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In this work, an effective methodology is introduced for simulation of the crack
propagation in linear poroelastic media. The presence of pores and saturated cracks
that can be accompanied by fluid flow makes the use of poroelastic media inevitable.
In this work, involvement of the time parameter in crack propagation is of particular
importance. The order of doing the work is such that first, derives the fundamental
solutions of a poroelastic higher order displacement discontinuity method
(PHODDM). Then will be provided a numerical formulation and implementation for
PHODDM in a code named linear element poroelastic DDM (LEP-DDM). Analytical
solutions use different times to check the correctness and validity of the proposed
solution and the newly developed code. The numerical results show a good agreement
and coordination with the analytical results in time zero and 5000 seconds. The code
is able to pursue crack-propagation in time and space. This topic is introduced and
shown in an example.

1. Introduction

Among the numerical methods, the boundary
element method (BEM) is particularly used in the
field of linear elastic fracture mechanics (LEFM).
This method is devided into two categories of
direct and indirect

. The direct method can directly obtain the
unknown boundary parameters (stresses and
displacements) based on the specified boundary
conditions. Thus it is known as a direct integration
technique. In the indirect method, the solution is
first performed for the singularities that satisfy the
specified boundary conditions. The unknown
parameters are then obtained indirectly through the
standard numerical techniques in terms of these
singular solutions. In the boundary element-based
methods, since the governing differential equations
are solved exactly in the domain of the problem,
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they lead to a high accuracy in the solutions. BEM
performs discretization only at the boundaries, thus
reducing the dimensionality of the problem. This
manner results in a smaller system of equations that
are very cost-effective, as it significantly reduces
the data required for analysis, and also eliminates
the need for re-meshing using BEM, and crack
growth may be modeled by adding a new element
to the previous mesh. One of the common forms
based on the boundary element is the dual
boundary element method (DBEM), which
consists of two combinations of independent
boundary  integral  equations. = Numerous
investigations have been carried out concerning the
growth of cracks based on DBEM in the 2D [2-4]
and 3D [5-7] conditions.
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Discontinuity Discontinuity Method (DDM) is
one of the other methods based on boundary
element that is widely used in solving linear elastic
fracture mechanics (LFEM) problems. First,
Crouch and Starfield defined the basic principles of
this technique [8, 9]. In this method, stresses and
displacements at a point are calculated according to
the discontinuity of normal and shear
displacement. Many scientific research works have
presented how to use constant ordinary elements in
DDM [10-12]. Indeed, the main advantage of using
these elements is their simplicity; however, they
cannot correctly predict the stresses and
displacements in the field points adjacent to the
boundaries. Moreover, the singularity variations
1/1° and 1°° in the stresses and displacement
equations cause the calculation precision at the
vicinity of the crack tip severely decrease [13].

In this regard, linear [14, 15], quadratic [16 &
17], and cubic higher-order [18 & 19] elements
have been utilized to conquer these problems and
obtain more correct values of stresses and
displacements along boundaries. Based on the
strain gradient stretching theory, Exadaktylos et al.
and also a new constant displacement discontinuity
element have been stated. This new method
substantially improves the accuracy of DDM
without using higher-order and crack tip elements
[20-22]. The increase in accuracy is achieved by
high-order elements. However, this does not work
well for crack tip singularities. Therefore, crack tip
elements were introduced to remove the obstacles
[23]. To significantly increase the accuracy of
analysis in crack problems, ordinary and crack tip
higher-order elements are used simultaneously.
Yan et al. have introduced constant crack tip
elements to utilize in DDM [24]; they developed
the procedure of the fatigue crack growth in the
structures having multiple cracks [25]. Li and co-
workers have used a method composed with the
constant element displacement discontinuity
method and meshless procedures to grow the crack
in the static and cyclic loading conditions [26].

Cracks are the main flow channels in sub-surface
rocks. It is important to state that the issues of crack
propagation and fracture in artificial environments
such as concrete and glass can be investigated and
analyzed [27, 28]. Variation in the fluid pressure
induces matrix deformation and stress variation;
matrix deformation, in turn, induces fluid volume
variation and fluid pressure variation. Possible
fracture propagation results in the variation of pore
pressure and stress in the whole field. The variation
in pore pressure and stress at any point affect the
fracture and induce fracture deformation. This
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makes rocks exhibit a strong coupling of
mechanical and hydrological behavior. To study
this coupled hydro-mechanical behavior, the
poroelasticity theory has been developed.
Problems such as hydraulic fracturing [29-33], in-
situ stress measurement [34-36], and geo-thermal
[37-40] occurs in sub-surface rocks that are mostly
filled with discontinuities (such as fissures and
faults) and pores. These discontinuities and pores
can be saturated with water, air, oil, etc. These
fluids can greatly affect the stress (i.e. effective
stresses due to pore pressure effect) and
displacement fields in a rock mass. Also pore fluid
flow occurs due to the pore pressure gradient in the
rock. The flow can also be in response to changes
in macroscopic stresses caused by natural factors
such as tectonic forces and artificial factors such as
drilling wells [41]. In order to accurately model
these coupled interactions, all of these couplings
must be considered. DDM has been coupled with
other numerical methods such as FDM and FEM to
inquire poroelastic effects of fracture [42-44]. For
instance, Ji used DDM to simulate crack-
propagation in porous media, and coupled it with
FDM to simulate fluid interaction. Yin et al.
coupled DDM and FEM to propound poroelastic
effects in reservoirs. Bobet and Yu have presented
a closed form solution of the crack-tip stress field
[45]. They showed that the stresses created during
the drying of the medium were higher than the
stresses around the crack tip under pressure in a
saturated medium. During the last decades, many
studies have focused on providing a mathematical
formulation or analytical solution for the hydraulic
fracture problem in a porous rock [46-54].

