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In this work, we simulate the frequency-domain helicopter-borne electromagnetic
(HEM) data over the two-dimensional (2D) and three-dimensional (3D) earth models.
In order to achieve this aim, the vector Helmholtz equation is used to avoid the
convergence problems in Maxwell’s equations, and the corresponding fields are
divided into primary and secondary components. We use the finite difference method
on a staggered grid to discretize the equations, which can be performed in two ways
including the conventional and improved finite difference methods. The former is very
complex in terms of programming, which causes errors. Furthermore, it requires
different programming loops over each point of the grid, which increases the
program’s running time. The latter is the improved finite difference method (IFDM),
in which pre-made derivative matrices can be used. These pre-made derivative
matrices can be incorporated into the derivative equations and convert them directly
from the derivative form to the matrix form. After having the matrix form system of
linear equations, Ax = b is solved by the quasi-minimal residual (QMR). IFDM does
not have the complexities of the conventional method, and requires much less
execution time to form a stiffness or coefficient matrix. Moreover, its programing
process is simple. Our code uses parallel computing, which gives us the ability to
calculate the fields for all transmitter positions at the same time, and because we use
sparse matrices thorough the code memory space, requires to store the files is less than
100 MB compared with normal matrices that require more than 15 GB space in the
same grid size. We implement IFDM to simulate the earth’s responses. In order to
validate, we compare our results with various models including the 3D and 2D models,
and anisotropic conductivity. The results show a good fit in comparison with the FDM
solution of Newman and the appropriate fit integral equations solution of Avdeev that
is because of the different solution methods.

1. Introduction

The frequency-domain

helicopter-borne conductive overburden and conductive host rock

electromagnetic (HEM) method is extensively used
in a wide range of geoscience fields. Peltoniemi
studied the depth of investigation of a fixed-wing
frequency-domain  airborne  electromagnetic
system, and based on his work and the modeling
output, the depth of penetration in resistive
topography for the airborne system was between 85
m and 210 m depending on the geometry and the
size of the conductive body. Host rock and
overburden of low but finite conductivity do not
make a significant change in the penetration depth.
The screening and the attenuation effects from
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will, however, decrease the depth of penetration
[1]. Kokpiang used airborne electromagnetic data
to map groundwater salinity and salt store at
Chowilla. They performed a HEM survey, and
proved the ability of airborne electromagnetic
combined with pore fluid salinity data and
predicted the groundwater salinity and salt store
distribution across the floodplain. [2]. Siemon
created the work frame of frequency-domain
helicopter-borne electromagnetics for groundwater
exploration in urban areas. By using high-
frequency data, they described the shallower parts
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of the conducting subsurface or highly conductive
saltwater-saturated sediments and the low-
frequency data the deeper parts of resistive hard
rocks in urban areas, despite a few man-made
sources that affect the field measurements [3], and
Baranwal used 3D interpretation of frequency
domain (HEM) data to study the Mesozoic
sedimentary basin to delineate the extent of the
sedimentary basin and found highly conductive
areas using HEM data interpretation. In one of
these areas, graphite and sulfide mineral outcrops
were found by field observations [4].

To interpret the HEM data, substantial efforts
have been made to perform the one-dimensional
(1-D) [5;6;7; 8; 9, 10; 11;12], 2D [13; 14; 15; 16;
17; 18; 19; 20; 21; 22; 23; 24)] as well as 3D [25;
26; 27; 28; 29; 30] numerical modeling of the
respective data. Various numerical methods have
been implemented by pioneer researchers such as
Coggon (1971) that computed electromagnetic
responses of two-dimensional structures, with line
source excitation including the effects of adjacent
conductors and magnetic conductors set in a less
conductive half-space by the finite element method
to simulate complex structures [31]. Xiong (1992)
simulated responses of 3-D structures by the
method of system iteration using integral equations
[32]. Newman (1995) used staggered finite
differences  for  modelling of  airborne
electromagnetic responses in frequency-domain
[33]. Habashy (1993) by using a non-linear method
calculated the electromagnetic scattering [34] [e.g.
35; 36; 37].

Since in most cases the earth has a two/three-
dimensional (2-D/3-D) structure and is inherently
associated with complexities, 1-D modeling cannot
provide a reliable result [38; 39], and therefore, a
2-D/3-D modeling has to be executed to model the
HEM data acquired above that [38].

Numerous attempts have been made to perform
the forward-modeling using the finite difference
method (FDM) [24; 33; 40; 41], finite element
method (FEM) [19; 20; 27; 42; 43; 44, 45], finite
volume method (FVM) [46; 47; 48; 49; 50],
integral equations (IQ) [39; 51; 52], and hybrid of
numerical method [53; 54].

