer with radial basis functions as 
activation functions. The output of this network in 
the last layer (output layer) can be a linear 
combination of radial basis functions for input 
parameters and neurons [48-49]. RBF neural 
networks are used in several areas, including 
classification, time series prediction, function 
approximation, and system control. Figure (3) 
shows the general form of an RBF neural network 
with three layers. 

 
Figure 3. Basic form of RBF neural network. 

As shown in Figure 3, the RBF network receives 
data in the form of input vectors P1, P2, …., PN uses 
them for training/processing in the hidden layer, 
and ultimately produces a solution in the form of 
output vector F1, F2, …., Ft in the output layer [50]. 
The feature that distinguishes the RBF network 
from other neural networks is how it processes the 
data in the hidden layer. Although an RBF network 
requires more neurons than a conventional MLP, it 
is much faster to build and train. 

2.2.2. Adaptive network-based fuzzy inference 
system   

Intelligent systems play an important role in 
solving the engineering problems under conditions 
that are unpredictable and uncertain. Many 
researchers and engineers from different fields 
have used these intelligent systems to solve 
difficult problems and find the best solutions [51-
64]. One of these intelligent systems is the 

Adaptive Network-Based Fuzzy Inference System 
(ANFIS): which includes a combination of the 
capabilities of fuzzy systems and artificial neural 
networks [65]. When classical mathematics such as 
differential equations does not have the capability 
for modelling complex systems, ANFIS can be 
considered as an efficient and powerful tool for 
modelling in these cases [66-68]. ANFIS was first 
introduced in 1993 by Jang [69-70]. Using the 
input-output data and the learning process, it is also 
a powerful tool for estimating functions [71]. After 
the introduction of ANFIS, the various structures 
of it were presented, which work and model based 
on some kinds of data clustering including the 
evolving fuzzy neural networks, the dynamic 
evolving neural-fuzzy, the generic self-organizing 
fuzzy neural network (GenSoFNN): and the self-
adaptive fuzzy inference network (SAFIN) [72]. 
The basic structure of ANFIS with five layers is 
shown in Figure 4.  
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Figure 4. A basic form of ANFIS model. 

The first layer contains the input nodes. 
According to Equation 1, each node generates the 
membership degree values of each input using the 
membership functions (MFs). In Equation 1, ,l iQ  
and   represent the membership degree of the 
fuzzy set and the membership function, 
respectively. X and Y are the inputs that represent 
A and B as the linguistic labels [71, 72].   

௟ܳ,௜ =  (ݔ)௜ܣߤ

(1) 

݅ ݎ݋݂ = 1,2 

or 

௟ܳ,௜ =    (ݕ)௜ିଶܤߤ
݅ ݎ݋݂ = 3,4 

The output value in the second layer (nodes of 
rules) is gained by multiplying the input signals 
according to Equation (4) that is shown by   
label based on Equation 2. It is worth noting that 
the output of each node in this layer expresses the 
firing strength of each rule [71, 72]. 

ܳଶ,ଵ = ௜ݓ = .(௜ݔ)௜ܣߤ  i=1,2 (2) (௜ݔ)௜ܤߤ

In the third layer, the ratio of the firing strength 
of each rule for the ith node to the firing strength of 
the total rules is calculated based on Equation 3. 
Each node in this layer is introduced with N label. 

3, ( )i iQ W


is normalized firing strengths that is the 
output of this layer [72, 73]. 

ܳଷ,ଵ = ഥܹ௜ = ௪೔
∑ ௪ೕమ
ೕసభ

  
(3) 

i=1,2 

In the fourth layer, every node is considered an 
adaptive node that is matched with the node 

function based on Equation 4. iW


is the output of 
the third layer, and ,i ip q and ir  represent a set of 
parameters of the node function, which are known 
as the inductive parameters of the fuzzy model 
section [71, 72]. 