This study discusses the parameters of crack-
propagation in a porous medium. Then the required
fundamental solutions for the poroelastic HODDM
are derived. After that, numerical formulation and
implementation of the HODDM in a poroelastic
rock are introduced. After verifying the linear
element poroelastic displacement discontinuity
method code named LEP-DDM, the crack
propagation in a porous medium is shown with an
example.

2. Definition of higher order displacement
discontinuity

A displacement discontinuity element of length
2a along the x-axis is depicted in Figure 1 (a),
which is characterized by a general displacement
discontinuity distribution u(¢). Considering the u.
and u, components of the general displacement
discontinuity u(¢) to be constant and equal to D;
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and D,, respectively, in the interval (-a, +a) as
depicted in Figure 1 (b), two displacement
discontinuity  element  surfaces can be
distinguished, one on the positive side of y and
another one on the negative side y.

The displacement endures a constant change in
value when passing from one side of the
displacement discontinuity element to the other
side which may be defined as:

Dy=u,(x,0)-1x(x,0")

(1
Dy=u,(x, 0)-u(x,0")
y
> X
-a + a
le N

(@)
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The positive sign convention of D, and D, is
depicted in Figure 1 (b), and demonstrates that
when the two surfaces of the displacement
discontinuity overlap, D, is positive, which causes
a physically impossible situation. This conceptual
difficulty is overcome by considering that the
element has a finite thickness in its undeformed
state, which is small compared to its length but
bigger than D, [9]. The linear element displacement
discontinuity formulation is based on the analytical
integration of linear shape functions, straight-line
displacement discontinuity elements.

[€<—— 2a¢ —I

(®)

Figure 1. a) Distribution of u(¢) for gemeral displacement discontinuity element. b) Constant element.

Figure 2.(a) depicts the linear displacement
discontinuity distribution, which may be written in
a general form as:

Di(&) = Ni(Q(Di)1 + NAS(Di):

i=xy 2
where (D;); and (D;), are the linear
displacement discontinuities, and
Ni(Q) =& a)/(art a)
3)

NA(E=(E-arn)/(a;+az)

are their linear collocation shape functions. It
should be attentioned that a linear element has 2

Y

D);; (D),
1 2
2a

(a). Linear element

&

Element

2a

nodes, which are the centers of the two elements
within the path element [55].

3. SIF calculation and crack propagation
parameters for poroelastic media

The Mode I and Mode I stress intensity factors
K; and Kj; can be easily presumabled based on the
linear elastic fracture mechanics (LEFM)
principles [56, 57] . A crack tip element of length
2a is considered after the SIFs with respect to the
normal and shear displacement discontinuity
(assuming plane strain condition) can be specified
[55] as:

2a

2a &

(b)._Crack tip linear element

Figure 2. Location of nodes for higher order displacement discontinuity elements.
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_ G 2n
K=za=n a>@
_ G 2
= d—w | =@

where G is the shear modulus, and v is the
Poisson’s ratio of the brittle material. In
poroelasticity, the discontinuities are time-
dependent, so in this analysis, intensity factors
(SIFs) Mode I and II are also time-dependent. K;
and Kj; can be obtained by similar equations used
in LEFM for DDM.

G ’271

Kl(t) ZW TDn(x,y,t)
G 2T

Ky (t) = 1= /XDs(x,y, t)

The initial condition of crack-propagation (for
critical crack propagation) that is reaching a critical
value (fracture toughness) can be satisfied by
changing SIFs with time. The time dependence of
SIFs indicates that crack propagation must have a
certain rate in porous media, a quantity that is not
present in elastic analysis. Therefore, by
introducing time into the analysis, it should be
considered that cracks take some time to grow to a
certain length; therefore, a speed should be
assigned to the crack propagation. In the proposed
model, a time step At is considered. Crack-
propagation in a porous medium requires the use of
critical and  sub-critical  crack-propagation
theories. Critical crack propagation takes place
when Mode I SIF K;and fracture toughness K;c are
equal. This propagation is inherently unstable, as
once it starts, the stress value decreases to continue

[58, 59]. The limiting speed or the maximum
speed of critical crack propagation is equal to the
speed of the Rayleigh wave [60]. Lithology,
porosity, fluid content and temperature and stress
field in rock formations change this speed. Sub-
critical crack growth is often observed in rocks and
minerals that experience prolonged or cyclic
loading or high temperature. Cracks can propagate
over a long period of time when K; is less than K¢

[44]. This theory is implemented in this research
work.