Moreover, high computational volume and the
need for huge processing memory is one of the
most important problems of the finite element
method [25; 55]. The finite difference methods are
effective from the point of view of the simplicity of
the discretization algorithm to create the
coefficient matrix and the models that are not too
complex [56].
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To solve the Maxwell equations using the FDM
method, the differential equations have to be
discretized numerically. In order to discretize the
Maxwell equation, two general methods including
the staggered grid and non-staggered grid were
presented by Yee [57]. One of the most important
deficiencies of the non-staggered method is the
large calculation and dealing with large
dimensional matrices. However, the staggered
scheme does not suffer from this problem [58].
Furthermore, using the staggered grid divergence
equations is naturally satisfied and the boundary
conditions, which can be attributed to each of the
grid cells of the desired conductivity, are well-
satisfied.

However, the conventional approach of 2-D and
3-D programming of the staggered grid is really
challenging and prone to errors and bugs. In
addition, this discrete form of the equation needs to
be calculated for every point in the grid, which is
relatively expensive computationally. To deal with
these problems, we use an improved finite
difference method (IFDM), which has been
developed by Rumpf [59; 60] and has not been
used for modeling the geophysical electromagnetic
data so far. In this method, some derivative
matrices are built, and then these pre-made
matrices are incorporated into the derivative
equations and convert them directly from the
derivative form to the matrix form. The result of
this procedure is a system of linear equations. This
method is easy to program and very fast, and does
not have the complexity of the conventional
method [59, 60].

We found that the execution times of this method
to build the left-hand side (LHS) matrix and curl
calculation of a 3-D model with the dimension of
700m*500m*500m and a mesh size of Sm*5Sm*5m
using a computer with a configuration of a
processor of 16 cores (2.5 GHz) and 64 GB RAM,
are 14 and 3 seconds, respectively. However, in the
case of using the conventional method, the elapsed
time for these calculations is almost 7 hours. In
terms of Ram usage, improved method used 48 GB
of Ram for 14 and 3 seconds but the conventional
method used 48 GB of Ram for almost 7 hours; on
the other hand, because we use sparse matrices
throughout the code, it only requires less than 100
MB of memory space, compared to the
conventional matrices that require more than 15
GB.
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2. Methodology
2.1. Electromagnetic equations

The propagation of EM waves is based on the
Maxwell’s equations [61].

The desired HEM responses for the simulation
must be calculated with the magnetic dipole source
affecting the receiver. This greatly complicates
solutions because the fields close to the source are
changing rapidly. Therefore, in the case of using a
very large mesh, the numerical difference at the
receiver is prone to inaccuracy. However, using a
very fine grid near the source and receiver cause
problem and limits the size of the model because
there is a limitation in computer storage. In order
to overcome this problem, the fields are divided
into primary and secondary fields (1) [33; 62].
Thereby, the numerical solutions are divided into
two parts, and primary fields can be calculated
analytically. Thus singular point source is removed
from the numerical solution [33; 19; 20].

e =e +e

primary secondary

(D

o = Gprimary + Gsecondmy

where e and o stand for electrical field and
conductivity, respectively.

From the Maxwell equations, the secondary
electric field can be derived as follows [23; 29]:

@

V, %V, xe, +ioyoe, =—iouo.e,,

where € . is the primary electric field arising

pn
from a dipole source or analytic whole space
source. @ = 27tf is the angular frequency, and U
is the magnetic permeability. Now that we have our
equation, the next step is to approximate the
electric field using finite difference on a staggered
grid scheme. There are two approaches that we can
use in this regard: the conventional finite difference
method and the improved finite difference method.

2.2. Finite difference method (FDM)

In general, we start with the governing equation.
Equations 3-21 are simple general math examples
to make the concept easier to understand or system
of governing equations, for example, Equation (3),
and we have some other information like boundary
values and certain range that we are interested in,
and somehow define the problem. This is where we
apply FDM and approximate the derivatives, make
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function y discrete after that we get a system of
equations write that finite difference equation once
for every point in the grid, and put that set of
equations in matrix form (4). Thus FDM is what
takes us from our analytical differential equation to
the matrix form, and after that we can just think of
this y as our unknown, and if we solve that for y,

we will get our answer (5).

2

YLy @)y ) =0
dx

d’

0<x <10 ®)
y(0)=Ly(10)=5

[4][»]=[?] )
[v]=[4]"[p] )

In the conventional FDM, we have our governing
Equation (3); the first step is making this equation
discrete (6); here is an important part of writing
finite difference equations. Every single term must
exist at the same point in space so now our function
y will only exist at discrete values x, which allows

us then to use FDM. However, in the computer
code, we are working with a range where we have
our first, second, third, and fourth element and so
on, and it is better to write difference equations in
array indices (7), and now “i” is an integer that goes
from one all the way to the number of points on the
grid. The next step is rearranging the finite
difference equation, so in its present form (7), our
finite differences are quite apparent; however, we
have to build a giant matrix, and it will be a lot
easier to do that if we rearrange this to become (8).
The next step is to set up the grid and calculate the

grid parameters like grid spacing Ax and after
that, we can put this value in (8) and end up with a
simple equation; for example, if we have a 21-point
grid, which means we have 20 spaces equation
becomes (9) but this equation is very specific to
that grid that has a spacing of 0.5 and if spacing
changes, clearly, the numbers in that equation have
to change. This equation is going to enforce our
original differential equation, and we will have
written that equation for every single point of our
21 points across space except the boundary values
that were given to us at the beginning.
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y(x +Ax)-2y(x)+y(x -Ax) yx +Ax)-y(x -Ax)

