[1]. Wardrop, D., (2012). The accuracy of sand and gravel reserve estimates. Quarterly Journal of Engineering Geology and Hydrogeology. 45 (2): p. 243-247.
[2]. Collis, L. and M. Smith, Aggregates: sand, gravel and crushed rock aggregates for construction purposes. 2001: Geological Society.
[3]. Bichet, V., E. Grisey, and L. Aleya, (2016). Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Engineering Geology. 211: p. 61-73.
[4]. Meju, M.A., (2002). Geoelectromagnetic Exploration For Natural Resources: Models, Case Studies And Challenges. Surveys in Geophysics. 23 (2): p. 133-206.
[5]. Hinze, W.J., The role of gravity and magnetic methods in engineering and environmental studies, in Geotechnical an Environmental Geophysics: Volume I: Review and Tutorial. 1990, Society of Exploration Geophysicists. p. 75-126.
[6]. Haeni, F., Application of seismic-refraction techniques to hydrologic studies. 1988: US Government Printing Office.
[7]. Tejero, R., D. Gomez-Ortiz, G.G. Heydt, F.M. Toledo, C.M.C. Martínez, M.d.M.S. Rodriguez, and J.J.Q. Suarez, (2017). Electrical resistivity imaging of the shallow structures of an intraplate basin: The Guadiana Basin (SW Spain). Journal of Applied Geophysics. 139: p. 54-64.
[8]. Alemdag, S., M. Sari, and A. Seren, (2022). Determination of rock quality designation (RQD) in metamorphic rocks: a case study (Bayburt-Kırklartepe Dam). Bulletin of Engineering Geology and the Environment. 81(5): p. 1-9.
[9]. Khan, M.S., S. Hossain, A. Ahmed, and M. Faysal, (2017). Investigation of a shallow slope failure on expansive clay in Texas. Engineering Geology. 219: p. 118-129.
[10]. Naudet, V., M. Lazzari, A. Perrone, A. Loperte, S. Piscitelli, and V. Lapenna, (2008). Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Engineering Geology. 98 (3-4): p. 156-167.
[11]. Coulibaly, Y., T. Belem, and L. Cheng, (2017). Numerical analysis and geophysical monitoring for stability assessment of the Northwest tailings dam at Westwood Mine. International Journal of Mining Science and Technology. 27(4): p. 701-710.
[12]. Falae, P.O., D. Kanungo, P. Chauhan, and R.K. Dash, Recent trends in application of electrical resistivity tomography for landslide study, in Renewable Energy and its Innovative Technologies. 2019, Springer. p. 195-204.
[13]. Carrión-Mero, P., J. Briones-Bitar, F. Morante-Carballo, D. Stay-Coello, R. Blanco-Torrens, and E. Berrezueta, (2021). Evaluation of Slope Stability in an Urban Area as a Basis for Territorial Planning: A Case Study. Applied Sciences. 11 (11): p. 5013.
[14]. Junaid, M., R.A. Abdullah, R. Saa'ri, and N.A. Alel, (2022). An expeditious approach for slope stability assessment using integrated 2D electrical resistivity tomography and unmanned aerial vehicle survey. Journal of Applied Geophysics: p. 104778.
[15]. Junaid, M., R.A. Abdullah, R. Sa’ari, W. Ali, H. Rehman, and M. Sari, (2022). Water-saturated zone recognition using integrated 2D electrical resistivity tomography, borehole, and aerial photogrammetry in granite deposit, Malaysia. Arabian Journal of Geosciences. 15 (14): p. 1-13.
[16]. Dimech, A., M. Chouteau, M. Aubertin, B. Bussière, V. Martin, and B. Plante, (2019). Three‐dimensional time‐lapse geoelectrical monitoring of water infiltration in an experimental mine waste rock pile. Vadose Zone Journal. 18(1): p. 1-19.
[17]. Batista-Rodríguez, J.A. and M.A. Pérez-Flores, (2021). Contribution of ERT on the Study of Ag-Pb-Zn, Fluorite, and Barite Deposits in Northeast Mexico. Minerals. 11 (3): p. 249.
[18]. Junaid, M., R.A. Abdullah, R. Saa'ri, M. Alel, W. Ali, and A. Ullah, (2019). Recognition of boulder in granite deposit using integrated borehole and 2D electrical resistivity imaging for effective mine planning and development.
[19]. Onifade, Y.S., V. Olaseni, I.G. Baoku, and C. Eravwodoke, (2021). 2D ELECTRICAL RESISTIVITY TOMOGRAPHY FOR THE ASSESSMENT OF MINERALS’OCCURRENCES IN UGONEKI, EDO STATE, SOUTH-SOUTH, NIGERIA. FUDMA JOURNAL OF SCIENCES. 5 (2): p. 635-639.