The power-law relationship between crack sub-
critical velocity and SIF is written in the form of:

4)

KII

4)
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v = e (17, ) (©)
Ic

where Vmanx is a constant, and n is a sub-critical
index

[44]. The speed may be chosen based on the
nature of the crack-propagation being used (critical
or subcritical propagation).

Maximum tangential stress criterion is used for
evaluation of rack propagation and initiation angle
[61]. In each time increment At, crack elements
will grow a length of:

AL =V X At (7

When AL reaches a pre-determined growth
increment length, a boundary element is added to
that crack element to indicate a growth event.

4. Poroelastic

The theory of linear, isotropic poroelasticity was
proposed by Biot for modeling the response of
fluid-saturated porous solids [62], and was further
extended by others [63, 64]. According to the
original formula of Biot, the basic dynamic
parameters of total stress oj; and pore pressure p
along with their corresponding quantities, solid
strain e;; = (u;; + u;,)/2 and change of fluid volume
per unit reference (" are considered here. A fixed set
of parameters for linear isotropic theory are shear
modulus G, drained and undrained Poisson ratios,
which are, respectively, v= (3K — 2G)/2 3K + G),
vi = 3Ku — 2G)/2 3Ku + G) (drained and
undrained bulk moduli K and Ku), Skempton’s
pore pressure coefficient S (ratio of induced pore
pressure to variation of confined pressure in
undrained  conditions), and  permeability
coefficient x» = /k/u (where k is intrinsic
permeability and y fluid dynamic viscosity) [62].
The governing equations of linear isotropic
poroelasticity consist of the following [62]:

* Constitutive equations:

2Gv
O-l:j = ZGeij +m&je - 0.’5Up (8)
_ 2GS(1+v,) 2GS2(1—-2v)(1 +v,)? ©)

P="30=2n) ¢ T o0, —va—2v) °
* Equilibrium equations

oijj = —F (10)
* Darcy’s law

q; = —K(P,i - fi) (11)

* Continuity equation
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a¢

E‘Fqi,i =y (12)

where, in the above equations, e = e; is the
volumetric strain, Fi = pg; bulk body force (solid
and fluid), g; gravity component in i direction, n
porosity, g: specific discharge, ¢ variation of fluid
content, p = (I—n)ps + ¢py bulk density, ps and ps
solid and fluid part densities respectively, f; =pr g
fluid body force, y fluid injection rate from the fluid
source, and «a is the Biot coefficient of effective
stress, defined as:

B 3(v, —v)
S S(A-2v)(1+v)

The foregoing can be combined to yield a set of
field equations in terms of displacement and fluid
content change. Combining Equations (8) to (10)
yields an elasticity equation with a fluid coupling
term:

(13)

a

G 265(1+v) ,
1-2v, 97 30 —2v) ¥~
Combining Equations (9), (11), and (12), and

also using Eq (14), produces the following
diffusion equation:

GVZU.,: + _Fi (14)
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where
_2kS6(1=v)(1 +v,)°
91 —-v)(v, —v)

is a generalized consolidation coefficient [64].
The above equations can be used to obtain the
required solution for HODDM in porous rock.

(16)

5. Fundamental solutions of higher order
diplacement discontinuity method in poroelastic
medium

Detournay, Cheng, and Abdollahipour have
presented the poroelastic solution of point plane
strain  displacement discontinuity based on
dislocation theory [65, 66] (see Appendix A). In
Appendix A, the first displacement subscript
indicates the displacement component, while the
second subscript (and the last one in all parameters)
is reserved for dislocation mode (1 for sliding
mode, 2 for normal mode).

Poroeastic influence functions for HODDM can
be obtained by distributing this solution over an
element domain rA located on the local s-axis
(Figure 3). For example, using the following
integrals, it is possible to obtain the value of the
stress in the local n direction caused by the

% — V2 = M Fi—kfy+y (5 discontinuity of the normal displacement.
at 31 —v,)
T(n) A
x,y)
|
|
|
1 %
|
|
- - . 2a I
— @ 1 | o %(s)
I# »lea al
L |
2a 2a
I g
X

Figure 3. A higher order element in local coordinates.
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+2a, +2a;

(‘73%1)0 = f—z (Dn)1N1(9)(0222)° d("‘f_z (Dn)2N2()(0222)° dT (17)
+2a, +2a,

M) = [ O @M+ [ 0NN (8)

(D) 1N1(9)(0222)° ,(Dn)2N2(§) (0222)°,
(Dp)1N1($)A(0222), and (D)2 N2 ($)A(0222)  are
the fundamental solutions in Equations (Aj) and
(A4) of Apendix A and k=i =j = 2. For the time-
independent and time-dependent influence
functions, the complete set of integrals and their
solutions is given in Appendix B.