=0
I e +y(x) (6)
Via =2V, +Viy YVia—YVi,

1 — + [=0 (7)

Ax? 2Ax 7

1 1 2 1
+—y,  +|1- -+ -—..,=0 8
(sz 2ijyl—l ( szjyz (sz 2ijyl+l ()
Sy, -7, +3y,,,=0= Ax =0.5 ©)

Let’s repeat everything we just did with the
improved finite difference method. We have the
same starting point, the same governing equations,
and the same boundary values; we solve the same
problem just with a different way of implementing
the finite difference method. What we will do for
formulation rather than go through whole the
complexities of the conventional method, we will
just be going to go term by term and immediately
write our differential equation (3) in matrix form
(10). We already know that our unknown function

y(x) is always going to be stored as a column

vector likewise zeros (excitation or source in
HEM). These are the only two things ever in the
differential equation that are stored as a column
vector. Everything else is not a function;
everything else is something operating onto those
functions, and they are stored in square matrices. In
the first term of Equation (3), we have a second-
order derivative operating on y , so we are going to

have some kind of square matrix (Dx) operating on
y and what we will do is factor out the y (11) and

call the matrix A, the left-hand side (LHS) matrix,
and so what we have in our MATLAB code is just
a line of code, and the only thing that needs to
discuss, is how to build these derivative matrices
and what we do is program a function in MATLAB
where we tell the size of the grid and the spacing
that’s all the information it needs, and it will build
the matrices for us and building these matrices is
also very simple. We can just type in the
differential equation (A=DX2-DX+1I), and we are no
longer even explicitly toughing finite differences
and all the tediousness of the finite difference’s
method has gotten absorbed into that functions that
build derivative matrices. Thus if you have any
new differential equations, just write the LHS or A
and run the code again whereas if you applying the
conventional FDM, you should start approximate
with finite differences, make sure all the terms exist
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at the same point in space, maybe you have to
modify those, write it in array form then rearrange
to collect terms for constant y terms, put the value
for AX to get an equation with coefficients, build
your matrix then go back incorporate boundary
values, then finally solve it. Its hugely complicated
and even more complicated for 2D or 3D sets of
differential equations, this conventional approach
is very difficult and prone to errors and bugs in
writing the code.

[0 Iy ]-[D ]y ]+ [ ]=[0]

(10)
(11

2.3. Multivariable finite difference method

Assuming electric field € and magnetic field /
and very basic multi-variable problem (12), and
two unknown functions e (x )and £ (x ), if just
approximate this with finite differences, it becomes
in form (13); it will work but the problem is we
spanning this grid by distance of 2Ax and go
farther out on the grid to calculate finite differences
so it will be less accurate. There is something better
we can do in this case where we only have to reach
Ax and if those function values are tighter against
where we are calculating that finite-difference that
will improve our accuracy. Thus let’s only use e
and & where they are defined and tighten up those
finite differences so they only span one Ax and
end up Equation (14); in this case we are breaking
an important rule that all terms in a finite difference
equation must exist at the same point in space. Thus
these finite differences are defined at (x + Ax )/2

, Whereas / (x ) is happening at xand it can make
the code unstable.
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2.4. St i
de(x) . Staggered grid
o ah(x) If we define e to exist at the integer steps of Ax
oh(x) (12) and hexistat x + Ax /2, the whole Equation (15)
EVE be(x) works fine and we should remember that eand £
are at physically different points. Thus if we want
_ _ taking derivative of e, we are looking at the finite
etx vAx)—e(x —AY) ah(x) difference between e (x)and e(x +Ax)and
2Ax (13) interpreting that as the central difference that exists
h(x +Ax)—h(x —Ax) = be(x) at the middle; likewise, when we are calculating the
2Ax derivative of /4 using finite difference using
h(x +Ax/2)and h(x +3Ax/2)and interpret
e(x +Ax)—e(x) that as central difference, it exists at the midpoint
=ah(x) o
Ax where e exist (Figure 1).
(14)
h(x +Ax)—h
(A k()
Ax
e(x) e(x +Ax) ie(x +2Ax) | e(x +3Ax) e(x +4Ax)
¢+ —¢ o ® *+—
; Ax 3Ax SAx 7Ax 9Ax
D hx+—)  hx+——) hx +——) hlx+——) h(x +—)
! 2 | 2 2 2
1 Ax '
Figure 1. 1D staggered grid.
cell in the grid and physically different positions,
e(x +Ax)—e(x) —ah(x + ﬁ ) meaning it is staggered; they are offset by half cell
Ax 2 (Figure 2). Due to the staggering these finite
Ax Ax (15) differences are written a little bit differently, in the
hx + 7) —h(x - 7) first differential equation we have e at the next cell
" =be(x) minus e at the same cell; this is called right

In reality, we are working with array indices in
computer memory, so (15) becomes (16) and we

should remember that € ; and h ; arein the same

derivative matrices that reaches right to calculate
the finite differences but in second differential
equation is / at same cell minus / at previous cell
that is called left derivative matrices.