[20]. Coelho, C., C. Moreira, V. Rosolen, G. Bueno, J. Salles, L. Furlan, and J. Govone, (2020). Analyzing the spatial occurrence of high-alumina clays (Brazil) using electrical resistivity tomography (ERT). Pure and Applied Geophysics. 177 (8): p. 3943-3960.
[21]. Junaid, M., R.A. Abdullah, R. Sa'ari, W. Ali, H. Rehman, M.N.A. Alel, and U. Ghani, (2021). 2d electrical resistivity tomography an advance and expeditious exploration technique for current challenges to mineral industry. Journal of Himalayan Earth Sciences. 54 (1): p. 11-32.
[22]. Hasan, M., Y. Shang, P. Shao, X. Yi, and H. Meng, (2022). Evaluation of Engineering Rock Mass Quality via Integration Between Geophysical and Rock Mechanical Parameters. Rock Mechanics and Rock Engineering: p. 1-21.
[23]. Rusydy, I., T.F. Fathani, N. Al-Huda, K. Iqbal, K. Jamaluddin, and E. Meilianda, (2021). Integrated approach in studying rock and soil slope stability in a tropical and active tectonic country. Environmental Earth Sciences. 80 (2): p. 1-20.
[24]. Imani, P., G. Tian, S. Hadiloo, and A. Abd El-Raouf, (2021). Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. Journal of Applied Geophysics. 184: p. 104236.
[25]. Rezaei, S., I. Shooshpasha, and H. Rezaei, (2019). Reconstruction of landslide model from ERT, geotechnical, and field data, Nargeschal landslide, Iran. Bulletin of Engineering Geology and the Environment. 78 (5): p. 3223-3237.
[26]. Maganti, D., Subsurface investigations using high resolution resistivity. 2008, The University of Texas at Arlington.
[27]. Guinea, A., E. Playà, L. Rivero, and J.M. Salvany, (2014). Geoelectrical prospecting of glauberite deposits in the Ebro basin (Spain). Engineering geology. 174: p. 73-86.
[28]. Hasan, M. and Y. Shang, (2022). Geophysical evaluation of geological model uncertainty for infrastructure design and groundwater assessments. Engineering Geology. 299: p. 106560.
[29]. Gemail, K., S. Shebl, M. Attwa, S.A. Soliman, A. Azab, and M. Farag, (2020). Geotechnical assessment of fractured limestone bedrock using DC resistivity method: a case study at New Minia City, Egypt. NRIAG Journal of Astronomy and Geophysics. 9 (1): p. 272-279.
[30]. Ishak, M.F., M.I. Zaini, M. Zolkepli, M. Wahap, J.J. Sidek, A.M. Yasin, M. Zolkepli, M.M. Sidik, K.M. Arof, and Z.A. Talib, (2020). Granite Exploration by using Electrical Resistivity Imaging (ERI): A Case Study in Johor. International Journal of Integrated Engineering. 12 (8): p. 328-347.
[31]. Hutchison, C. and D.N. Tan, (2009). Geology of Peninsular Malaysia. The University of Malaya and the Geological Society of Malaysia, Kuala Lumpur: p. 479.
[32]. Longo, V., V. Testone, G. Oggiano, and A. Testa, (2014). Prospecting for clay minerals within volcanic successions: application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy). Journal of Applied Geophysics. 111: p. 21-32.
[33]. Lesparre, N., A. Boyle, B. Grychtol, J. Cabrera, J. Marteau, and A. Adler, (2016). Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization. Journal of Applied Geophysics. 128: p. 163-178.
[34]. Persson, L., I.A. Lundin, L.B. Pedersen, and D. Claeson, (2011). Combined magnetic, electromagnetic and resistivity study over a highly conductive formation in Orrivaara, Northern Sweden. Geophysical Prospecting. 59 (6): p. 1155-1163.
[35]. Bharti, A.K., S. Pal, P. Priyam, V.K. Pathak, R. Kumar, and S.K. Ranjan, (2016). Detection of illegal mine voids using electrical resistivity tomography: The case-study of Raniganj coalfield (India). Engineering Geology. 213: p. 120-132.
[36]. Available from: www.google.com/search?q=exploration+drilling&source=lnms&tbm=isch&sa=X&ved= 0ahUKEwjvkoX_5tXgAhUGON8KHdbNDfUQ_AUIDigB&biw.
[37]. Montani, C., (2003). Stone 2002—World marketing handbook. Faenza, Gruppo Editoriale Faenza Editice, Faenza.