ସܳ,ଵ = ഥܹ௜ . ௜݂ = ഥܹ௜(݌௜ݔ + ݕ௜ݍ +  ௜) (4)ݎ

In the final layer, there is only one node that is 
marked with the label. This node consists of the 
sum of the all signals of the output of the previous 
layer, and provides an output that corresponds to 
Equation 5. It is worth noting that in this layer the 
result is presented as a non-fuzzy output using the 
defuzzifier rules [71, 72]. 

ହܳ,ଵ = ෍ ഥܹ௜ . ௜݂ =
௜ݓ∑ . ௜݂

௜ݓ∑
 (5) 

2.2.3. Fuzzy C-Means (FCM) clustering 
approach  

The process that separates the components of a 
set into different groups is generally called 
clustering [73]. In this process, the components of 
each group have the most similar properties to each 
other. The clustering algorithms all work in a 
similar way but they use different ways to figure 
out how far apart each group's members are from 
the center of each cluster. The clustering 
algorithms are also classified into two general 
forms: fuzzy and classical. In classical clustering, 
the members belong to only one class, while in 
fuzzy clustering, each member can belong to 
different classes based on different membership 
degrees [74]. There are several fuzzy clustering 
algorithms that are considered flexible clustering 
techniques and have successful applications in 
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solving machine learning problems. One of the 
most efficient fuzzy clustering algorithms is the 
fuzzy C-means (FCM). In fact, it is an extension of 
the Hard C-mean (HCM) method, and was 
introduced by Bezdek [75]. 

Before starting the algorithm process, the number 
of classes is specified, which is indicated by "C" 
and its value is at least 2 and more. Then the 
weighting factor (m') value is assigned, which 
indicates the values of fuzziness in the clustering 
process. At the beginning process of the algorithm, 
the initial partition matrix (U(0)) is guessed, and 
then the number of iterations of the algorithm is 
determined that is shown with r. In each iteration, 
the center of each clusters {Vi(r)} is calculated, 
which represents the coordinates of each cluster. 
The partition matrix is updated as U͂(r) after the rth 
iteration [75]. This process is performed based on 
Equations 6 to10. 

௜௞ߤ
(௥ାଵ) = ൦෍൭

݀௜௞
(௥)

௝݀௞
(௥)൱

ଶ
(௠ᇲିଵ)௖

௝ୀଵ

൪

ିଵ

  (6) 

௞ܫ ݎ݋݂ = ߮ 

௜௞ߤ
(௥ାଵ) = 0         (7) 

for all classes i where i ϵ ܫሚ௞ 

௞ܫ = ቄ݅ห2 ≤ ܥ ≤ ݊;  ݀௜௞
(௥) = 0ቅ (8) 

ሚ௞ܫ = {1,2,3, … . , ܿ} − ௞ܫ  (9) 

෍ߤ௜௞
(௥ାଵ) = 1

௜∈ூೖ

 (10) 

where μik(r+1) expresses the membership degree 
of the kth member in the ith cluster for r + 1 
iteration of clustering process. dik represents the 
Euclidean distance between the center of the kth 
member and the ith cluster. In the last step of the 
clustering process, the accuracy of algorithm is 
assessed. If Equation 11 is met, the clustering 
process will be stopped; otherwise, the process is 
started from the first step, and this process is 
repeated till Equation 11 is met [75]. 

ฮ ෩ܷ(௥ାଵ) − ෩ܷ(௥)ฮ = ௅ߝ  (11) 

2.2.4. Subtractive clustering method (SCM) 
The subtractive clustering method is one of the 

efficient methods of clustering that was introduced 
by Chiu. The clustering process in this algorithm is 
based on the fact that all points can be a potential 
cluster center. Initially, for a set, the number of 

clusters and the cluster centers are estimated. Then 
the numbers of subtractive centers were used to 
make automatic MFs, rule base, and the position of 
MF within dimensions [76]. 

Hence in the m-dimensional space, a set of points 
{X1, X2, X3, ….., Xn} is determined for which 
each Xi can be considered as a cluster center. For 
each Xi, a density measure is calculated based on 
Equation 12 [71, 72]. 