SRR S0 S S8 S S AR A A

Figure 2. 1D staggered grid ¢ . and j, are in the same cell in the grid and physically different position.
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i+l Ci _ah
h Axh (16)
i i—1:bei

Ax

2.5. Derivative matrices for staggered grid

Assume we have that has five cells (Figure 2) and
want to write both of our finite difference equations
once for each cell in the grid; this means that we
will end up with ten equations (17, 18). Our first
finite difference equations give us five equations

and the last equation is trying to access an e

because we need a derivative on top of 4, , and now
we have boundary condition problem; notice when
we are taking the derivatives of e, there is no
boundary condition problem at the first point, and
this is because the staggered grid boundary
condition problems only arise at one side of the
grid. For our second finite difference equations that
are associated with gat the first point, we are

trying to calculate a derivative at €, that needs to

reach out to the left side out of the grid that does
not exist, boundary condition problems this time on
different side of the grid. Here, we use the Dirichlet

boundary condition, so e, =0, /4, =0. We can put

these sets of equations in matrix form, and stores
our unknown functions in column vector e and

derivative matrix D¢means derivative matrix

. . . . Dh
operating on ein Xxdirection and , means

derivative matrix operating on /4 in xdirection.
Thus we can write Equation (12) directly in matrix
form (21) and put them into a two-by-two block

matrix and solve that simultaneously. [0] is

excitation. Important notice: these two derivative
H

matrices are related by [Df} = —[ng] . It means

that we only need to build one of these derivative
matrices and calculate the other one immediately
from it and it is just one line of code in MATLAB.

Journal of Mining & Environment, Vol. 13, No. 4, 2022

eZ_elZahl
Ax
€€ —ah
2
€76
: =ah, = e, —e
A)C 4Ax3:ah3 (17)
eS e4:ah
AX' 4
_es—ah
Ax 5
hl_zbe
AX 1
M =h e
h, —h A 2
ST o h,—h
Ax bel-j Sszzbe3 (18)
h4_h3—be
AX 4
hs_h“zbe
5
-1 1 0 0 07 h,
oo o e h,
|0 0 -1 1 0l =ah
0 0 0 -1 1|e| |n (19)
0 0 0 0 —1]e, h
[z Jle)=al#]
(10 0 o ofn] [e]
S|t e 0o h, e
0 110 0k bl
0 0 -1 1 0fh| e (20)
10 0 0 -1 1]|A] e
(D! ][r]=ble]
[0 Jfe]=aln] = [[PF] —al]|[[e]]_[[o]
Al @d
(D ](#]=ble] (1] [pr] U o]

2.5.1. 2D derivative matrices for staggered grid

Assume a three by three grid (Figure 3) for
building D¢; derivative of e function in x

X

direction (22) [59; 60] also called right-handed
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derivative matrix and we are using jacent e values
so finite-difference end up at the midpoint, and that
is leading to the staggering that we put / function
at the midpoint of e . The red arrow point to where
the derivative is being evaluated and the box
encompasses the point at which we are calculating
the finite difference; in the 6" equation, we are
evaluating a derivative that is from outside of the
grid, which means we need a function value from
farther outside of the grid, and we do not have this
function value and we are going to apply simple
Dirichlet boundary conditions, and that means any
function value from outside of the grid is zero.
Notice boundary conditions problem only
happened at one side of the grid (right-side), and

o h
when we calculate derivatives for & or D

boundary conditions, problem still happens on one
side of the grid but this time left side, so they have
symmetric boundary conditions problem, whereas
in the co-located grids, we have the boundary
conditions problem at both sides. In the next step,
we calculate the right-handed derivative matrix

D derivative of e function but this is with

respect to ) , so taking derivatives in vertical
direction (23) [59; 60] and for example in the 8™
equation, we have boundary conditions problem so
we are using Dirichlet boundary conditions and as
you can see boundary conditions problem only

Journal of Mining & Environment, Vol. 13, No. 4, 2022

happened at one side of the grid. The next step is to
put our equation in matrix forms so that we can
have a derivative matrix that will calculate the first-
order derivative of functions with respect to x or
Y (24.25) [59; 60], and with the same process, we

can build derivative matrices for 3D grids and D:

