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 In this work, we simulate the frequency-domain helicopter-borne electromagnetic 
(HEM) data over the two-dimensional (2D) and three-dimensional (3D) earth models. 
In order to achieve this aim, the vector Helmholtz equation is used to avoid the 
convergence problems in Maxwell’s equations, and the corresponding fields are 
divided into primary and secondary components. We use the finite difference method 
on a staggered grid to discretize the equations, which can be performed in two ways 
including the conventional and improved finite difference methods. The former is very 
complex in terms of programming, which causes errors. Furthermore, it requires 
different programming loops over each point of the grid, which increases the 
program’s running time. The latter is the improved finite difference method (IFDM), 
in which pre-made derivative matrices can be used. These pre-made derivative 
matrices can be incorporated into the derivative equations and convert them directly 
from the derivative form to the matrix form. After having the matrix form system of 
linear equations, Ax = b is solved by the quasi-minimal residual (QMR). IFDM does 
not have the complexities of the conventional method, and requires much less 
execution time to form a stiffness or coefficient matrix. Moreover, its programing 
process is simple. Our code uses parallel computing, which gives us the ability to 
calculate the fields for all transmitter positions at the same time, and because we use 
sparse matrices thorough the code memory space, requires to store the files is less than 
100 MB compared with normal matrices that require more than 15 GB space in the 
same grid size. We implement IFDM to simulate the earth’s responses. In order to 
validate, we compare our results with various models including the 3D and 2D models, 
and anisotropic conductivity. The results show a good fit in comparison with the FDM 
solution of Newman and the appropriate fit integral equations solution of Avdeev that 
is because of the different solution methods. 
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1. Introduction 

The frequency-domain helicopter-borne 
electromagnetic (HEM) method is extensively used 
in a wide range of geoscience fields. Peltoniemi 
studied the depth of investigation of a fixed-wing 
frequency-domain airborne electromagnetic 
system, and based on his work and the modeling 
output, the depth of penetration in resistive 
topography for the airborne system was between 85 
m and 210 m depending on the geometry and the 
size of the conductive body. Host rock and 
overburden of low but finite conductivity do not 
make a significant change in the penetration depth. 
The screening and the attenuation effects from 

conductive overburden and conductive host rock 
will, however, decrease the depth of penetration 
[1]. Kokpiang used airborne electromagnetic data 
to map groundwater salinity and salt store at 
Chowilla. They performed a HEM survey, and 
proved the ability of airborne electromagnetic 
combined with pore fluid salinity data and 
predicted the groundwater salinity and salt store 
distribution across the floodplain. [2]. Siemon 
created the work frame of frequency-domain 
helicopter-borne electromagnetics for groundwater 
exploration in urban areas. By using high-
frequency data, they described the shallower parts 
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of the conducting subsurface or highly conductive 
saltwater-saturated sediments and the low-
frequency data the deeper parts of resistive hard 
rocks in urban areas, despite a few man-made 
sources that affect the field measurements [3], and 
Baranwal  used 3D interpretation of frequency 
domain (HEM) data to study the Mesozoic 
sedimentary basin to delineate the extent of the 
sedimentary basin and found highly conductive 
areas using HEM data interpretation. In one of 
these areas, graphite and sulfide mineral outcrops 
were found by field observations [4]. 

To interpret the HEM data, substantial efforts 
have been made to perform the one-dimensional 
(1-D) [5; 6; 7; 8; 9, 10; 11;12], 2D [13; 14; 15; 16; 
17; 18; 19; 20; 21; 22; 23; 24)] as well as 3D [25; 
26; 27; 28; 29; 30] numerical modeling of the 
respective data. Various numerical methods have 
been implemented by pioneer researchers such as 
Coggon (1971) that computed electromagnetic 
responses of two‐dimensional structures, with line 
source excitation including the effects of adjacent 
conductors and magnetic conductors set in a less 
conductive half‐space by the finite element method 
to simulate complex structures [31]. Xiong (1992) 
simulated responses of 3-D structures by the 
method of system iteration using integral equations 
[32]. Newman (1995) used staggered finite 
differences for modelling of airborne 
electromagnetic responses in frequency-domain 
[33]. Habashy (1993) by using a non-linear method 
calculated the electromagnetic scattering [34] [e.g. 
35; 36; 37].  

Since in most cases the earth has a two/three-
dimensional (2-D/3-D) structure and is inherently 
associated with complexities, 1-D modeling cannot 
provide a reliable result [38; 39], and therefore, a 
2-D/3-D modeling has to be executed to model the 
HEM data acquired above that [38].  

Numerous attempts have been made to perform 
the forward-modeling using the finite difference 
method (FDM) [24; 33; 40; 41], finite element 
method (FEM) [19; 20; 27; 42; 43; 44; 45], finite 
volume method (FVM) [46; 47; 48; 49; 50], 
integral equations (IQ) [39; 51; 52], and hybrid of 
numerical method [53; 54].  