௜ܦ = ෍݁݌ݔቌ−
ฮݔ௜ − ௝ฮݔ

ଶ

ቀݎ௕2ቁ
ଶ ቍ

௡

௝ୀଵ

 (12) 

where Di represents a density measure, and ra 
expresses a neighborhood radius, which is a 
positive constant for each data point examined. 
Therefore, when a data point has a high-density 
value in its neighborhood radius, it shows that there 
are a large number of neighboring data points in 
this domain (radius). In addition, the data points 
that are outside the radius of ra have a low impact 
level on the density value, although they do not 
have a significant and direct impact on calculating 
the density value. Then the first center of a cluster 
belongs to a data point with the highest density 
among all data points, and Xc1 and Dc1 are 
calculated to introduce the center and density of the 
first cluster. Then the density of each data point is 
calculated based on Equation 13 [71, 72].  

௜ܦ = ௜ܦ − ݌ݔ௖ଵ෍݁ܦ ቌ−
௜ݔ‖ − ௖ଵ‖ଶݔ

ቀݎ௕2ቁ
ଶ ቍ

௡

௝ୀଵ

 (13) 

where rb determines a neighborhood including 
measurable decreases in the density measure, and 
it is a positive constant. This process is done to 
determine the density and coordinates of the next 
data point, and then this process is updated to 
finally reach the desired number of clusters with 
the most optimal value in density and coordinates. 

3. Modeling 

A performance evaluation was performed in 
terms of three measures to ensure that the models 
have been developed properly and to check and 
compare their accuracy. These measures were the 
Variance Account For (VAF): Root Mean Square 
Error (RMSE): and Coefficient of Determination 
(R2): which were calculated by Equations 14-16. 

ܨܣܸ = ቈ1−
௜ݔ)ݎܽݒ − (௜ݕ
(௜ݔ)ݎܽݒ

቉ (14) 
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ܧܵܯܴ = ඩ
1
݊
෍(ݔ௜ ௜)ଶݕ−
௡

௜ୀଵ

 (15) 

ܴଶ =
[∑ ௜ݔ) − ௠௘௔௡)ଶ௡ݔ

௜ୀଵ ] − [∑ ௜ݔ) − ௜)ଶ௡ݕ
௜ୀଵ ]

[∑ ௜ݔ) − ௠௘௔௡)ଶ௡ݔ
௜ୀଵ ]  (16) 

The model was developed with seven inputs, of 
which four were the mechanical properties of the 
rock, namely its uniaxial compressive strength, 
Mohs hardness, Schimazek’s F-abrasiveness 
factor, and Young modulus. One was the main 
characteristic of the drill bit, i.e. its hardness, and 
two were operational characteristics of the drill 
machine, namely its production rate and rotation 
speed. The output of the model was the noise of 
drilling. Of the datasets collected from 135 tests, 
75% (101 datasets) were used to train the model, 
and the rest were used to test the model. 

 

 

 

3.1. Modeling by BRF 
First, several different models were developed to 

determine the best setting for the control 
parameters of the BRF neural network, i.e. the 
layer size, spread, and number of neurons [50], 
[77]. It should be noted that the choice of values for 
these parameters greatly affects the network’s 
convergence rate as well as accuracy. While some 
of these control parameters can be set based on the 
choices made in similar studies, many others have 
to be determined by trial and error [51]. Therefore, 
to determine the most suitable control parameters, 
a range was considered for each of the control data 
based on the opinions of experts and past disputes. 
Then by trial and error, the most suitable 
parameters were selected. Therefore, the models 
were built with 80, 100, 120, and 130 neurons, with 
the layer size set to 3 and spread set to 0.5, 1, and 
2. Also the max iterations were considered the 
values of 100, 200, 450, and 750 in different 
models. The specifications of the 12 models 
developed in this stage are given in Table 3. 

The simple ranking method of Zorlu et al. was 
then used to rank these models, reaching the 
ranking given in Table 4 [78]. 

Table 3. Effect of control parameters of RBF network on performance of each model.  

Model 
No. 