. As you can see, these matrices are very easy to
construct in few lines of code and they have
boundary conditions in them and that is zeros
separate numbers by grid size. In the same way, we

can build the left-handed derivative matrix for Ain

. . h .
x and y directions or Dx and D yh also simply use

one line of code and build them directly from lz ,
D; and I

Z

H H
[pr]==[p] [pr]==[D; ] and
(D! ]=-[D:]" 159 601

As you saw, approximation using the improved
FDM is very easy and straightforward, and it does
not have the complex process of the conventional
method; also it can run in fewer programming lines
than the conventional method whereas
conventional method the code must be executed for
all points of grid meaning you should have for
loops to build LHS and Curl operator and loop
should run thousands of times.

they have  relations of

—
[ 2 L 4 ] (o3 L 2 A .
€y €1 €3 € e:AlJ €;
@ L 4 9 [ 2 L 4
€, €2 €3, €, €32
o
‘e  J [ L 4 ®
A [ e
3 e. . 1.3 23 e. .
A) 3.3 B) > 3.3

Figure 3. 2D 3by3 grid. A- Derivative in Y direction B- Derivative in X direction.
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a61,1 €1 € % ~ €12~ €
o A v Ay
Oe,, e;,—ey, Oey, _ €rn =€y,
ox | Ax y Ay
Oes; 0O—ey, %263.2 ER
ox | Ax v Ay
Oe, _€,,—¢e, e, ~ 63”40
o Ax o Ay
aei,j ;eiﬂ,j =€, N aez,z ~ €376, 22) € ~ € 1€ oe, , ~ €,37€;5, 23)
ox Ax Ox Ax oy Ay Oy Ay
de;, - 0-e,, e, , ~ 633 "€
o Ax N
Oei; _ey;—e; %;m
o Ax v Ay
Oe,; _e5;—¢e,; e, 5 ~ O_ﬁ
ox | Ax v Ay
Oss 9755 deyy O-eyy
ox Ax oy Ay
Dirichlet boundary conditions )
-1 1 | €1 €51 7€
-1 / € €31 7€y,
-0 €3 0—ej,
1 11 €2 1 €0 7€, 24
E -1 1 €0 ZE €32 76,
-1 .0 €, 0—e;,
//_1 1 €13 €3 €13
Size of grid in x direction -1 1 e; €335 7€53
L —l]| ;5] 0—e,,
-1 0 0 1 i _el,l ] _el,z € ]
-1 0 0 €51 €276
=10 0 1 €3, €3, 763
-1 0 0 € €137 €,
L -1 0 0 ez’z :L 62’3 ez’z (25)
Ay N
-1 0 €3, €337 €3,
-1 0 0 ey O—e;
-1 0 (e, O0-e,;
L —1]| €5 | | 0—ey;
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3. Assembling Left-hand Side of Equation

Journal of Mining & Environment, Vol. 13, No. 4, 2022

Considering the Helmhol ion of th [0 =i Dy
onsidering the Helmholtz equation of the _ e e
secondary field (2) with directly replacing Co=| D: 0 D, (26)
derivative matrices for electric and magnetic fields, |-D, D; 0 |
we can have block matrix LHS (29) and complete
Helmholtz equation in the matrix form (30). A r h h ]
. . . 0 -D' D
linear system of equations results where the matrix } : v
LHS is complex symmetric and sparse with C,=|D. 0 -D, (27)
h h
dimensions XN XN  x N, )’ as illustrated in Dy D, 0 |
Figure 4 for a 3by3by3 grid (equations 26-30 are
part of our work). o, 0 0
o=|0 o, 0 (28)
0 0 o,
-D!D{ -D!D¢ +iwuoc, D/D; D!D¢
LHS =C,C, +iwuc = D!D; -D!D! -D;D; +iwuoc, D!D; (29)
hye hye hye hye .
D D; D D -D/D; —D D +iouo,
e’ o, 0 0 |e’
[LHS ||e) |=—iou| 0 o) 0 | e’ (30)
e’ 0 0 o l|e’
IO ] - Tam
L} .. .I .l
.l -I .l .l 1IIL 1.
L} .l - .I ..l-- .II
"s "n " b | 1
..l " I..I ..l .Ll .LI 1:
... -.I..I.-. ... .L.‘I 1. .LI
..I -.I..I ..I -1-.l 5 ..1
... -I...- .L. 1- 1=
I.. l.-l..l.. ll1-.l Il1 -n
27 Iy ..l ..l-.. 1=.LI .Ll 1:-
Il L .I .I .l
-.Il. .I.. I. - I.
1.“ .. .I .I .I
b o, ™ By
-1I.1I .. - =.. ..I. ..I..I. ..l:.l-
HIIL .l ‘ .l ..l .l .l -I
I- ..I .I. ..I ..I
.1I=L ..I =.. ..I..I ..I--I
l.-Lll ..I -l= .-l..l ..l--l
54 I [ -1. [] ... i | TH] ... ..-'
.L 1. L} .I .. -I
L L .l - .l .l .l .l--
L L] L L I. I- I. I. I..I..I
oL " " " "N
Lll Lll .-l ..l -l=..l
R -
.L 1. .I -I .I .I .I..
-. .l--
..I |} .l ...ll.l
oL "a "a "«"H "a
L .I .I .I L]
1] [ ] = mn
27 54
nz =747