Moreover, high computational volume and the 
need for huge processing memory is one of the 
most important problems of the finite element 
method [25; 55]. The finite difference methods are 
effective from the point of view of the simplicity of 
the discretization algorithm to create the 
coefficient matrix and the models that are not too 
complex [56]. 

To solve the Maxwell equations using the FDM 
method, the differential equations have to be 
discretized numerically. In order to discretize the 
Maxwell equation, two general methods including 
the staggered grid and non-staggered grid were 
presented by Yee [57]. One of the most important 
deficiencies of the non-staggered method is the 
large calculation and dealing with large 
dimensional matrices. However, the staggered 
scheme does not suffer from this problem [58]. 
Furthermore, using the staggered grid divergence 
equations is naturally satisfied and the boundary 
conditions, which can be attributed to each of the 
grid cells of the desired conductivity, are well-
satisfied. 

However, the conventional approach of 2-D and 
3-D programming of the staggered grid is really 
challenging and prone to errors and bugs. In 
addition, this discrete form of the equation needs to 
be calculated for every point in the grid, which is 
relatively expensive computationally. To deal with 
these problems, we use an improved finite 
difference method (IFDM), which has been 
developed by Rumpf [59; 60] and has not been 
used for modeling the geophysical electromagnetic 
data so far. In this method, some derivative 
matrices are built, and then these pre-made 
matrices are incorporated into the derivative 
equations and convert them directly from the 
derivative form to the matrix form. The result of 
this procedure is a system of linear equations. This 
method is easy to program and very fast, and does 
not have the complexity of the conventional 
method [59, 60]. 

We found that the execution times of this method 
to build the left-hand side (LHS) matrix and curl 
calculation of a 3-D model with the dimension of 
700m*500m*500m and a mesh size of 5m*5m*5m 
using a computer with a configuration of a 
processor of 16 cores (2.5 GHz) and 64 GB RAM, 
are 14 and 3 seconds, respectively. However, in the 
case of using the conventional method, the elapsed 
time for these calculations is almost 7 hours. In 
terms of Ram usage, improved method used 48 GB 
of Ram for 14 and 3 seconds but the conventional 
method used 48 GB of Ram for almost 7 hours; on 
the other hand, because we use sparse matrices 
throughout the code, it only requires less than 100 
MB of memory space, compared to the 
conventional matrices that require more than 15 
GB. 
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2. Methodology 
2.1. Electromagnetic equations 

The propagation of EM waves is based on the 
Maxwell’s equations [61].  

The desired HEM responses for the simulation 
must be calculated with the magnetic dipole source 
affecting the receiver. This greatly complicates 
solutions because the fields close to the source are 
changing rapidly. Therefore, in the case of using a 
very large mesh, the numerical difference at the 
receiver is prone to inaccuracy. However, using a 
very fine grid near the source and receiver cause 
problem and limits the size of the model because 
there is a limitation in computer storage. In order 
to overcome this problem, the fields are divided 
into primary and secondary fields (1) [33; 62]. 
Thereby, the numerical solutions are divided into 
two parts, and primary fields can be calculated 
analytically. Thus singular point source is removed 
from the numerical solution [33; 19; 20]. 

sec

sec

primary ondary

primary ondary

e e e

  

 

 
 (1) 

where e and σ stand for electrical field and 
conductivity, respectively. 

From the Maxwell equations, the secondary 
electric field can be derived as follows [23; 29]: 

sec 0 sec 0 sech e prie i e i e          (2) 

where prie is the primary electric field arising 
from a dipole source or analytic whole space 
source. 2 f  is the angular frequency, and 
is the magnetic permeability. Now that we have our 
equation, the next step is to approximate the 
electric field using finite difference on a staggered 
grid scheme. There are two approaches that we can 
use in this regard: the conventional finite difference 
method and the improved finite difference method. 

2.2. Finite difference method (FDM) 
In general, we start with the governing equation. 

Equations 3-21 are simple general math examples 
to make the concept easier to understand or system 
of governing equations, for example, Equation (3), 
and we have some other information like boundary 
values and certain range that we are interested in, 
and somehow define the problem. This is where we 
apply FDM and approximate the derivatives, make 

function y discrete after that we get a system of 
equations write that finite difference equation once 
for every point in the grid, and put that set of 
equations in matrix form (4). Thus FDM is what 
takes us from our analytical differential equation to 
the matrix form, and after that we can just think of 
this y as our unknown, and if we solve that for y , 
we will get our answer (5). 