Layer 
size Spread Number of 

neurons 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF 

Train Test Train Test Train Test 
I 3 0.5 80 0.67 0.33 2.07 2.88 49 24 
II 3 0.5 100 0.63 0.4 2.09 2.58 41 23 
III 3 0.5 120 0.85 0.76 1.26 1.95 84 76 
IV 3 0.5 130 0.84 0.67 1.37 2.08 82 66 
V 3 1 80 0.68 0.5 2.17 2.8 53 40 
VI 3 1 100 0.83 0.72 1.32 2.36 80 72 
VII 3 1 120 0.99 0.91 0.29 0.99 99 90 
VIII 3 1 130 0.95 0.84 0.68 1.54 95 82 
IX 3 2 80 0.89 0.43 1.14 2.6 88 41 
X 3 2 100 0.94 0.84 0.77 1.5 94 84 
XI 3 2 120 0.94 0.82 0.77 1.69 95 82 
XII 3 2 130 0.88 0.71 1.19 1.98 86 70 

 
As the results of Table 4 show, the best 

performance among these 12 models was observed 
in Model VII (score = 72): where the layer size was 
3, the spread was 1, and the number of neurons was 
120. It should be noted that the best number of 
iteration was 200. In contrast, the worst 

performance was observed in Model I and Model 
II (score = 16). Figures 5-8 show the correlation 
between the observed data and data predicted by 
Model VII in the training and testing phases. 
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Table 4. Ranking of each RBF network models.  

Model 
No. 

Layer 
size Spread Number of 

neurons 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF Total 

rank Train Test Train Test Train Test 
I 3 0.5 80 3 2 4 1 3 3 16 
II 3 0.5 100 2 3 3 4 2 2 16 
III 3 0.5 120 7 9 7 8 7 9 47 
IV 3 0.5 130 6 6 5 6 6 6 35 
V 3 1 80 4 5 2 2 4 4 21 
VI 3 1 100 5 8 6 5 5 8 37 
VII 3 1 120 12 12 12 12 12 12 72 
VIII 3 1 130 11 11 11 10 11 10 64 
IX 3 2 80 9 4 9 3 9 5 39 
X 3 2 100 10 11 10 11 10 11 63 
XI 3 2 120 10 10 10 9 11 10 60 
XII 3 2 130 8 7 8 7 8 7 45 

 

 
Figure 5. Coefficient of determination between predicted values and actual measured values for training dataset 

of RBF model. 

 
Figure 6. Coefficient of determination between predicted values and actual measured values for testing dataset of 

RBF model. 
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Figure 7. Comparison between measured and predicted noise value of drilling for testing dataset of RBF model. 

 
Figure 8. Comparison between measured and predicted noise value of drilling for testing dataset. 

3.2. Modeling by ANFIS-FCM 

At the first step in the ANFIS-FCM modeling 
procedure of this work, all datasets were 
normalized based on Equation 17. 
ܺ௡௢௥௠ = (ܺ −ܺ௠௜௡)/(ܺ௠௔௫ − ܺ௠௜௡) (17) 

where Xnorm is the normalized amount of the 
measured parameter. X, Xmin, and Xmax are the 
measured values, the minimum and maximum 
amounts of the measured parameters, respectively 
[79]. It is worth mentioning that genfis3 was 
applied for generating the fuzzy inference system 
(FIS) structure from a dataset based on the fuzzy c-
means clustering technique in this modeling. The 

FIS that was generated by genfis3 is a Sugno-type 
FIS. Similar to modeling with RBF, a range of 
different values for ANFIS-SCM and ANFIS-FCM 
control parameters were considered with the 
consultation and opinion of experts. The optimal 
settings were then determined via iterative trial and 
error [72]. In fact, the control parameters play an 
important role in the rapid convergence of the 
algorithm with high accuracy. After constructing 
many models and evaluating the ability of the 
models to predict the amount of noise generated by 
performance indicators, the best developed model 
was determined. Some control parameters included 
the max epoch, initial step size, and number of 
clusters, which were considered a range for them 
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including the max epoch (10, 30, 50, and 100):  
initial step size (0.005, 0.01, and 0.02): and number 
of clusters (3, 5, 7, and 6). After trial and error and 
constructing several models, the best values for 
each of these parameters were selected as 30, 0.01, 
and 5 for the max epoch, initial step size, and 
number of clusters, respectively. Figure 9 shows 
the membership function of each input that was 

considered by the ANFIS-FCM model. In addition, 
the coefficient of determination (R2) between the 
measured noise value of drilling and the predicted 
noise value of drilling for training and testing 
dataset is indicated in Figures 10 and 11, 
respectively. The results obtained show that the 
acceptable coefficients of determination were 
achieved by the ANFIS-FCM model. 