Figure 4. Structure appearance of LHS matrix for 3by3by3 staggered grid.
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Many geo-physical studies involve boundary
value  problems arising in  simulating
electromagnetic fields for geological prospecting
and sub-surface imaging of electrical resistivity.
Simulating complex geological earth with three-
dimensional finite-difference grids ends up in large
sparse linear systems of equations Ax =b. For
solving this kind of system, we used the iterative
Krylov methods. Time-harmonic modeling of eddy
currents is commonly carried out using the QMR
method [e.g. 63; 64; 65; 66]. Unlike typical
engineering applications, geo-physical
electromagnetic responses are based on the
Maxwell's equations in the quasi-static limit, where
EM diffusion dominates [67]. We describe the
earth's conductivity (or resistivity) by the diagonal
tensor 28. After obtaining the secondary electric
fields, by numerically approximating the curl of the
electric field on the grid; the magnetic field can be
calculated and then interpolated into the desired
location using the spline interpolation method.

3.1. Algorithm

In terms of algorithm after inputting geometrical
and physical parameters and start the program,
based on the dimension of the calculation world,

Inputs:
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LHS and Curl operator will create and save; these
matrices are just created once and save will be used
in the entire forward modelling unless we change
the dimension of the world. It is worth mentioning
that we use sparse matrices throughout the code,
and using this type of matrices has a great impact
on the space and time required for saving files so
that it needs less than 100 MB memory to save
files. In the next step, based on cells dimensions
and conductivity create world function perform a
averaging. The weighting factors are given by the
ratio of a single cell volume to the total volume of
the four adjacent cells that surround a node; these
matrices will be created once and used throughout
the forward problem.

In the next step, with source position primary
field calculate in every point of the grid then using
QMR method secondary electric field obtain and
after performing Curl and interpolation secondary
magnetic field for the desired receiver position is
calculated. Because our code works with parallel
computing and we already have the required
matrices such as LHS, Curl, world we can calculate
the fields for all transmitter points at the same time
and this feature of our code has great impact on
time. In the following you can see some parts of the
code.

D P=; %dipole type 'VMD’ or 'HMD'

X=; % length of the world in X direction
Y=; % length of the world in Y direction
Z=; % length of the world in Z direction

dx a=; % cell size in x direction
dy a=; % cell size in y direction
dz_a=; % cell size in z direction

size factor=; %expansion ratio of grid

%% MESH SETTING

FMAP y=; %fine mesh around plane y direction
FMAP z=; %fine mesh around plane z direction

f=; %frequency
m=; % dipole moment

%% Flight SETTING

r=; %Spacing between receiver and transmitter

start=; %start point of survey
stop=; %end point of survey
s=; %sample point spacing
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Flight Altitude=; % Flight Altitude

5555555555555 %5%55%5%%%%5%%55%5%5%5%5%%5%%5%%5%%%%%%% Physics of the World
anomaly dimensions= [x y z topl]; %% [x y z top depth]

conductivity of the anomaly, air, left and right of the fault in different
directions and etc...

Inputs go to different functions such as:

LHS function that creates the derivatives matrices

cooo 00000000000
$555s5060600s58800s DEX

center = ones(TN,1); $ 0 diagnal (center diagnal)

pos = ones(length(xs),length(ys),length(zs)); % negative diagnal
pos (end, :, :)=zeros (1, length(ys),length(zs));

pos = pos(:);

pos = [0;pos(l:end-1)1;

DEX spdiags ([center,pos], [1,1],TN,TN) ;

Curl function that creates Curl operator

CRL=[sparse (TN, TN) -DEZ DEY ; DEZ sparse (TN, TN) -DEX ; -DEY DEX
sparse (TN, TN) ];

RHS function that creates primary Fields

for ii=1l:length (xs)
for jj=1:length(ys)
for kk=1l:length(zs)

r(ii,Jjj,kk)=((xs(ii)-plane coordinate (1)) "2+ (zs (kk)-
z_flight) ."2+(ys(33j))"2)"70.5;

Ex p(ii,Jj,kk)=(li*w*mu*m./ (4*pi* (r(ii, jj, kk)).”2)).*(1i.*k.*r(ii,jj, kk)+1).
*(exp (-1li.*k.*r(ii, 3, kk))).*(((ys(33))./r(ii,j3,kk)));

EY_p(llljjlkk):(_
(li*w*mu*m./ (4*pi* (r(ii,jj, kk))."2)) . *(1i.*k.*r(ii,JJj,kk)+1).* (exp (-
li.*k.*r(ii,jj,kk))).*(((xs(ii)—plane_coordinate(l))./r(ii,jj,kk))));

end
end
end

Create world that creates the world and calculates volume averages based on the cell sizes