2

2 ( ) ( ) ( ) 0

0 10
(0) 1, (10) 5

d dy x y x y x
dx dx

x
y y

  

 
 

 
(3) 

    A y b  (4) 

     1y A b
  (5) 

In the conventional FDM, we have our governing 
Equation (3); the first step is making this equation 
discrete (6); here is an important part of writing 
finite difference equations. Every single term must 
exist at the same point in space so now our function
y will only exist at discrete values x , which allows 

us then to use FDM. However, in the computer 
code, we are working with a range where we have 
our first, second, third, and fourth element and so 
on, and it is better to write difference equations in 
array indices (7), and now “i” is an integer that goes 
from one all the way to the number of points on the 
grid. The next step is rearranging the finite 
difference equation, so in its present form (7), our 
finite differences are quite apparent; however, we 
have to build a giant matrix, and it will be a lot 
easier to do that if we rearrange this to become (8). 
The next step is to set up the grid and calculate the 
grid parameters like grid spacing x and after 
that, we can put this value in (8) and end up with a 
simple equation; for example, if we have a 21-point 
grid, which means we have 20 spaces equation 
becomes (9) but this equation is very specific to 
that grid that has a spacing of 0.5 and if spacing 
changes, clearly, the numbers in that equation have 
to change. This equation is going to enforce our 
original differential equation, and we will have 
written that equation for every single point of our 
21 points across space except the boundary values 
that were given to us at the beginning. 
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2

( ) 2 ( ) ( ) ( ) ( ) ( ) 0
2

y x x y x y x x y x x y x x y x
x x

          
  

 
 (6) 

1 1 1 1
2

2 0
2

i i i i i
i

y y y y y y
x x

     
  

 
 (7) 

1 12 2 2

1 1 2 1 11 0
2 2i i iy y y

x x x x x 
                        

 (8) 

1 15 7 3 0 0 .5i i iy y x        (9) 

 
Let’s repeat everything we just did with the 

improved finite difference method. We have the 
same starting point, the same governing equations, 
and the same boundary values; we solve the same 
problem just with a different way of implementing 
the finite difference method. What we will do for 
formulation rather than go through whole the 
complexities of the conventional method, we will 
just be going to go term by term and immediately 
write our differential equation (3) in matrix form 
(10). We already know that our unknown function 
 y x is always going to be stored as a column 

vector likewise zeros (excitation or source in 
HEM). These are the only two things ever in the 
differential equation that are stored as a column 
vector. Everything else is not a function; 
everything else is something operating onto those 
functions, and they are stored in square matrices. In 
the first term of Equation (3), we have a second-
order derivative operating on y , so we are going to 
have some kind of square matrix (Dx) operating on
y and what we will do is factor out the y (11) and 

call the matrix A, the left-hand side (LHS) matrix, 
and so what we have in our MATLAB code is just 
a line of code, and the only thing that needs to 
discuss, is how to build these derivative matrices 
and what we do is program a function in MATLAB 
where we tell the size of the grid and the spacing 
that’s all the information it needs, and it will build 
the matrices for us and building these matrices is 
also very simple. We can just type in the 
differential equation (A=DX2-DX+I), and we are no 
longer even explicitly toughing finite differences 
and all the tediousness of the finite difference’s 
method has gotten absorbed into that functions that 
build derivative matrices. Thus if you have any 
new differential equations, just write the LHS or A 
and run the code again whereas if you applying the 
conventional FDM, you should start approximate 
with finite differences, make sure all the terms exist 

at the same point in space, maybe you have to 
modify those, write it in array form then rearrange 
to collect terms for constant y terms, put the value 
for x to get an equation with coefficients, build 
your matrix then go back incorporate boundary 
values, then finally solve it. Its hugely complicated 
and even more complicated for 2D or 3D sets of 
differential equations, this conventional approach 
is very difficult and prone to errors and bugs in 
writing the code. 

        2 0x xD y D y y       (10) 

            2 0 0x xD D I y A y       
 (11) 

2.3. Multivariable finite difference method 

Assuming electric field e and magnetic field h
and very basic multi-variable problem (12), and 
two unknown functions ( )e x and ( )h x , if just 
approximate this with finite differences, it becomes 
in form (13); it will work but the problem is we 
spanning this grid by distance of 2 x and go 
farther out on the grid to calculate finite differences 
so it will be less accurate. There is something better 
we can do in this case where we only have to reach 

x and if those function values are tighter against 
where we are calculating that finite-difference that 
will improve our accuracy. Thus let’s only use e
and h  where they are defined and tighten up those 
finite differences so they only span one x and 
end up Equation (14); in this case we are breaking 
an important rule that all terms in a finite difference 
equation must exist at the same point in space. Thus 
these finite differences are defined at ( ) 2x x 
, whereas ( )h x is happening at x and it can make 
the code unstable. 
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( ) ( )

( ) ( )

e x ah x
x

h x be x
x










 (12) 

( ) ( ) ( )
2

( ) ( ) ( )
2

e x x e x x ah x
x

h x x h x x be x
x

    



    




 (13) 

( ) ( ) ( )

( ) ( ) ( )

e x x e x ah x
x

h x x h x be x
x

  



  




 (14) 

2.4. Staggered grid 

If we define ݁ to exist at the integer steps of x
and hexist at 2x x  , the whole Equation (15) 
works fine and we should remember that e and h 
are at physically different points. Thus if we want 
taking derivative of e , we are looking at the finite 
difference between ( )e x and ( )e x x  and 
interpreting that as the central difference that exists 
at the middle; likewise, when we are calculating the 
derivative of h using finite difference using 

( 2 )h x x  and ( 3 2)h x x  and interpret 
that as central difference, it exists at the midpoint 
where e exist (Figure 1). 