The fundamental solution sum of all elemental
discontinuities results in stresses and pore
pressures for a fluid-saturated poroelastic rock.
Figure 4 depicts a bent higher order element in a
poroelastic environment. In most of the failure
problems at the beginning of the numerical

simulations (in poroelasticity), displacement and
shear discontinuities are not clear. Rather, they
should be solved along elements over time using
the stress and pore pressure histories. Therefore, to
construct a set of linear equations for the numerical
method, pore stresses and pressures should be used.
Consider the jth element in Figure 4. To apply
fundamental solutions for element jth, global
coordinates must be converted to local coordinates
s and n. Pore pressure and stresses caused by
displacement and flux discontinuity of element jth
are presented in local coordinates in Equations 19
and 20 respectively.

I LS -~ <l
el
X
/ =0~
/
N.AD").
N.(D’)

Figure 4. Bent higher order element in a porous medium.

908



Dehghani et al. Journal of Mining & Environment, Vol. 13, No. 3, 2022

. 2 . . 2 . . .
j J J J J J J
PGET,0 =P @50 ) Ny Dy +PEEF0 ) Ny (D) +9 (57,00

(19)
w=1 w=1
j J : j
0:x(5,3,0 = 6 (53,0 ) N,y (D), + o2 (5,5, Z Ny (O + 0L, 5,5,00;
w=1
. j 2 j
O35 (59,0 = 0 (5,9, ) Ny (D) + adS(x ) Z N, (D), +o (x 5,00, (20)
w=1

; 2 . i
. J j J J
J _ _ _ o
Tey(%,,0) = 022 (%,7,1) E N, (Dn)w+ad5(x 7,t) E N,, (D, )W+a£y(x,y,t)Df

where Dn, Ds, and Df are discontinuities in
normal and shear displacement and discontinuity in
flux, respectively. The induced stresses in the jth
element can be converted to the global coordinates
using coordinate transformation equations. Pore
pressure  does not  require  coordinate
transformation because it is a scalar value, and is
invariant in all coordinate systems.

By converting Equations 19 and 20 to the local
coordinate system of the ith element, the stresses
induced in the ith element caused by the jth element
are obtained.

Normal and shear stresses and pore pressure
caused by fluid injection/production at a constant
rate and linear shear and normal displacement
discontinuities of the j element are created on the
ith element are

TR j T o
On = Aps Z Ny, (Ds)w + Apn Ny (Dn)w + Anfo
w=1 w=1
iU e ioJ
05 = Ass Nw (D )w + Asn Z N (Dn)w + Astf (21)
w=1
iU e i oj
w=1
Uooij i LU L i
A (x,y,t) = cos?y o (x,y, )Z Ny (Do) + sin 2 ot (x v, )Z Ny (DD
J ij ij 2 iy ij ij
+ sin? y 045 (x,y, t) Z N,, (D) wAnn (x,y, t)
w=1
, 2
RNOR
= cos?y o2 (7.t }ZN@(an+sm2yo~(xy,)§ZN oY
w=1
ij J ij ij 2 J 22
+sin?y 04- (x y,t Z Ny, (D) w (22)

1

g

j

ij ij ij LU p (U
Anf (xryrt) () yo-_ff(x Y,

t)+sm2y0..(

i i
x,y,

]); ij ij
t)+sm ya..(x v, )

Zss(g,g,t) sm?cos?( (x y, )ZN (D)W—G——(X v, )ZN (D)w>

t) i M o)

w=1

( l] l]) (l] ij
cos?y —sin’y x,y,
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ij ij ij ij ij ij
Agn (x,y,t)—smycosy JEJE (x Y, )ZN (Dn)w_ (x Y, )ZN (Dn)w

2

)Z L )

ij o U J ij ij
(cos y —sin y)a-- (x v,
w=1

ij ij f ij i
=siny cosy Oz | XY,

XY,

t) ;fy(

ij

ij ]f ij ij
t) (COS y—sm }/) W(x,y,t)

2 .
i i I ijij J 22
Ags (x,y,t =p* (x,y,t)zNw (Ds)w 22

w=1
2 .
Uoorijij (U J
Afn (x,y,t) = pen (x,y, t) Z Ny, (Dp)w
. w=1
ij ij ij J ij ij
Agg (x,y, t) =pf (x,y,t)
In the problem, Aij is the boundary stress ij ]

influence coefficients. The coefficient A% . for x = (% = x;) cos 6; + (v = ;) sin 6 ’

instance, gives the actual normal stress at the ij (23)

quarter point and three quarter point of the ith y = —(x; — x;) sin6; + (y; — y;) cos 6;

element (én ) due to a linear normal displacement

discontinuity applied to the jth element at time ¢,

while 0-- are the influence functions

(x:.1

including both the time-independent and time-
J ij ij

dependent parts. For example, 0% (x y, )

presents local stress oy at the quarter point and
three quarter point of the ith element due to a shrea
displacement discontinuity at the jth element in

ij
time # and y =6; — 6, is the angle between
element 7 and j and:

For the time-dependent part of shear and normal
discontinuities, Ds and Dn and flux discontinuity
Df, a time marching method is used. This method
decomposes time into N fixed steps, and then uses
superposition to calculate each step change at the
time it occurs. Except for the first time step, the
constant step source does not start at time zero (t =
0). Therefore, In order to be able to use the
fundamental solution and influence coefficients, a
time shift is necessary. For example, consider the
linear amounts Nw(4Dy)w(X j, ¥ j Tw), Nw (ADg)w (x
i,V Tw), and ADs(x j, v j, T4), which belong to the
Jjth element at the time 7., are added; it results in the
induced stresses and pore pressure in Equation 24
on the ith element at time .

ci_ Am@ T)}ZN MD)W+§Z&m@ T)}ZN MD0W+§SAMQ T)Ag;

j=

LG jo ij jo i jo
G = Ag(t—7,) Z N, (4D,), + ZAsn(t ~7,) Z N,, (4D,),, + Z Ayt —7,) AD;
w=1

j=1 w=1 j=1

24)
j=1

P 2 jo M 2 jw M i jo
b= ZAfs(t - Tm) Z Nw (ADS)W + ZAfn(t - Tm) Z Nw (ADn)w + Z Aff(t - Tm)ADf
j=1 w=1 j=1

j=1 w=1

jw jw jo
where N,,(4Ds),, Ny (4Dy,)y,, and AD; are
shear and normal displacement discontinuities
increments and flux discontinuity increment of the

910

Jjth element at time 7,, and the number of elements
is displayed with M. Finally, by summing the
influence functions of all time steps w, the total
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stresses and pore pressure induced on the ith
element at time t are obtained.

6. Expression of numerical formulation of

Journal of Mining & Environment, Vol. 13, No. 3, 2022

A set of five integral equations must be solved to
determine displacement discontinuity and flux
discontinuity. The dependence of normal and shear
stresses and pore pressure on the history of

poroelastic HODDM displacement discontinuities and flux
discontinuities determines how to choose these
integrals
RPN Aot WY b @D+ Y Y Aunt= ) D Ny @B+ Y Y o= 1) 4D,
Uls(t)=ZZA]SS(t—rw) N, (AbS)W+ZZAJS"(t—Tw) N, (4D.), + ZZ Sf(t w)A]Df 25)
i)(t)=ZZAfS(t—rw)ZNW(ADS)W ZZ ]fn(t—rw)ZNW(ADn)W+ZZ ]ff(t—rw)ADf
t
0u(x,0) = liz(x)z,-l(x).[ fo fr L QL0 (6,8, £ — DNy (Dy)1 G, DT (Qd
t
+ [ [ @U@0 (8, = M 00,6, DA Qe
0 Jr
t
[ 1 @uor gt = DN, 6 DA Q) 26
0 Jr
t
+ [ @U@ gt = DN (D, DA Qe
0 Jr
t
+ [ 1@ @6 66— 00,6 Dar@de
0 Jr
t
o, (x,t) = liz(x)ljz(x).[fo Llik(()lﬂ(()aks(x {,t —1)N, (D), (¢, D)dI({)dt
t
+ [ @U@ (8= DM (0.0,6, DA Qe
0 Jr
t
+ [ [ @ gt = DN, € DA Q) @
0 Jr
t
+ [ [ 1@ or gt = DN (D), G DA Qe
0 Jr
t
+ [ e @u@o gt - 00 Dar Qe
0 Jr
t t
P00 = [ [ BCot =M@ DAr@dr+ | [ B e—ON00,G0ar @ (9
0 Jr 0 Jr
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t t
+ [ [BGogt - oM@ Rar@de+ [ [ R g - Dnm0,6 0@
0 Jr 0 Jr

t
; f f Pr(x,4,t — DD, (¢, DAl Q) de
0Jr

and 7" is element locus. The subscripts i, j, k, and
[ vary from 1 to 2, and Einstein's sum convention is
considered on them. A global coordinate system
(x,y) and a local coordinate (i, X,) where its axes

Element

y (X,)

A

X, and X, equivalent, respectively, with the
tangential (s) and normal (n) directions of the
element are assumed here (see Figure 5).

x(x,)

Figure 5. Local and global coordinate systems.

The coordinate conversion between the global
and local systems is performed using Equation
(29).

J_C] = ll] (xl- - Oi) (29)

where Xj (j = 1,2 orn,s) is local coordinate
system , /;; is the rotational tensor, x; (i =1, 2) are
global coordinate system, and o; is the origin of the
local system in global coordinates. Influence
functions  g3™(x,n,t — 1) represent  stress
components expressed in local coordinate system
at point x and time ¢ due to a unit impulse normal
displacement discontinuity located at 7z and

. . d ..
occurring time 7. o and aklf have similar

meanings. Ps, P,, and Prare influence functions for
discontinuities Ny, (Dg)y, Ny (Dy,)y, and Dy .

7. Numerical implementation of linear element
poroelastic DDM (LEP-DDM)

The system of equations (26) to (28) can be
solved numerically using the following method.

« Initially, the geometry is separated into m elements
and the time interval from 0 to t into h time steps.

