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Land use (LU) is one of the most imperative pieces of cartographic information used
for monitoring the mining environment. The extraction of land use data sets from
remotely sensed satellite images has garnered significant interest in the mining region
community. However, classification of LUs from satellite images remains a tedious
task due to the lack of availability of efficient coal mining related datasets. Deep
learning methods provide great leverage to extract meaningful information from high-
resolution satellite images. Moreover, the performance of a deep learning
classification approach significantly depends on the quality of the datasets. The present
work attempts to demonstrate the generation of satellite-based datasets for the
performance analysis of different deep neural network (DNN)-based learning
algorithms in the LU classifications of mining regions. The mining regions are broadly
classified into distinct regions based on visual inspection, namely barren land, built-
up areas, waterbody, vegetation, and active coal mines. In our experimental work, a
patch of 100 spatial samples for each of the five features is generated on three scales,
as [1 x 1 x 3], [5 x5 x3],and [10 x 10 x 3]. Moreover, the effects of different
scalabilities of the dataset on classification performances are also analyzed.
Furthermore, this case study is implemented for the large-scale benchmark of satellite
image datasets for mining regions. In the future, this work can be used to classify LU
in the relevant study regions in real time.

1. Introduction

Mining land information contemplates socio-
demographic facts, and is considered indispensable
for planning and administration [26]. It also
provides important input into areas of mining
activity, critical for understanding the complex
relationships between coal mining areas and other
locations [10]. With the expansion of innovative
remote sensing technologies, an enormous number
of open-source satellite images are widely used,
providing new possibilities for mining LU
information [17]. However, the spatial features of
mining terrain observed using satellite imagery are
extremely complex and multi-faceted, conflating
various other surfaces (built-up areas, barren areas,
etc.). Due to the diversity and complexity of spatial
features, classifying mined regions into different
LU classes is an extremely challenging task.
Therefore, a reliable and robust mining LU
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classification method must be developed by
accurately delineating the spatial patterns or
structures in satellite perception data.

In recent years, a lot of work has been done on
developing advanced artificial intelligence-based
LU classification methods. A satellite image
comprises a set of pixels with similar spectral or
morphological properties to each individual class
[22], although, the number of pixel-based and
object-based classification approaches exist in
general. Predominantly, pixel-based approaches
are utilized to perform mining region
classifications. In a pixel-based approach, the
spectral information related to each pixel is used as
each feature type contains paramount semantic
information [19]. Typically, feature classes used
for classification include patterns of geometry,
size, color, surface, shadow, location, and
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association [1]. At the current time, many satellite
sensors capture high spatial resolution data. Thus,
these high-resolution data have significant
potential for research in mining, including LU
studies. However, the challenging task is the
unavailability of coal mines related datasets for the
classification algorithm. Many researchers have
designed diverse types of datasets from other
sources of images like aerial images, terrestrial
images, microscopic images, and satellite images
for examining the performances of different
classification algorithms. The spatial resolution
represents the quality of visualization of satellite
images in the level of pixel-like high, medium, and
low [25]. Also, it is a holistic representation of
pixels but the many aspects of artificial neural
network (ANN) learning techniques. It is fitted for
large-scale data interpretation, examination, and
pattern classification. Satellite images of spatial
resolution directly affect a learning pattern to a
performance matching. Also, it boosts supervised,
unsupervised, semi-supervised, and reinforcement
models [21] [24]. A quality dataset is the backbone
of a machine learning algorithm for facilitating
good training to model. The current work focuses
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on the generation of satellite-based datasets for
comparative performance analysis of various
classification algorithms.

In the past, many standard data sets were
designed and used in the ANN and convolutional
neural network (CNN) learning algorithms. The
performance of a few of these algorithms is
summarized in Table 1. A dataset, LCZ (Local
Climate Zone), was standardized using sentinel-2B
satellite data to classify the local climate zone
(LCZ) in Mumbai [23]. The UC Merced dataset of
spatial resolution (0.3 m) and pixels (256 X 256)
size was generated using the airborne sensor for
land-use classification [4]. A dataset, Indiana
Pines, of spatial resolution (20 m) was prepared by
the Purdue University using an airborne sensor to
classify Pines in agricultural land in Tippecanoe,
Indiana, USA [13]. An image dataset, GEOBIA,
was designed by the University of California,
Irvine (IUC) for image classification into nine
classes [7]. A dataset, BCS, was designed by the
State of Minas Gerais, Brazil using images
captured in SPOT sensor for classifications into
coffee and non-coffee region [11].