 
Figure 9. Membership function of inputs were generated by ANFIS-FCM model. 
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Figure 10. Comparison between measured and 

predicted noise value of drilling for training dataset 
of ANFIS-FCM model. 

 
Figure 11. Comparison between measured and 

predicted noise value of drilling for testing dataset 
of ANFIS-FCM model. 

3.3. Modeling by ANFIS-SCM 
As mentioned earlier, the first step in modeling 

with the ANFIS hybrid algorithm is to normalize 
the dataset. It should be noted that in this modeling, 
genfis2 was used for generating the fuzzy inference 
system (FIS) structure from a dataset based on the 
subtractive clustering technique [72]. The FIS that 
was generated by genfis2 is a Sugeno-type FIS. 
Then the most appropriate control parameters in 
the modeling were determined. Some control 
parameters were the max epoch, initial step size, 
and cluster center's range of influence (radii): 
which were considered a range for them including 
the max epoch (10, 20, 40, and 100): initial step 
size (0.01, 0.1, 0.2, 0.5, and 0.6): and cluster 
center's range of influence (0.6, 0.7, 0.8, and 0.9). 
After several models, the best developed ANFIS-

SCM model was determined based on the values 
obtained from the performance indicators of the 
algorithm and a simple ranking method. The 
control parameters of the best developed ANFIS-
SCM model included the max epoch = 40, initial 
step size = 0.5, and cluster center's range of 
influence (radii) equal to 0.8, which led to 
optimizing the convergence speed of the algorithm 
and accuracy in modeling. Figure 12 indicates that 
the membership function of each input that was 
generated by the ANFIS-FCM model. In addition, 
the coefficient of determination (R2) between the 
measured noise value of drilling and the predicted 
noise value of drilling for training and testing 
dataset is indicated in Figures 13 and 14, 
correspondingly. The results obtained demonstrate 
that the ANFIS-FCM model has acceptable 
coefficients of determination. 
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Figure 12. Membership function of inputs were generated by ANFIS-SCM model. 

 
Figure 13. Comparison between measured and 

predicted noise value of drilling for training dataset 
of ANFIS-SCM model. 

 
Figure 14. Comparison between measured and 

predicted noise value of drilling for testing dataset 
of ANFIS-SCM model. 
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4. Discussion 

As explained earlier, in this work, we conducted 
135 laboratory tests on 5 types of rock and 
measured the noise level in each test. Then the 
modeling was done with 7 inputs: the rock's 
uniaxial compressive strength, Mohs hardness, 
Schimazek's F-abrasiveness factor, and Young 
modulus, the drill bit's hardness, and the drill 
machine's production rate and rotation speed. The 

noise level was the only output. After developing 
multiple models with ANFIS-SCM, ANFIS-FCM, 
and RBF methods, the best model was obtained 
through each method, i.e. the one with the best 
mapping between input and output data and the 
highest correlation coefficient and lowest error was 
determined. Then the three best models were 
compared in terms of the performance measures 
described. The results of this comparison are 
presented in Table 5. 

Table 5. Comparison of results (R2, RMSE, VAF) of best developed models by three AI methods. 

Best developed model  Results of network for R2 Results of network for RMSE Results of network for VAF 
Train Test Train Test Train Test 

RBF model 0.99 0.9 0.29 0.99 99 90 
ANFIS-FCM model 0.96 0.93 0.07 0.15 96 92 
ANFIS-SCM model 0.92 0.89 0.12 0.17 91 89 

 
According to comparing the results of the three 

methods’ performances, it is determined that 
although all methods have acceptable results in 
predicting the noise generated in rock drilling, 
ANFIS–FCM has a better performance compared 
to the other two models. In the studies that follow, 
the best-developed ANFIS-FCM model is used as 
a starting point to find out how the input parameters 
affect the amount of noise that is made. 