 
Figure 1. 1D staggered grid. 

( ) ( ) ( )
2

( ) ( )
2 2 ( )

e x x e x xah x
x
x xh x h x

be x
x

   
 


   




 (15) 

In reality, we are working with array indices in 
computer memory, so (15) becomes (16) and we 

should remember that ie and ih are in the same 

cell in the grid and physically different positions, 
meaning it is staggered; they are offset by half cell 
(Figure 2). Due to the staggering these finite 
differences are written a little bit differently, in the 
first differential equation we have e  at the next cell 
minus e  at the same cell; this is called right 
derivative matrices that reaches right to calculate 
the finite differences but in second differential 
equation is h at same cell minus h at previous cell 
that is called left derivative matrices. 

 
Figure 2. 1D staggered grid 

ie and 
ih are in the same cell in the grid and physically different position. 
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1

1

i i
i

i i
i

e e ah
x

h h be
x














 (16) 

2.5. Derivative matrices for staggered grid 
Assume we have that has five cells (Figure 2) and 

want to write both of our finite difference equations 
once for each cell in the grid; this means that we 
will end up with ten equations (17, 18). Our first 
finite difference equations give us five equations 
and the last equation is trying to access an 6e  
because we need a derivative on top of 5h , and now 
we have boundary condition problem; notice when 
we are taking the derivatives of e , there is no 
boundary condition problem at the first point, and 
this is because the staggered grid boundary 
condition problems only arise at one side of the 
grid. For our second finite difference equations that 
are associated with g at the first point, we are 

trying to calculate a derivative at 1e that needs to 
reach out to the left side out of the grid that does  
not exist, boundary condition problems this time on 
different side of the grid. Here, we use the Dirichlet 
boundary condition, so 6 00, 0e h  . We can put 
these sets of equations in matrix form, and stores 
our unknown functions in column vector e  and 
derivative matrix e

xD means derivative matrix 

operating on e in xdirection and h
xD means 

derivative matrix operating on h in x direction. 
Thus we can write Equation (12) directly in matrix 
form (21) and put them into a two-by-two block 
matrix and solve that simultaneously.  0  is 
excitation. Important notice: these two derivative 

matrices are related by 
Hh e

x xD D        . It means 
that we only need to build one of these derivative 
matrices and calculate the other one immediately 
from it and it is just one line of code in MATLAB. 

1i i
i

e e ah
x

 
 



2 1
1

3 2
2

4 3
3

5 4
4

6 5
5

e e ah
x

e e ah
x

e e ah
x

e e ah
x

e e
ah

x






















 
(17) 

1i i
i

h h be
x


 



1 0
1

2 1
2

3 2
3

4 3
4

5 4
5

h h
be

x
h h be

x
h h be

x
h h be

x
h h be

x






















 (18) 

   

1 1

2 2

3 3

4 4

5 5

1 1 0 0 0
0 1 1 0 0

1
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

e
x

e h
e h
e a h

x
e h
e h

D e a h

     
         
     

          
         

   

 
(19) 

   

1 1

2 2

3 3

4 4

5 5

1 0 0 0 0
1 1 0 0 0

1 0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

h
x

h e
h e
h b e

x
h e
h e

D h b e

    
         
     

          
         

   

 (20) 

   
   

e
x

h
x

D e a h

D h b e

   
   

   
 

 
 

 
 
0
0

e
x

h
x

D a I e
hb I D

             
        

 (21) 

2.5.1. 2D derivative matrices for staggered grid 
Assume a three by three grid (Figure 3) for 

building e
xD ; derivative of e  function in x

direction (22) [59; 60] also called right-handed 
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derivative matrix and we are using jacent e values 
so finite-difference end up at the midpoint, and that 
is leading to the staggering that we put h function 
at the midpoint of e . The red arrow point to where 
the derivative is being evaluated and the box 
encompasses the point at which we are calculating 
the finite difference; in the 6th equation, we are 
evaluating a derivative that is from outside of the 
grid, which means we need a function value from 
farther outside of the grid, and we do not have this 
function value and we are going to apply simple 
Dirichlet boundary conditions, and that means any 
function value from outside of the grid is zero. 
Notice boundary conditions problem only 
happened at one side of the grid (right-side), and 

when we calculate derivatives for h or h
xD

boundary conditions, problem still happens on one 
side of the grid but this time left side, so they have 
symmetric boundary conditions problem, whereas 
in the co-located grids, we have the boundary 
conditions problem at both sides. In the next step, 
we calculate the right-handed derivative matrix 