$%%%%%%% for domain
parfor i=l:length (xs)

T si x=zeros(length (xs),length(ys),length(zs));
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T si y=zeros (length (xs)
T si z=zeros (length (xs)

for j=1:length (ys)
for k=1l:length(zs)

if i~=1 && i~=length (xs)
k~=length (zs)

T si x(i,j,k)=...
(abs (ys(3) -ys(3-1))/ (abs (ys (]
(abs (zs(k)-zs(k-1))/ (abs(zs (k) -
elements x (((k-2)* (length(xs)-1)* (length(ys)-1
(abs (ys(j)-ys(j+1))/ (abs(ys(J) -
(abs (zs (k) -zs(k-1))/ (abs(zs (k) -
elements x (((k-2)* (length(xs)-1)* (length(ys)-1
(abs (ys(j)-ys(j-1))/ (abs(ys(J) -
(abs (zs (k) -zs (k+1))/ (abs (zs (k) -
elements_x(((k—l)*(length(xs)—l)*(length(ys) -1
(abs (ys(j)-ys(j+1))/ (abs(ys(J) -
(abs (zs (k) -zs (k+1))/ (abs (zs (k) -
elements x (((k-1)* (length(xs)—l) (length (ys) -1

, length (ys),
, length (ys)

length(z
,length(zs

s));
))

&& j~=1 && j~=length(ys) && k~=1 &&
—ys(j+1))+abS(YS(j)—YS(j—1))))*
s (k+1))+abs(zs (k) -zs(k-1))))*
+(3-2) * (length (xs)-1)+i),25) +
yS(j+1))+abS( s(J)-ys(3-1))))*...
s (k+1))+abs (zs (k) -zs(k-1))))*
)+(j—l) (length (xs)-1)+ ),25)+..
yS(j+1))+abS( s(J)-ys(3-1))))*...
s (k+1))+abs (zs (k) -zs(k-1))))*
)+(j 2) * (length (xs)-1)+ ),25)+
yS(j+1))+abS( s(J)-ys(3-1))))*...
s (k+1))+abs (zs (k) -zs(k-1))))*
)+(j—1)*(length(xs) 1)+ ),25),

4. Validation of Solution

To verify the accuracy of our code for HEM
simulations, we compared our results with the
finite difference solution of Newman and
Alumbaugh, 1995, and integral equation solution
of Avdeev et al. 1998 for different models.

4.1. 3D target in a half-space

The first model shown in Figure 6 consists of
700by500by500 m including 1<{¥mbody of
dimensions 20by200by75 m at depth of 50 m
centered at 350 m in a 100 (Y half-space. HEM
configuration: using a vertical magnetic dipole

10°

‘OZF\X

Relative residual

\\l

A

106_

(VMD) and a horizontal magnetic dipole (HMD) at
900 Hz, flight level is 20 m above the earth’s
surface. The transmitter and receiver separations
are 10 m and the receiver leading the transmitter to
the right. In all the examples, the calculation was
performed for 29 source positions, and Figure 5
shows the results of the forward midway between
transmitter and receiver along the flight line (the
line that bisects the body). Figure 5 illustrates the
number of equations required to reduce the squared
error level to 10™®. As seen in Figure 6, our total
field responses are matched well with the Newman
curves. Figure 7 shows the secondary magnetic
field for a VMD and an HMD position, where the
source is located at the top of the conductive body.

VMD
HMD

™~

———
L Ml %

10

0 1000 2000

3000

4000 5000 6000

Iteration number

Figure 5. Plot of the relative residual against iteration number for solution of fields based on QMR method.

1078



Nazari et al. Journal of Mining & Environment, Vol. 13, No. 4, 2022

——

L4
£

- I

Py
o=10m
z
o =1000m
&
<
VMD (@
Hz ppm Hx ppm
400 20
600000, 000000, 10
350 000000 000 0000,
0
[ery
300 Svea, To
-10
250 O ImageH, 20 Q o O ImageH,
o RealH, Qo O RealH,
200 Image HZ Newman -30 Image Hx Newman
Real H, Newman Real H, Newman
-40
o
150 oo o“%0 o
50 Gop ° 2 20,
Q Co
100 0 o 3 oo
o0 LSAACAvRex o
facacaad W Rleierer) O O
OQ
50 -70
200 250 300 350 400 450 500 200 250 300 350 400 450 500
Hz ppm Hx ppm
5 -10
Co —_ i
. 0000005 000000
0000002 20 %o, 50
-30
5
52 -40
10 Co0
© ImageH -50
Real H B O ImageH,
eal
15 <o z 60 o RealH
Image H_ Newman x
z 70 Image H_Newman
20 Real H, Newman x
. Real H Newman
90, 80 S
& o00 000000V 000000
o© o 00
2510066600 o 0@ %o, 5°°
[} 90 ®
Q o o
30 o o o
° 5 100 000
Co
-35 -110
200 250 300 350 400 450 500 200 250 300 350 400 450 500
©