* Then discontinuities Dy, D,, and D, are considered
over each element A € [1, m] and

time step o € [l, h] using appropriate shape
functions in time and space.

+ Using numerical integration, the Equations (26) to
(28), a linear system of equations is generated.

* At the end of the first stage, the system of equations
is solved, and leads to the determination of
discontinuities at the one-quarter point and three-
quarter point of each element (linear elements are
used).

* The time march of the solution (D, D,, and Dy) is
found at the end of each time step until the last
time step is reached.

Also some simplifications and assumptions are
considered.

* As mentioned, linear elements are used.

* Collocation points are the quarter point and three
quarter point of each element.
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« Discontinuities are linear over each element.
* Discontinuities change linearly with time.

* The time steps At are considered constant.

Journal of Mining & Environment, Vol. 13, No. 3, 2022

Equations (26) to (28) can be expressed as a
double summation of integrals over time and space
using the above method and assumptions. For
instance, Equation (27) at points xf1and x#2 and
time t may be written as Equation (30).

B1B
1121 1121

olt(xtt) =

U
-
-
s

[Df ((w =14t + ‘r)f U (xPr, ¢, (h — w + 1)At — r)dr(z)] d‘r}

t
[Nl(m)l((w — 1At + ‘r)f an(xhr, ¢, (h — w + 1At — r)dr(z)] dr +

[Nl(Dg)l((w — DAt + ‘r)f o (xP1, ¢, (h— 0 + 1) At — r)dr(z)] dr +

h m
102162 Z Z Bk x G0
w=11=1

[Nz (DY), ((w — DAt + ‘r)f an(xP2, ¢, (h — w + 1At — r)dr(z)] dr +

f [NZ(D})Z(((D - DAt + 1) f o (xP2, ¢, (h — 0 + 1At — r)dr(z)] dr +
0

A
f t [Df((w — 1At + r)f T (xF2,0,(h—w + 1)t — r)dF(O] dr}
0

a,flnl(x’l; t) = fﬂNl(D 1Jk”(x5 Z, t)d]“(() +fAN2(D Zak”(xﬂ (,t)dl“(()

G

The above equation is the spatial integral of
Equation (30).

The exact solution of these space integrals in a
local coordinate system (on element domain I'*,
which is located on the local axes s) were provided
and presented in the Appendix B. The time
integrals are calculated numerically.

The interpolation of discontinuities between the
values at the beginning and end of each time step
is done linearly.

Substituting Equations (32), (33) and (31) in
Equation (30) and ordering according to the

discontinuities results in the following linear
ALh ALh
equation based on unknowns N, (Ds)w, Ny (Dr)ws

and Df , wWhere oy (x t) is known boundary
ALw
condition in time h. The values of N, (D),

ALw

Ny, (D), and D}
[0, A — 1] from the earlier solutions. Therefore, they
become clear on the right-hand side

of Equation (34). As mentioned earlier, the
superposition of these known parameters from the
earlier time steps updates the boundary conditions
(the right-hand of Equation (34) for the new
equation to be solved. The unknown and known
coefficients of A and B, respectively, are written as
follow:

are known for time step w €

1
N (DM, ((w — DAt + 1) = yT:

[t — DN (D3 ® ™)y + TN, (D}

)1

] (32)

1
Ny(OD), ((w— DAt + 1) = yr:

0<t<4t

[t = DN, (DY), + TN, (DY), ]

(33)
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m 2

O, +Z A2 Z N, (D)., +Z A% D}

A=1 w=1
(34)
h-1 m 2 Lo h-1 m 2 Lo h-1 m
= Grfll(xlr t) - Z Br):sw Z Nw (Ds)w - Z Br);ﬁw Z Nw (Dn)w - Z BiwD}f'w
w=021=1 w=1 w=0A=1 w=1 w=021=1
By B At T N
AL, = 11211]211 1 f ENl(D,’})la,Z' (xPr; At — T) dT +
B, 1B At T N
A n, .
2L 15 f 7z N2 (D205 (xP2; At — 1) dr
B1yB1yA j2 At -t 2 ni(.B T 2 2 B
B =18 Ly llklﬂf [TNl(Dn)lakl' (xP1; (h— w)At — 1) +EN1(Dn)1Sn_k,(x 1, (h—w+ 1)At - ‘r)] dr 35)
B21B271 12 drat—t 2 nA(. B T 1 1 F;
+1,' L llklﬂ —r (P20 (xP2; (h — w)At —T) + ENZ(Dn)ZSn_kl(x 2, (h—w+ DAt — 1)
dr,w # 0
BM = [P fapi At -t A mAL B B payp (AL A nAl B
= 1L T ——— Ny (D) 10" (xP1; hAL —T) dT + 12 L llklﬂf i NZ(D Y204 (xP2; hAE —T) dt
0

Similar coefficients may be derived for shear and
flux.

The Gauss-Legendre quadrature method with
seven points is used for numerical integration
required for time integrals. Because of Dirac delta
function in time kernels, coefficient A is separated

the time-independent part, and can be obtained
from Equation (37) and A(Afm) is the time-
dependent part of the unknown coefficient A and
can be obtained from Equation

Coefficient B is also separated into two parts.