e
yD , derivative of e  function but this is with 

respect to y , so taking derivatives in vertical 
direction (23) [59; 60] and for example in the 8th 
equation, we have boundary conditions problem so 
we are using Dirichlet boundary conditions and as 
you can see boundary conditions problem only 

happened at one side of the grid. The next step is to 
put our equation in matrix forms so that we can 
have a derivative matrix that will calculate the first-
order derivative of functions with respect to x or 
y (24.25) [59; 60], and with the same process, we 

can build derivative matrices for 3D grids and e
zD

. As you can see, these matrices are very easy to 
construct in few lines of code and they have 
boundary conditions in them and that is zeros 
separate numbers by grid size. In the same way, we 
can build the left-handed derivative matrix for hin 

x and y directions or h
xD and h

yD  also simply use 

one line of code and build them directly from e
xD ,

e
yD and e

zD , they have relations of 
Hh e

x xD D        ,
Hh e

y yD D        and 
Hh e

z zD D        [59; 60]. 
As you saw, approximation using the improved 

FDM is very easy and straightforward, and it does 
not have the complex process of the conventional 
method; also it can run in fewer programming lines 
than the conventional method whereas 
conventional method the code must be executed for 
all points of grid meaning you should have for 
loops to build LHS and Curl operator and loop 
should run thousands of times. 

 
Figure 3. 2D 3by3 grid. A- Derivative in Y direction B- Derivative in X direction. 

A) B) 
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Dirichlet boundary conditions 

Size of grid in x direction 
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3. Assembling Left-hand Side of Equation  
Considering the Helmholtz equation of the 

secondary field (2) with directly replacing 
derivative matrices for electric and magnetic fields, 
we can have block matrix LHS (29) and complete 
Helmholtz equation in the matrix form (30). A 
linear system of equations results where the matrix 
LHS is complex symmetric and sparse with 
dimensions 2(3 )x y zN N N   , as illustrated in 
Figure 4 for a 3by3by3 grid (equations 26-30 are 
part of our work). 

0
0

0

e e
z y

e e
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e e
y x

D D
C D D
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 (30) 

 

 
Figure 4. Structure appearance of LHS matrix for 3by3by3 staggered grid. 
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Many geo-physical studies involve boundary 
value problems arising in simulating 
electromagnetic fields for geological prospecting 
and sub-surface imaging of electrical resistivity. 
Simulating complex geological earth with three-
dimensional finite-difference grids ends up in large 
sparse linear systems of equations Ax b . For 
solving this kind of system, we used the iterative 
Krylov methods. Time-harmonic modeling of eddy 
currents is commonly carried out using the QMR 
method [e.g. 63; 64; 65; 66]. Unlike typical 
engineering applications, geo-physical 
electromagnetic responses are based on the 
Maxwell's equations in the quasi-static limit, where 
EM diffusion dominates [67]. We describe the 
earth's conductivity (or resistivity) by the diagonal 
tensor 28. After obtaining the secondary electric 
fields, by numerically approximating the curl of the 
electric field on the grid; the magnetic field can be 
calculated and then interpolated into the desired 
location using the spline interpolation method. 

3.1. Algorithm 
In terms of algorithm after inputting geometrical 

and physical parameters and start the program, 
based on the dimension of the calculation world, 

LHS and Curl operator will create and save; these 
matrices are just created once and save will be used 
in the entire forward modelling unless we change 
the dimension of the world. It is worth mentioning 
that we use sparse matrices throughout the code, 
and using this type of matrices has a great impact 
on the space and time required for saving files so 
that it needs less than 100 MB memory to save 
files. In the next step, based on cells dimensions 
and conductivity create world function perform a 
averaging. The weighting factors are given by the 
ratio of a single cell volume to the total volume of 
the four adjacent cells that surround a node; these 
matrices will be created once and used throughout 
the forward problem. 

In the next step, with source position primary 
field calculate in every point of the grid then using 
QMR method secondary electric field obtain and 
after performing Curl and interpolation secondary 
magnetic field for the desired receiver position is 
calculated. Because our code works with parallel 
computing and we already have the required 
matrices such as LHS, Curl, world we can calculate 
the fields for all transmitter points at the same time 
and this feature of our code has great impact on 
time. In the following you can see some parts of the 
code. 

 
Inputs: 
 
D_P=; %dipole type    'VMD’ or 'HMD'  
  
X=; % length of the world in X direction 
Y=; % length of the world in Y direction 
Z=; % length of the world in Z direction 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MESH SETTING 
 
dx_a=; % cell size in x direction  
dy_a=; % cell size in y direction  
dz_a=; % cell size in z direction  
 
size_factor=; %expansion ratio of grid 
 
FMAP_y=; %fine_mesh_around_plane y direction 
FMAP_z=; %fine_mesh_around_plane z direction 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Flight SETTING 
  
f=; %frequency 
m=; % dipole moment 
r=; %Spacing between receiver and transmitter 
start=; %start point of survey 
stop=; %end point of survey 
s=; %sample point spacing 
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Flight_Altitude=; % Flight Altitude 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Physics of the World 
 
anomaly_dimensions= [x y z top]; %% [x y z top depth] 
conductivity of the anomaly, air, left and right of the fault in different 
directions and etc...  