Table 1. Standardized image dataset used in image classification using ANN/CNN models.

SI. No. Dataset Class Total samples Model Accuracy (%)
1 LCZ 14 3500 ANN 72
2 UC Merced 21 2100 CNN 88.4t0 98
3 Indiana Pines 8 9144 ANN 85.1
4 GEOBIA 8 675 ANN 67.5
5 BCS 2 50000 CNN 82.6t0 99.3

1.1. Motivation and objective

Even though there are lot of research opined on
using pixel-based, a hybrid of these two, for
finding a subset of the most informative land-use
features for better finding, still there is a lot to
achieve in terms of performance with new feature
selection methods for obtaining new insights into
the land-use regions. Considering mining region
selection is a non-deterministic polynomial time
(NP)- hard problem and finding optimal mining
surface from mining expression profiles is really a
challenge for getting predictive accuracy. There are
several offers for using the classification and
clustering approaches to address the problem. Still,
the land-use dataset provides a novel multi-
objective optimization, and is a suitable classifier
for addressing the Binary or Multi-class. Thus,
efficient sample scale sizes of the LU dataset are
chosen using model optimization, including a
particular twelve classifiers training algorithm
(Shown in Figure 1.). Further, we have compared
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twelve classifiers of training algorithms to check
the effectiveness model. Thus, it motivated us to
carry out further experiments using the DNN (Deep
Neural Network) algorithm to assess the effect of
land use classification of mining regions using
different sample sizes of land use datasets for
improved performance in diverse mining region
datasets with five class classifications.

1.2. Article outline

The rest of the article is outlined as follows.
Section 2 explains the materials and methods
followed to conduct the study. In section 3, a
description of different datasets is provided.
Section 4 discusses the results. Finally, Section 5
concludes the work.

2. Materials and methods

The adopted methodology is shown in Figure 1,
as followed by the steps of different sections of



Kumar et al.

the working block to study the altered sample
sizes of the different LU datasets.

2.1. Acquisition of satellite images and pre-
processing of data

The present work used scenes captured by the
Sentinel satellite sensor. Though the sentinel
sensor offers 13- spectral bands, the current study
only used data from three bands (B4, B3, and B2).

DNN
algorithm

BR
BQN
CGP
FCG

GD

GDM
LM
0SS
PCG

RB
SCG
VGD

—
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The characteristics of the data are summarized in
Table 2. The raw data of satellite images are pre-
processed for designing the benchmark dataset. A
false-color composite (FCC) image was prepared
using the R, G, and B band data. Subsequently, the
LU classes were extracted from the FCC image for
spatial feature visualization with the known
location in the google earth image.

Satellite data

v

Data Pre-Processing

v

Dataset generation

Selection of robust DNN
algorithm

Effectiveness of model
parameters

Comparative analysis of proposed
scale of LULC datasets

Selection of large scale LULC
datasets over mining region

Figure 1. Flow chart of proposed method.

Table 2. Spectral bands of sentinel data used in LU classification.

Description Band Central wavelength (nm) Resolution (m)

Blue B2
Green B3
Red B4

490
560
665

10
10
10

2.2. Products of datasets

The database was prepared from the FCC image
in three scale sizes [(1 x 1), (5 x 5), and (10 x 10)]
to analyze the effect of image size on classification
accuracy. In each case, the width and height of the
images are considered to be the same. To generate
the dataset for any individual class, the pixels in the
images that represent that class were extracted
from different patches. The process is repeated to
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obtain the desired number of images for each
category, as dataset preparation of design
algorithm flowchart shown in Figure 2. In the
current work, a total of 5000 image samples were
extracted for each of the five classes (barren land,
built-up area, waterbody, vegetation, and active
coal mining region). Furthermore, the datasets of
three sizes were generated using a similar method
for a comparative study.
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T

’ Resized images ’

Labelled images

Repository
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Figure 2. Proposed algorithm flowchart of LU datasets.