In order to evaluate the effect of input parameters 
on the noise value of drilling, other different 

scenarios were compared with the variation of 
input parameters and their results were compared 
with the results of the best developed ANFIS-FCM 
model. Table 6 shows the scenarios designed with 
different input parameters. After developing 
multiple models and their analysis, a comparison 
between the performance indices of the algorithm 
for four scenarios is shown in Table 7, as well as 
Figures 15 and 16, which show the correlation 
between the input and output data for each scenario 
in Table 6 for training and test data, respectively. 

Table 6. Four Scenarios with different inputs by best developed ANFIS-FCM model. 

Scenario 
No. 

Inputs 
Outputs Mechanical properties of 

the rock 
Operational characteristics of 

drilling machine 
Characteristic of drill 

bits 

Scenario 1 UCS, SF-a, YM, MH PR, Speed of rotation Hardness of drill bits Noise value of 
drilling 

Scenario 2 UCS, SF-a, YM, MH PR, Speed of rotation - Noise value of 
drilling 

Scenario 3 UCS, SF-a, YM, MH - Hardness of drill bits Noise value of 
drilling 

Scenario 4 - PR, Speed of rotation Hardness of drill bits Noise value of 
drilling 

Scenario 1= Best developed ANFIS-FCM model with 7 inputs  

Table 7. Results of performance indices for all scenarios.  

Scenario No. Results of network for R2 Results of network for 
RMSE 

Results of network for 
VAF 

Train Test Train Test Train Test 
1 0.96 0.93 0.077 0.088 96 92 
2 0.6 0.57 0.282 0.182 60 56 
3 0.91 0.88 0.127 0.09 91 88 
4 0.64 0.6 0.265 0.172 64 60 
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Figure 15. Coefficient of determination between predicted values and actual measured values for training dataset 

of 4 scenarios by ANFIS-FCM model. 

 
Figure 16. Coefficient of determination between predicted values and actual measured values for testing dataset 

of 4 scenarios by ANFIS-FCM model. 

As shown in Table 7 and Figures 15 and 16, the 
best model developed by ANFIS-FCM exhibited a 
better mapping capability with higher correlation 
in scenario 1, where the effects of all the input 
parameters were considered. Also scenario 3 with 
5 input parameters resulted in a better input-output 
mapping than scenario 1, which shows the 
importance of the hardness of the drill bit. Scenario 
4 shows that the hardness of the drill bit, and the 
way the drilling machine works are not as 
important as the factors that were looked at in the 
first two scenarios. Also scenario 2 had the worst 

mapping between the mechanical properties of the 
rock and the operational properties of the drilling 
machine as inputs and the noise of drilling as an 
output because the algorithm produced a lower 
correlation rate than in other cases. Due to the four 
scenarios, it can be concluded that drill bit hardness 
has the highest impact on noise level due to the 
mechanical properties of rock and operational 
parameters, and then mechanical properties have a 
greater impact on the amount of noise level due to 
the drilling. Therefore, it is recommended that the 
coating drill bits listed be used in rock drilling, and 
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it is suggested that the use of coating listed in rock-
cutting machines can be used to reduce noise. 

In addition, it should be noted that the correlation 
rate in scenario 1 was quite high. This shows that 
the algorithm is good at mapping inputs to outputs 
and supports the idea that all of these input 
parameters affect the drilling noise value at the 
same time. 

At the end, it is important to stress that the 
proposed models with unique structures have 
properties sensitive to hard rocks, and cannot be 
easily applied to other kinds of rocks. Also when 
there is incomplete data, these algorithms are not 
able to provide modeling results with high strength 
and capability. 