 
Inputs go to different functions such as: 
 

LHS function that creates the derivatives matrices 
%%%%%%%%%%%%%%%%% DEX 
 
center = ones(TN,1); %  0 diagnal (center diagnal) 
pos = ones(length(xs),length(ys),length(zs)); % negative diagnal 
pos(end,:,:)=zeros(1,length(ys),length(zs)); 
pos = pos(:); 
pos = [0;pos(1:end-1)]; 
DEX = spdiags([center,pos],[1,1],TN,TN); 
 

 
Curl function that creates Curl operator 
 
%%%%%%%%%%%%%%%%% Curl 
 
CRL=[sparse(TN,TN)  -DEZ  DEY  ;  DEZ  sparse(TN,TN)  -DEX  ;  -DEY  DEX  
sparse(TN,TN)]; 

 
RHS function that creates primary Fields 
 
%%%%%%%%%%%%%%%%% P 
 
for ii=1:length(xs) 
     
    for jj=1:length(ys) 
         
        for kk=1:length(zs) 
         
        r(ii,jj,kk)=((xs(ii)-plane_coordinate(1))^2+(zs(kk)-
z_flight).^2+(ys(jj))^2)^0.5; 
         
        
Ex_p(ii,jj,kk)=(1i*w*mu*m./(4*pi*(r(ii,jj,kk)).^2)).*(1i.*k.*r(ii,jj,kk)+1).
*(exp(-1i.*k.*r(ii,jj,kk))).*(((ys(jj))./r(ii,jj,kk))); 
        Ey_p(ii,jj,kk)=(-
(1i*w*mu*m./(4*pi*(r(ii,jj,kk)).^2)).*(1i.*k.*r(ii,jj,kk)+1).*(exp(-
1i.*k.*r(ii,jj,kk))).*(((xs(ii)-plane_coordinate(1))./r(ii,jj,kk)))); 
         
        end   
    end 
end 

 
Create world that creates the world and calculates volume averages based on the cell sizes 
 
%%%%%%%% for domain 
parfor i=1:length(xs) 
     
    T_si_x=zeros(length(xs),length(ys),length(zs)); 
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    T_si_y=zeros(length(xs),length(ys),length(zs)); 
    T_si_z=zeros(length(xs),length(ys),length(zs)); 
    
    for j=1:length(ys) 
        for k=1:length(zs) 
           
            if i~=1 && i~=length(xs) && j~=1 && j~=length(ys) && k~=1 && 
k~=length(zs) 
                 
            T_si_x(i,j,k)=... 
            (abs(ys(j)-ys(j-1))/(abs(ys(j)-ys(j+1))+abs(ys(j)-ys(j-1))))*... 
                (abs(zs(k)-zs(k-1))/(abs(zs(k)-zs(k+1))+abs(zs(k)-zs(k-1))))* 
elements_x(((k-2)*(length(xs)-1)*(length(ys)-1)+(j-2)*(length(xs)-1)+i),25)+... 
                (abs(ys(j)-ys(j+1))/(abs(ys(j)-ys(j+1))+abs(ys(j)-ys(j-1))))*... 
                (abs(zs(k)-zs(k-1))/(abs(zs(k)-zs(k+1))+abs(zs(k)-zs(k-1))))* 
elements_x(((k-2)*(length(xs)-1)*(length(ys)-1)+(j-1)*(length(xs)-1)+i),25)+... 
                (abs(ys(j)-ys(j-1))/(abs(ys(j)-ys(j+1))+abs(ys(j)-ys(j-1))))*... 
                (abs(zs(k)-zs(k+1))/(abs(zs(k)-zs(k+1))+abs(zs(k)-zs(k-1))))*  
elements_x(((k-1)*(length(xs)-1)*(length(ys)-1)+(j-2)*(length(xs)-1)+i),25)+... 
                (abs(ys(j)-ys(j+1))/(abs(ys(j)-ys(j+1))+abs(ys(j)-ys(j-1))))*... 
                (abs(zs(k)-zs(k+1))/(abs(zs(k)-zs(k+1))+abs(zs(k)-zs(k-1))))*  
elements_x(((k-1)*(length(xs)-1)*(length(ys)-1)+(j-1)*(length(xs)-1)+i),25); 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
4. Validation of Solution 

To verify the accuracy of our code for HEM 
simulations, we compared our results with the 
finite difference solution of Newman and 
Alumbaugh, 1995, and integral equation solution 
of Avdeev et al. 1998 for different models. 