2.3. Model development

The conventional technique is to use the
performance of the LU classification under certain
conditions, such as ground control points and high-
resolution scenes; also, the handling of satellite
samples for the proposed DNN model using the LU
classification. Deep learning is termed a universal
approximator because of its mapping from input to
output as y = f(x) to find out correlation among
attributes x and y present in the dataset. Neural
networks are modeled based on the working of the
human brain for pattern recognition. DNN differs
from the conventional neural network in-depth,
consisting of more than one hidden layer apart
from the input and output layer. Therefore, deep
learning is also called a stacked neural network. A
minimum of three hidden layers can be thought of
as deep learning. Deep learning further can have a
feature hierarchy since they combine and aggregate
the features from one layer to the next. This way, it
increases complexity and level of abstraction and
makes it a viable choice for handling exceptionally
large and high-dimensional complex datasets. Let
us assume a datasets interest is the domain of
defined classified regions, classified patch samples
(i=j)atijel12,3,..,n,S is total number of
classifiers AOI - M;yj, qeS., Maximizing the
probability of q(g) = m;,j, where, m;; € M;y;
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are the ground truth patch samples of g, m;; =
arg max;P((Mix;)i/9)-

The DNN model is computing images by
training, testing, and validating of different scale
sizes of datasets. Also, we have used different
standard training algorithms in the proposed DNN
model. The examinations of twelve training
algorithms are used in the DNN model. Thus,
Levenberg-Marquardt (LM) is the quasi-newton
methods-based approached hessian matrix used to
compute performance [6]. Bayesian Regularization
(BR) is the LM optimization-based approach used
to the weight and bias values [15]. BFGS Quasi-
Newton (BQN) is an iterative method for solving
unconstrained nonlinear optimization problems
[5]. Resilient Back-Propagation (RB) is a learning
heuristic in feed-forward ANN [20]. Scaled
Conjugate Gradient (SCG) is supervised learning
with a superliner convergence rate and a member
of the class of conjugate gradient methods [16].
Conjugate Gradient with Powell (CGP) is used for
SCQG, and the search direction will be periodically
reset to the negative of the gradient [18]. Fletcher-
Powell Conjugate Gradient (FCG) is updated the
weights and biases according to the back-
propagation gradient convergence [9]. Polak-
Ribiere Conjugate Gradient (PCQG) is the usage of
conjugate gradient methods and is restricted to
solving smooth optimization problems so far [12].
One Step Secant (OSS) is an attempt to bridge the
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gap between the conjugate gradient and the quasi-
newton algorithm [2]. Variable Learning Rate
Gradient Descent (VGD) is a very slow rate of
convergence and a high dependency on the value
of the learning rate parameter [3]. Gradient
Descent with Momentum (GDM) is an iterative
method for optimizing an objective function with
suitable smoothness properties [14]. Gradient
Descent (GD) is a first-order iterative optimization
algorithm for finding a local minimum of a
differentiable function [3] [8].

The number of epochs is neither to be very less
for better parameter learning nor to be
exceptionally large, to avoid overfitting on the
training data. Iteration defines the number of mini-
batch-wise parameter updates in a row. Mini-Batch
refers to the number of examples considered at a
time for computing gradients and parameter
updates. Even though the choice of mini-batch size
largely depends on the applications, a size of 1 will
not provide the benefits of parallelism; size of 10
will be too small for GPU but acceptable for CPU;
but, a size of more than 10 to 100 may provide
expected results. The DNN needs many hyper-
parameters to be set for implementation and at the
same time; it is to be noted that finding the optimal
set of values for that hyper-parameter may not be
feasible using a gradient descent algorithm due to

(i.e. Image scale = width x height x depth)

Load Multi-Scale Dataset
where, width=height=n, n € 1, 5, 10, depth=3.

{Node l)r
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several constraints like the dataset is a mix of both
real and discrete; each hyper-parameter is difficult
to be optimized alone and finding local minima
involves a great deal of time. Initially, the weights
of a DNN are small enough so that the activation
function (SoftMax activation function is used here)
operates linearly with a large gradient value. The
learning rate of the DNN should be chosen
efficiently so that the validation error is kept to a
minimum. Further, looking at the input, more
network capacity is required, and hence, we are
looking for many hidden layers. The L1 or L2
regularization scheme is needed to check whether
the deep neural network can provide better
solutions. In this process, three hidden layers are
considered with the ReLU function, whereas at the
output layer, SoftMax activation functions
combined with multi-class cross-entropy are
considered in Figure 3. No hidden layer should be
less than a quarter of the input layer’s nodes. For
larger data sizes, more hidden layers are advised.
At the same time, if one chose several hidden layers
as same as that of input nodes, then there is a
chance of identity loss and at the same time, too
many hidden layers may result in noise and
overfitting. To avoid overfitting, L1 and L2
regularization may be employed.

Bias

(Activation function)

_\[N ode 1}

{Node i}.

——rrf_Node k% ¥ {Nodem(=5)}

Input image |

{Input layer}

{Hidden layer1}

Bare land

Vegetation

Waterbody

{Hidden layer2} {Hidden layer3} {Output layer}

Figure 3. Architecture of DNN.