0
into two parts before integration, where (Afm)o is Afn = (A;lln) + A(A%m) (36)
(4%,)° = ey AN, (DD (af) (x51) + 12152 1% 1 NZ(DA)Z(O'knA) (x52) (37)
At
A(4k,) = 1L f —Nl(D’l)lA(ad"’l)(xﬁl;At —1)dr
(38)
At
+HZ U2 f A—NZ(D 12 A(0 ) (xP2; At — 7) dr
2 Aw)! Aw0\2
B, = (By?) + (Bax (39)
(B,%,f’ lfklj}lglllﬁl f [—Nl (DN, A(a2 ™) (xP1; (h — (u)At—T)]dT
(40)
apabe e [T]AEZT 2 nAY( B
HE AR, [TNZ(D )24(ad ) (xP2; (h - (u)At—T)]dT
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(B4®)" =

]l i21%2

zll;%f [A Ny (D})1A(o ") (xPr; (h — w+1)At—r)] dr

(41)

1A 1P lﬁzf [A Ny (D), (o) (P2 (h — w + DAL = 7) | dr

Coefficients (Afm)o and 4 (A;Im) are independent
from h, and are determined only once. In each time

step, only coefficients (B,’};lo 1and (B,’};lo)zare
evaluated; the other coefficients are determined at
earlier time steps.

The discretized Equations (30) are collocated at
the quarter point and three quarter point of the
elements for boundary condition o, Similar
coefficients can be achieved for o and p.
Eventually, for M boundary elements can create
3M linear equations for 3M unknown
discontinuities (D,, Dy, Dy ) at time ¢t = h At. We
consider that the section related to normal and
shear discontinuities each has two unknown
discontinuities. The matrix notation for the system
of linear equations may be expressed as follows:

h-1
h _ _(Z B D" —O'h)
w=0

The error function erf(x) is expressed in the time-
dependent part of the influence functions in the
Appendix B. This is a special function (non-

(42)

elementary), which is expressed in probability,
statistics, and partial differential equations
describing diffusion [67, 68]. The following
estimation is used for this function with maximum
error of 1.2 x 10—7 [69]. The estimation is valid
over the complete range of values.

(t—1) forx=0

erf(x) = {—(1 —7) for x<0 43)

8. Validation of developed poroelastic code
LEP-DDM

In the following, crack opening displacemen in
different situations are presented to study the
performance and accuracy of the proposed code.
These problems have been previously presented
analytically. A suddenly pressurized crack in an
infinite body is used in order to investigate the
linear element poroelastic DDM (LEP-DDM) code
developed here. Consider a thin crack under
constant internal pressure p witha length of 2 L (see
Figure 6).

7=t xexp(—x%—1.26551223 + 1.00002378¢t + 0.37409196t> + 0.09678418¢t3

(44)

—0.18628806t* + 0.27886807t° — 1.13520398t° + 1.48751587t7 — 0.82215223t% + 0.17087277t°

1

=T —osm

(45)

Figure 6. A suddenly pressurized crack.
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The exact amount of relative normal
displacement of crack surfaces (crack opening
displacement) COD in an elastic medium in
Equation (46) can be calculated [70].

2p(1 —
COD:¥ -

where —L <x <L.

(46)

In the first time steps in a porous medium, it
shows undrained behavior because the fluid inside
the pores cannot escape (elastic response with
undrained specification), and around the crack, the
pore pressure increases. Therefore, analytic’s
solutions must be compared with the results of the
first time step, which represents an elastic
behavior. A crack with length 2 = 1 m from x =
—0.5 m to x=+0.5 m and properties of Table 1 with
no farfield stress and 25 MPa internal pressure with
At =0.05 s is used for validation.

Figure 7 shows crack opening displacement
(COD) in the direction of x-axis using the

Journal of Mining & Environment, Vol. 13, No. 3, 2022

analytical and numerical methods (LEP-DDM
code) and 20 linear elements in a short time and a
long time. As it can be seen, the numerical results
are in good agreement and coordination with the
analytical results. The values of the numerical
results are slightly over-predicted. The pore
pressure will dissipate after a long period of
internal pressure applied to the crack and a drained
behavior (elastic response with  drained
specification) appears. Figure 7 shows the results
of the numerical model after 5000 s and analytical
models using drained Poisson ratio.

Table 1. Parameters of model.

Skempton’s coefficient (S) 0.90
UndrainedPoisson ratio (vu ) 0.29
Drained Poisson ratio (v) 0.10
Permeablity (k) (mdarcy) 1

Biot’scoefficient (o) 0.67
Generelizedconsolidationcoefficient(c)(m2/s) | 0.003
Shear modulus(G) (GPa) 14

ANALYTICAL ELASTIC
ANALYTICAL POROELASTIC

% & Numerical ELASTIC(LEP-DDM)

2 Numerical POROELASTIC(LEP-DDM)

D

2 0.0019 -

2 0.0017 -

2 00015 1 Y TITY

£ 0.0013 1 o222 e

g * Lo

2 0.0011 - ° L,

v 0.0009 - ¥

2 0.0007 - o *

o 0.0005 ! ! ! . . !
0.6 0.4 0.2 0 0.2 0.4 0.6

Crack Horizontal Axis (m)
Figure 7. Numerical and analytical results of COD in long time and short time.