4.1. 3D target in a half-space 
The first model shown in Figure 6 consists of 

700by500by500 m including 1 m body of 
dimensions 20by200by75 m at depth of 50 m 
centered at 350 m in a 100 m half-space. HEM 
configuration: using a vertical magnetic dipole 

(VMD) and a horizontal magnetic dipole (HMD) at 
900 Hz, flight level is 20 m above the earth’s 
surface. The transmitter and receiver separations 
are 10 m and the receiver leading the transmitter to 
the right. In all the examples, the calculation was 
performed for 29 source positions, and Figure 5 
shows the results of the forward midway between 
transmitter and receiver along the flight line (the 
line that bisects the body). Figure 5 illustrates the 
number of equations required to reduce the squared 
error level to 10-8. As seen in Figure 6, our total 
field responses are matched well with the Newman 
curves. Figure 7 shows the secondary magnetic 
field for a VMD and an HMD position, where the 
source is located at the top of the conductive body. 

 
Figure 5. Plot of the relative residual against iteration number for solution of fields based on QMR method. 
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Figure 6. A- 3D body located in 100 m half space B- Comparison of Hx and Hz responses in presence of VMD 

source calculated with the improved finite difference with Newman results C- Comparison of Hx and Hz 
responses in presence of HMD source. The fact that larger departures are observed in the real part rather than 

the imaginary part of the fields indicates that the anomalous body is a good conductor. 

(a) 

(b) 

(c) 
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Figure 7. HEM simulation for a 3D body located in 100 m half space. Solid line is Earth-Air border, dashed 

line is flight path. A. Vertical magnetic-field responses for a VMD source. B. Horizontal magnetic-field responses 
for an HMD source. As it can be seen, electromagnetic methods are more sensitive to top of the anomalies. 

4.2. Vertical fault, anomaly along a vertical 
fault, and topography 

For the next model, we consider faulted half-
space consisting of vertical fault at x = 340 m. 
Resistivity of left side of the fault is 100 m and 
right side is 300 m as shown in Figure 8. In the 
next step, we add a conductive body with resistivity 
1 m along the vertical fault at depth of 50 m as 
shown in Figure 9. Model consists of a vertical 
fault including surface topography as shown in 
Figure 10. At right of the fault, earth has been thrust 
10 m upwards relative to the left side of the fault. 
The height of the flight has been adjusted so 

helicopter keeps the vertical distance to the earth 
fixed at 20 m. 

These figures illustrate how the HEM response 
of the fault can mask the response of the conductive 
body. This particularly can be seen in the image 
component of the fields. To determine if the body 
is detectable in the presence of the fault, it is 
necessary to compare responses of the contact with 
and without the body. This is shown in Figures 8 
and 9. Notice that the body produces a detectable 
anomaly in the real components. Real component 
is sensitive primarily to conductive body, and 
because the contact is resistive relative to the body, 
the fault produces very little real component 
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response. Thus the real responses of the body in the 
faulted background are similar to those for a 
conductor in a resistive half-space. However, 
notice that the presence of the contact does result 
in a modest tilt in the profiles of this component. 
This could possibly be mistaken as an effect of a 
dipping conductor without any other information 
being incorporated. 

One possible aid to the interpretation is the image 
part. Although the signature of the body is difficult 

to detect, particularly in the vertical field 
inspection of the image response, indicates a rapid 
change in the host-rock conductivity. This, 
together with the real response of the conductor, 
indicates that the conductor sits at or near the fault 
contact. However, the attitude of the body would 
be very difficult to conclude without numerical 
modelling. 

 

Figure 8. A- Faulted half-space B- Comparison of Hx and Hz responses in presence of VMD source C- 
Comparison of Hx and Hz responses in presence of HMD source. 

(a) 

(b) 

(c) 
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Figure 9. A- 3D body located in faulted half-space B- Comparison of Hx and Hz responses in presence of VMD 

source calculated with the improved finite difference with Newman results C- Comparison of Hx and Hz 
responses in presence of HMD source. 

(a) 

(b) 

(c) 
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Figure 10. A- Faulted half-space with topography B- Comparison of Hx and Hz responses in presence of VMD 
source calculated with improved finite difference with Newman results C- Comparison of Hx and Hz responses 

in presence of HMD source. Effect of the fault and topography is clearly observed in the image responses. 

4.3. Anisotropic 3D target in a half-space 
At the end, we assume the 3D conductive body is 

shown in Figure 11. The structure is the same as in 
Figure 6 but the resistivity of the body is 

anisotropic, meaning resistivity is different in 
different directions and represented by a diagonal 
matrix 26. Anisotropic body is placed in an 
isotropic 100 m  half-space, and there are three 
different types of conductive body models to 

 

 (a) 

(b) 

(c) 
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simulate. Secondary field responses are defined as 
the difference in the responses of the model with 
and without the conductive body. We can see some 
differences between our curves and Avdeev’s, and 
that is because of the different methods we used; 
Avdeev used the IE solution. Since the body is 
strike is in the y-direction, the overall induction 
pattern is naturally governed by the electric 

currents flowing along this direction [36], and, 
consequently, it is controlled by resistivity in the y 
direction. It is clearly seen from the figures that the 
amplitudes of the responses damp down 
significantly when resistivity in y direction 
increases. The results also show that resistivity in x 
direction does not affect the responses. 