Figure 6. A- 3D body located in 100 (Y72 half space B- Comparison of Hx and Hz responses in presence of VMD
source calculated with the improved finite difference with Newman results C- Comparison of Hx and Hz
responses in presence of HVMD source. The fact that larger departures are observed in the real part rather than
the imaginary part of the fields indicates that the anomalous body is a good conductor.
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Image Hz

Figure 7. HEM simulation for a 3D body located in 100 {¥7 half space. Solid line is Earth-Air border, dashed
line is flight path. A. Vertical magnetic-field responses for a VMD source. B. Horizontal magnetic-field responses
for an HMD source. As it can be seen, electromagnetic methods are more sensitive to top of the anomalies.

4.2. Vertical fault, anomaly along a vertical
fault, and topography

For the next model, we consider faulted half-
space consisting of vertical fault at x = 340 m.
Resistivity of left side of the fault is 100X and
right side is 300 (Y7 as shown in Figure 8. In the
next step, we add a conductive body with resistivity
1 Om along the vertical fault at depth of 50 m as
shown in Figure 9. Model consists of a vertical
fault including surface topography as shown in
Figure 10. At right of the fault, earth has been thrust
10 m upwards relative to the left side of the fault.
The height of the flight has been adjusted so

1080

helicopter keeps the vertical distance to the earth
fixed at 20 m.

These figures illustrate how the HEM response
ofthe fault can mask the response of the conductive
body. This particularly can be seen in the image
component of the fields. To determine if the body
is detectable in the presence of the fault, it is
necessary to compare responses of the contact with
and without the body. This is shown in Figures 8
and 9. Notice that the body produces a detectable
anomaly in the real components. Real component
is sensitive primarily to conductive body, and
because the contact is resistive relative to the body,
the fault produces very little real component
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response. Thus the real responses of the body in the
faulted background are similar to those for a
conductor in a resistive half-space. However,
notice that the presence of the contact does result
in a modest tilt in the profiles of this component.
This could possibly be mistaken as an effect of a
dipping conductor without any other information
being incorporated.

One possible aid to the interpretation is the image
part. Although the signature of the body is difficult

Journal of Mining & Environment, Vol. 13, No. 4, 2022

to detect, particularly in the vertical field
inspection of the image response, indicates a rapid
change in the host-rock conductivity. This,
together with the real response of the conductor,
indicates that the conductor sits at or near the fault
contact. However, the attitude of the body would
be very difficult to conclude without numerical
modelling.
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Figure 8. A- Faulted half-space B- Comparison of Hx and Hz responses in presence of VMD source C-
Comparison of Hx and Hz responses in presence of HMD source.
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4.3. Anisotropic 3D target in a half-space

At the end, we assume the 3D conductive body is
shown in Figure 11. The structure is the same as in
Figure 6 but the resistivity of the body is

1083

anisotropic, meaning resistivity is different in
different directions and represented by a diagonal
matrix 26. Anisotropic body is placed in an
isotropic 100{¥n half-space, and there are three
different types of conductive body models to
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simulate. Secondary field responses are defined as
the difference in the responses of the model with
and without the conductive body. We can see some
differences between our curves and Avdeev’s, and
that is because of the different methods we used;
Avdeev used the IE solution. Since the body is
strike is in the y-direction, the overall induction
pattern is naturally governed by the electric

Journal of Mining & Environment, Vol. 13, No. 4, 2022

currents flowing along this direction [36], and,
consequently, it is controlled by resistivity in the y
direction. It is clearly seen from the figures that the
amplitudes of the responses damp down
significantly when resistivity in y direction
increases. The results also show that resistivity in x
direction does not affect the responses.
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Figure 11. A- 3D body with a different type of resistivity or anisotropy B- Comparison of Hz scattered responses
in presence of VMD source calculated with the improved finite difference with Avdeev IE results C- Comparison
of Hx scattered responses in presence of VMD source.
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5. Conclusions

We implemented two types of MATLAB code
based on conventional finite-difference and
improved finite-difference to simulate the response
of synthetic models in different 2D and 3D models
in HEM forward modeling. Both codes give the
same answer but the main difference is in the
execution time of the code and programming
simplicity in the improved finite difference
method, so that when air and earth are divided into
about 1400000 cells using a grid with dimensions
of 700 by 500 by 500 meters, the time required to
form a stiffness matrix in the conventional method
is about 25000 seconds but in the improved method
this time is less than 30 seconds is a big difference.
In terms of Ram usage, improved method used 48
GB of Ram for 14 and 3 seconds but the
conventional method used 48 GB of Ram for
almost 7 hours; on the other hand, because we use
sparse matrices throughout the code, it only
requires less than 100 MB of memory space,
compared to conventional matrices that require
more than 15 GB. Comparison of the results of this
study with previous articles shows a very good
match of the results.
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