Another example is used to illustrate crack
propagation in poroelastic media. It is important to
note that once a new element is added, the

coefficients (Afm)oand A(Afm) of the previous

time step are no longer valid, and they must be re-
assessed because each new element adds 3 new
unknowns D,, D, and Dy (section related to normal
and shear discontinuities each has two unknown
discontinuities) to the set of linear equations. The
following fourteen steps describe the procedure for
performing crack-propagation analysis in LEP-
DDM.

1. Start
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2. We define geometry
3. We solve the linear elastic system at zero time
4. We update the boundary conditions

5. We solve the linear elastic system in the new
time step

6. We calculate the stress intensity factor

7. We check whether crack propagation occurs or
no

8. If the answer is negative, we go back to step 4;
otherwise, we go to step 9

9. Have we reached the length described?
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10. If the answer is negative, we go to step 7;
otherwise, we go to step 11

11. A new element is added

12. Solving the same time step for the new
unknown achieve

13. We return to step 9
14. End

To demonstrate crack-propagation in a
poroelasticity, two parallel cracks in a porous rock
under far-field compressive stresses ox = 57 MPa,
oy = 47 MPa with the initial length and the same
distance of 50 cm have been used. An internal
pressure of 60 MPa is applied to the cracks. Sub-
critical crack propagation is used. In geological
formations, the velocity of crack propagation
varies based on temperature and grain size from 10°
" to 10'° m/s in sub-critical propagation [71].

\
e

\
m———"
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Crack propagation velocity of 107! m/s along with
sub-critical index n = 25 were used for this
demonstration. Figure 8 depicts crack-propagation
in a poroelastic rock after 100, 200, 400, and 4000
time steps. The cracks start to diverge from each
other at first and over time; they align with the
maximum far-field stress.

To show the time-dependent SIF, a pressurized
crack (by applying internal pressure 60 MPa) with
similar properties to the previous example was
modeled. Figure 9 depicts the variations of Mode I
SIF with time for 500 s. As it can be seen, SIF is
high at the beginning and gradually reduces as time
passes; the reducing trend is much faster after 400
s. SIF would reach 0 if the model were run
indefinitely (since no far-field stress or pore
pressure was considered) and the internal pressure
of the crack would completely dissipate.

—"
\

(a) h=100

—————
——

(b) h=200

(d) h=4000

Figure 8. Crack-propagation in a poroelastic rock after various time steps.
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Figure 9. Variations of normal SIF with time for a pressurized crack by applying internal pressure P = 60 Mpa.

9. Conclusions

The present study introduced linear higher-order
elements, and newly developed a higher-order
numerical code (LEP-DDM) wusing linear
displacement discontinuity in poroelastic medium.
Since the fundamental solutions in the
displacement discontinuity method (DDM) involve
a displacement jump, this method is suitable for
problem involving fractures and discontinuities.
However, the original DDM and its higher-order
extensions are all restricted to elastic problems. In
geo-mechanics, many situations such as hydraulic
fracturing, in-situ stress measurement, and geo-
thermal occur in a poroelastic media.

Since the porous media are affected by the
deformation-diffusion behavior, it is necessary to
use the theory of poroelasticity. The possibility of
developing boundary element methods for porous
media can be achieved when the fundamental
solutions of poroelastic media are presented. In
order to derive the fundamental solutions for the
porous higher order displacement discontinuity,
the fundamental solutions of the higher order
displacement discontinuity of the impulse point
and the source were used. The fundamental
solution creates the influence function in the final
DDM formulation. To use these functions, the
boundary field is divided into several boundary
sub-elements.

Field and geometric variables are interpolated by
piecewise polynomials.

After numerical formulation and implementation
for the poroelastic HODDM in LEP-DDM code
was provided. At this stage, the equations are
numerically integrated and the solution of the
linear form including discrete variables in space is

918

produced. Integral equations have a time part and
the time integral is solved.

The accuracy and validity of the new formulation
and numerical implementation were proved using
the analytical solutions. The response at t = 0 and
long duration is obtained using the undrained and
drained Poisson's ratio for analytical solutions after
applying internal pressure. These results showed
good agreement and coordination with numerical
results at first time step and a long time (t = 5000
s) later. Crack-propagation, which enables the code
to pursue crack propagation issues in time and
space, is described in 14 steps. In the following, an
example for crack propagation simulation in a
poroelastic rock was provided and crack
propagation was showed. At the end, the time
dependency of SIFs in a poroelastic medium was
illustrated by mentioning another example. Since
the crack propagation velocity must be determined
for this part. As a result, poroelastic problems
depend on time.
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Appendix B

Time-independent part of influence functions
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