 
Figure 11. A- 3D body with a different type of resistivity or anisotropy B- Comparison of Hz scattered responses 
in presence of VMD source calculated with the improved finite difference with Avdeev IE results C- Comparison 

of Hx scattered responses in presence of VMD source. 
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5. Conclusions 
We implemented two types of MATLAB code 

based on conventional finite-difference and 
improved finite-difference to simulate the response 
of synthetic models in different 2D and 3D models 
in HEM forward modeling. Both codes give the 
same answer but the main difference is in the 
execution time of the code and programming 
simplicity in the improved finite difference 
method, so that when air and earth are divided into 
about 1400000 cells using a grid with dimensions 
of 700 by 500 by 500 meters, the time required to 
form a stiffness matrix in the conventional method 
is about 25000 seconds but in the improved method 
this time is less than 30 seconds is a big difference. 
In terms of Ram usage, improved method used 48 
GB of Ram for 14 and 3 seconds but the 
conventional method used 48 GB of Ram for 
almost 7 hours; on the other hand, because we use 
sparse matrices throughout the code, it only 
requires less than 100 MB of memory space, 
compared to conventional matrices that require 
more than 15 GB. Comparison of the results of this 
study with previous articles shows a very good 
match of the results. 
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  چکیده:

 کی ي) حاو3D( ي) و سه بعد2D( يدو بعد نیزم يهامدل ي) حوزه فرکانس را بر روHEM( يکوپتریهل هوابرد یسیالکترومغناط يهامطالعه، ما داده نیدر ا
در  ییاز مشکلات همگرا يریلوگج يامر، از معادله بردار هلمهولتز برا نیبه ا یابیدست ي. برامیکنیم يسازهیشب یسیمغناط یدوقطب منبع در حضور يناهنجار

گسسته کردن معادلات استفاده  يبرا به صورت ناهم مبداشوند. ما از روش تفاضل محدود یم میتقس هیو ثانو هیها به اولدانیشود و میمعادلات ماکسول استفاده م
 دهیچیپ اریبس یسیاز نظر برنامه نو روش مرسوم. افتهی هبودبو  ی (مرسوم)تفاضل محدود معمول يهاانجام شود، از جمله روش صورتتواند به دو یکه م میکنیم

هر نقطه از  يبرا دیها باحلقه نیدارد که ا ازین یمتفاوت )for loopsی (سیبرنامه نو يهابه حلقه ن،یشود. علاوه بر ایم یسیخطا در برنامه نو جادیاست که باعث ا
ساخته  شیمشتق از پ يهاسی) است که در آن از ماترIFDM( افتهیتفاضل محدود بهبود دوم روش  شود.یبرنامه م يزمان اجرا شیشبکه تکرار شوند که باعث افزا

به شکل  فرم دیفرانسیلیاز  ماًیها را مستقو آن میکن نیگزیساخته شده را در معادلات مشتق جا شیمشتق از پ يهاسیماتر نیا میتوانی. ممیکنمیشده استفاده 
 یسیفرم ماتر کیبه  یبه سادگ رامتفاوت باشد  يهایدگیچیبا درجات مختلف و پ ي به صورت دیفرانسیلیاهر معادله شودیروش باعث م نیا. میکن لیتبد یسیماتر
 حل کرد. میمستق ای يتکرار هايروشتوان با یرا مآید که آن به دست می Ax=bمانند  یمعادلات خط ستمیس ی،سیفرم ماتر به دست آوردن . پس ازکنیم لیتبد

 ن،یدارد. علاوه بر ا ازین يکمتر اریبس يبه زمان اجرا بایضر ای یسخت سیماتر لیتشک يروش مرسوم را ندارد و برا يهایدگیچیساده است، پ اریروش بس نیا
 یاعتبارسنج يبرا .استفاده شده است) QMR( ماندهیشبه حداقل باق يروش تکرار ی ازمعادلات خط ستمیس براي حلساده است.  اریآن بس یسیبرنامه نو ندیفرآ

 يدوبعدمدل  ،جسم رسانادار با و بدون مانند مدل گسل يدوبعد يهامدل ،يبعدرسانا سه يهااز جمله مدل م،یکرد سهیمختلف مقا يهاخود را با مدل جیروش، نتا
را  یبرازش خوب Avdeevو حل معادلات انتگرال  ومنین FDMبا حل  سهیناهمسانگرد که در مقا ییرسانا با رسانا يحاو يبعدمدل سه تیو در نها یبا توپوگراف
  .نشان داد
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