3. Evaluation of datasets on performances of
different training algorithms

Image samples of satellite data were designed in
three different scale sizes [(1 x 1), (5 x 5), and (10
x 10)] for examining the performances of different
training algorithms. A set of 1000 image samples
for each class was designed for training, testing,
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and validation of the model. The land surface in the
selected mining region was classified into five
types including barren land, built-up area,
waterbody, vegetation, and active coal mine. The
image datasets in three defined scale sizes [(1 X 1),
(5 x'5), and (10 x 10)] representing five classes are
shown in Figure 4, 5, and 6, respectively.
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(a): [1x1] Scale

Barren

Builtup

Coal

Waterbody Vegetation

Figure 4. [1 x 1] scale sizes dataset with five class viz. barren land, built-up area, active coal mine, vegetation,
and water body.

(b): [5x 5]Scale
- -—'al.- ' -

Coal

Waterbody Vegetation

Figure 5. [S x 5] scale sizes dataset with five class viz. barren land, built-up area, active coal mine, vegetation,
and water body.
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(c): 110 x 10] Scale

5 Ry LT i B
— o W e . gl

S "L el TS el el
Figure 6. [10 x 10] scale sizes dataset with five class viz. barren land, built-up area, active coal mine, vegetation,
and water body.

The input data layer is layout to feed sample
image to the whole network. In this layer, we have
found the size of sample used to train model. Size
of sample is found by width, height, and number of
bands for each sample of image cum number of
sample images used by the DNN model. The
hidden layer is designed to feed information of
input layer and it is used pre-training stage of
parameters. The output layer is designed to get
class with the highest probability that it is used
sigmoid activation function for accuracy
assessment of the LU classification.

Journal of Mining & Environment, Vol. 13, No. 3, 2022

3.1. Parameter setting of DNN model

The DNN learning is followed by the feed
forward network for all twelve training algorithms
viz. LM, BR, BQN, RB, SCG, CGP, FCG, PCG,
0SS, VGD, GDM, and GD. The parameter is
chosen of common for all twelve algorithms such
as listed in Table 3. These twelve algorithms are
common outcome of results terms viz. best
performance (BP), best training performance
(BTP), best validation performance (BVP),
gradient (G), and overall accuracy (OAA).

Table 3. Pre-training stage of parameters.

SL No. Pre-training stage Values
1 Input neuron 3, 75,300
2 Hidden1 neuron 3,50, 221
3 Hidden 2 neuron 4,40, 152
4 Hidden 3 neuron 4,22,76
5 Number of epochs 0 to 1000
6 Learning rate 0.01
7 Validation failure 0to6
8 Gradient le-5 to le-10
9 Activation function sigmoid

4. Results and discussion

The results are carried out to find the impact of
changing the sample image scales scale sizes [(1 x
1), (5 x 5), and (10 x 10)] on the classification
performance. The experimental work is conducted
by using MATLAB R2009b software and details of
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computer processor Intel(R) Core (TM) 15-8300H
CPU @2.30 GHz, 2304Mhz, 4 core (s), 8 Logical
process(s) and 8 GB RAM. The accuracy results
are compared with the performance of the state-of-
the-art results in these three scales of dataset listed
as Tables (4, 5, 6).
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Table 4. Scale sizes of (1 x 1) dataset results of DNN learning using training algorithms.

S.No.  Algorithm g‘(’m ;’lfs BP BVP BTP G O(;;‘o“;‘
1 LM 20 3.06E-09 4.80E-06 7.03E-07 2.93E-08 100
2 BR 37 2.31E-09 NaN 4.25E-08 5.90E-08 100
3 BQN 74 1.87E-04 5.66E-05 3.95E-04 0.00066 100
4 RB 67 2.32E-04 0.0011 8.97E-04 0.000442 100
5 SCG 161 1.31E-07 3.47E-07 3.68E-05 9.29E-07 100
6 CGP 124 0.0446 0.0415 0.0475 8.47E-11 85.5
7 FCG 73 0.0405 0.0342 0.0396 0.000445 77.3
8 PCG 115 6.26E-12 8.40E-12 3.12E-09 4.39E-11 100
9 0SS 90 5.13E-04 6.44E-04 0.001 0.00144 100
10 VGD 278 9.80E-06 4.24E-05 8.12E-05 9.61E-06 100
11 GDM 1000 0.248 0.2865 0.2636 0.107 42
12 GD 1000 0.1077 0.1303 0.1123 0.0729 70.7