5. Conclusions 

One of the major problems in the rock industry is 
the noise pollution generated by bit-rock 
interactions during drilling operations. In this 
work, the relationship between noise, rock 
properties, and drilling configuration was 
investigated by collecting and preparing five rock 
samples and subjecting them to a series of 
laboratory tests. During the laboratory tests, three 
main categories that affect the amount of generated 
noise in drilling operations including the four 
physical and mechanical properties of the rocks, 
two operational characteristics of the machine, and 
the hardness of the drill bits were measured. In 
addition, the noise levels were measured by the 
sound level meter in each test. In the next step, 
three artificial intelligence methods (ANFIS-FCM, 
ANFIS-SCM, and RBF) were used to look at the 
measurements from the lab and come up with 
different models for the relationship. In this 
modeling, the goal was to achieve the best mapping 
between output and input data. The comparison of 
the 12 models developed with different parameter 
configurations showed that Model VII with 120 
neurons in 3 layers with a spread of 1 had the best 
score (72): and Model I and Model II had the worst 
scores (16) among these 12 models. In addition, the 
results of the models developed by the three 
methods were compared in terms of three 
performance measures. This comparison showed 
that the ANFIS-FCM model was more accurate 
than the models made by other methods. 

Finally, the best model developed was 
reconstructed into multiple scenarios, each with a 
certain combination of input parameters, and the 
correlation between the inputs and the noise level 
generated during drilling was investigated. In this 
work, the best mapping was found in Scenario 1, 

where all of the input parameters were used to build 
the model. This suggests that the drilling noise is 
affected by all the parameters measured in this 
work. The results also indicated that the type of 
rock and the drill bit had a bigger effect on drilling 
noise than the operating parameters of the drilling 
machine. This is something that is required to be 
taken into account when drilling operations are 
changed to reduce noise. 
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  چکیده:

 یمنف اثرات کاهش منظور به. است تحمل رقابلیغ کنندیم کار آنجا در که يافراد يبرا هم و کار محل يبرا هم ساختمانی سنگ تجارت در يحفار يصدا و سر
 ینیبشیپ يبرا هوشمند-یتجرب روش کی یبررس کار نیا یاصل هدف. شود کنترل و یابیارز ،يریگ اندازه دیبا يکار مته زینو ست،یز طیمح سلامت بر يکار مته

 نوع کی و سخت سنگ نوع چهار( سنگ نوع پنج يرو بر یشگاهیآزما شیآزما 135 منظور نیا يبرا. است ساختمانی يهاسنگ صنعت در يکار مته زینو مقدار
سائل به توجه با دوم، مرحله در. دنشویم يریگاندازه اول مرحله در آن جینتا و شده یطراح) نرم سنگ شده ینیبشیپ م شخص و ن  يکردهایرو مورد، نیا در نام
صنوع هوش ستفاده با يسازمدل و شده اعمال )AI( یم شمند ستمیس سه از ا ستنتاج ستمیس کی یعنی )IS( هو صب ا  (ANFIS-FCM) -یقیتطب يفاز یع

FCM  یقیتطب يفاز-یعصب استنتاج ستمیس کی و- (ANFIS-FCM) FCM شبکه عملکرد بر یمبتن یعصب شبکه و (RBF) .75 آموزش يبرا هانمونه درصد 
ست يبرا هیبق و ست شده ساخته مدل نیچند. اندشده گرفته نظر در ت شان جینتا و ا ساس بر هامدل نیب يداریمعن تفاوت اگرچه که دهدیم ن  يهاشاخص ا

 با ویسنار نیچند ت،ینها در. شود گرفته نظر در يکار مته زینو یابیارز در کارآمد يابزار عنوان به تواندیم ANFIS-SCM يشنهادیپ مدل ندارد، وجود عملکرد
 . هستند تر مهم دستگاه یاتیعمل يهایژگیو از ها مته و سنگ انواع که کندیم ثابت آمده دست به جینتا و است شده یطراح مختلف يورود يهاحالت

  .ANFIS-SCM ،ANFIS-FCM،RBF، سنگ ساختمانی، سنگ سخت، سیستم هاي هوشمند،  يکار مته زینو کلمات کلیدي:
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