[1]. McDougall, J. G. and Hancock, R. (1981). Gold complexes and activated carbon - A literature review. Gold Bulletin, 14, 138-153.
[2]. Sayiner, B. and Acarkan, N. (2014). Effect of silver, nickel and copper cyanides on gold adsorption on activated carbon in cyanide leach solutions. Physicochemical Problems of Mineral Processing, 50, 277-287.
[3]. Yin, C.Y., Ng, M.F., Saunders, M., Goh, B.M., Senanayake, G., Sherwood, A. and Hampton, M. (2014). New insights into the adsorption of aurocyanide ion on activated carbon surface: Electron microscopy analysis and computational studies using fullerene-like models. Langmuir. 30 (26): 7703-7709.
[4]. Souza, C., Majuste, D., Dantas, M.S.S. and Ciminelli, V. S. T. (2014). Selective adsorption of gold over copper cyanocomplexes on activated carbon. Hydrometallurgy, 147-148, 188-195.
[5]. Xia, J., Marthi, R., Twinney, J. and Ghahreman, A. (2022). A review on adsorption mechanism of gold cyanide complex onto activation carbon. Journal of Industrial and Engineering Chemistry, 111, 35-42.
[6]. Ibrado, A.S. and Fuerstenau, D.W. (1995). Infrared and X-ray photoelectron spectroscopy studies on the adsorption of gold cyanide on activated carbon. Minerals Engineering. 8 (4): 441-458.
[7]. Lagerge, S., Zajac, J., Partyka, S. and Groszek, A.J. (1999). Comparative study on the adsorption of cyanide gold complexes onto different carbonaceous samples: Measurement of the reversibility of the process and assessment of the active surface inferred by flow microcalorimetry. Langmuir. 15 (14): 4803-4811.
[8]. Marsden, J. and House, I. (2006). The Chemistry of Gold Extraction: Society for Mining, Metallurgy, and Exploration.
[9]. Dai, X. and Breuer, P.L. (2009). Cyanide and copper cyanide recovery by activated carbon. Minerals Engineering. 22 (5): 469-476.
[10]. Adams, M.D., Friedl, J. and Wagner, F.E. (1995). The mechanism of adsorption of aurocyanide on to activated carbon, 2. Thermal stability of the adsorbed species. Hydrometallurgy. 37 (1): 33-45.
[11]. Ghasemi, S., Mohammadnejad, S. and Khalesi, M.R. (2018). A DFT study on the speciation of aqueous gold and copper cyanide complexes. Computational and Theoretical Chemistry, 1124, 23-31.
[12]. Yin, X., Opara, A., Du, H. and Miller, J.D. (2011). Molecular dynamics simulations of metal–cyanide complexes: Fundamental considerations in gold hydrometallurgy. Hydrometallurgy. 106 (1): 64-70.
[13]. Van Deventer, J.S.J. and Van Der Merwe, P.F. (1994). The mechanism of elution of gold cyanide from activated carbon. Metallurgical and Materials Transactions B. 25 (6): 829-838.
[14]. Ofori-Sarpong, G., Amankwah, R.K. and Osseo-Asare, K. (2013). Reduction of preg-robbing by biomodified carbonaceous matter–A proposed mechanism. Minerals Engineering, 42, 29-35.
[15]. McDougall, G.J., Hancock, R.D., Nicol, M.J., Wellington, O.L. and Copperthwaite, R.G. (1980). The mechanism of the adsorption of gold cyanide on activated carbon. Journal of the Southern African Institute of Mining and Metallurgy. 80 (9): 344-356.
[16]. Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics. 113 (18): 7756-7764.
[17]. Klamt, A. and Schuurmann, G. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions. 2 (5): 799-805.
[18]. Harris, P.J.F. (2013). Fullerene-like models for microporous carbon. Journal of Materials Science, 48(2): 565-577.
[19]. Peter, J.F.H., Zheng, L. and Kazu, S. (2008). Imaging the atomic structure of activated carbon. Journal of Physics: Condensed Matter. 20 (36): 362201.
[20]. Cam, L.M., Van Khu, L. and Ha, N.N. (2013). Theoretical study on the adsorption of phenol on activated carbon using density functional theory. Journal of Molecular Modeling. 19 (10): 4395-4402.
[21]. Montoya, A., Truong, T.T., Mondragón, F. and Truong, T.N. (2001). CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. The Journal of Physical Chemistry A, 105(27), 6757-6764.
[22]. Montoya, A., Mondragón, F. and Truong, T.N. (2002). First-principles kinetics of CO desorption from oxygen species on carbonaceous surface. The Journal of Physical Chemistry A. 106 (16): 4236-4239.
[23]. Montoya, A., T.N. Truong, and A.F. Sarofim, Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion. The Journal of Physical Chemistry A. 04 (36): 8409-8417.
[24]. Montoya, A., Truong, T.N. and Sarofim, A.F. (2000). Spin contamination in hartree−fock and density functional theory wavefunctions in modeling of adsorption on graphite. The Journal of Physical Chemistry A. 104 (26): 6108-6110.
[25]. Wu, X. and Radovic, L.R. (2004). Ab initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon. The Journal of Physical Chemistry A. 108 (42): 9180-9187.
[26]. Radovic, L.R. (2005). The mechanism of CO2 chemisorption on zigzag carbon active sites: A computational chemistry study. Carbon. 43 (5): 907-915.
[27]. Chen, N. and Yang, R.T. (1998). Ab initio molecular orbital study of the unified mechanism and pathways for gas−carbon reactions. The Journal of Physical Chemistry A. 102 (31): 6348-6356.
[28]. Ibrado, A.S. and Fuerstenau, D.W. (1995). Infrared and X-ray photoelectron spectroscopy studies on the adsorption of gold cyanide on activated carbon. Minerals Engineering. 8 (4): 441-458.
[29]. Bhattacharyya, D., Depci, T., Prisbrey, K. and Miller, J.D. (2016). Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach Characterization of Minerals, Metals, and Materials, 683-690.