Table 5. Scale sizes of (5 x 5) dataset results of DNN learning using training;algorithms.
S.No Algorithm  No. of epochs BP BVP BTP G OAA (%)
1 LM 24 4.26E-06 0.028 0.0797 2.98E-08 78
2 BR 61 4.00E+00 NaN 0.055 2.78E-08 80.7
3 BQN 30 0.0576 0.067 0.0768 0.035 76
4 RB 67 0.0447 0.0601 0.0625 0.0103 72
5 SCG 40 0.0535 0.076 0.0756 0.0278 79.3
6 CGP 34 0.0472 0.0535 0.0673 0.0165 82.7
7 FCG 19 0.1801 0.196 0.1847 0.0264 333
8 PCG 20 0.114 0.1423 0.1384 0.0111 473
9 0SS 39 0.0823 0.0929 0.0889 0.0749 72
10 VGD 201 0.0394 0.0805 0.0854 0.00667 76
11 GDM 1000 0.1854 0.1875 0.184 0.0601 40.7
12 GD 1000 0.1475 0.1505 0.1512 0.0868 333
Table 6. Scale sizes of (10 x 10) dataset results of DNN learning using trainin%gorithms.

S.No. Algorithm No. of epochs BP BvVP BTP G OAA (%)
1 LM 15 4.10E-03 1.03E-01 1.14E-01 1.68E-07 72.7
2 BR 46 1.43E-09 NaN 9.12E-02 7.99E-08 71.3
3 BQN 46 3.49E-02 6.06E-02 8.56E-02 0.022 79.3
4 RB 34 4.94E-02 0.0786 9.32E-02 0.0145 73.3
5 SCG 52 7.51E-02 1.00E-01 9.38E-02 5.77E-02 72
6 CGP 30 0.0553 0.0698 0.0766 3.65E-02 74
7 FCG 36 0.1121 0.1319 0.1561 0.0475 51.3
8 PCG 22 6.56E-02 6.33E-02 7.80E-02 3.87E-02 68.7
9 0SS 53 7.76E-02 9.23E-02 0.1293 0.0407 553
10 VGD 164 3.94E-02 6.37E-02 7.48E-02 4.19E-02 71.3
11 GDM 1000 0.1407 0.1592 0.145954.7 0.0474 42.7
12 GD 1000 0.1162 0.118 0.12 0.0717 54.7

4.1. Comparison of different scale sizes of
datasets

We have compared datasets for the same satellite
image with different scale of sample image classes.
The performance of results is varying due to
changes of scale in dataset. Also, the performance
of results viz. BP, BVP, BTP, G, and OAA, as
shown in Figure 7. The BP, BVP, BTP, G results
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are [(1 x 1), (§ x 5), and (10 x 10)] scale sizes of
dataset in the GDM training algorithm best result
among all scale of dataset Figure 8. However, the
overall accuracy results are [(1 x 1), (5 x 5), and
(10 % 10)] scale sizes of dataset in the VGD, OSS,
PCG, SCG, RB, BQN, BR, and LM training
algorithm 90% to approximate 100 % result among
all scale of dataset.
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Figure 7. Different training algorithm-based performances change in [(1 x 1), (5§ X 5), and (10 X 10)] scale sizes of
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5. Conclusions

Scale sizes of dataset generation in satellite
image processing is an important and challenging
step for remote sensing applications, especially the
LU classification. In present study, we generated a
dataset of an adequate scale size to be used in DNN
learning for the LU classification over mining
activities region, which is much more specialized
and suitable than other general datasets. The
adopted DNN learning performances have higher
accuracy in (1 x 1) scale of dataset. From the
experiments, it is observed that performance of
proposed approach increases with a scale size from
(10 x 10), (5 x 5) and (1 x 1) of datasets. Apart
from this, our proposed approach is very
convenient for processing large-scale satellite
image dataset using the LU classification. In the
future, advanced learning techniques will be
introduced for fast computing and achieving higher
accuracy levels.
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Abbreviations

LM Levenberg-Marqardt

BR Bayesian Regularization
BQN BFGS Quasi-Newton
RB Resilient Back Propagation
OSS  One Step Secant
VGD  Variable Learning Rate Gradient Descent
SEG  Scaled Conjugate Gradient
CGP  Conjugate Gradient with Powell
FCG  Fletcher-Powell Conjugate Gradient
PCG  Polak-Ribiere Conjugate Gradient
GDM  Gradient Descent with Momentum
GD Gradient Descent
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