[1]. Houot, R. (1983). Beneficiation of iron-ore by flotation–review of industrial and potential applications. International Journal of Mineral Processing, 10, 183–204.
[2]. Consuegra, G. L., Kutschke, S., Rudolph, M. and Pollmann, K. (2020). Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering, 145, 106062.
[3]. Yin, J., Chen, J.C., Wu, Q. and Chen, G.Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33, 7, 1433 – 1442.
[4]. Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews, 334–348.
[5]. Oren, A. (2002). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology & Biotechnology, 28, 56–63.
[6]. Oren, A. (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4:2.
[7]. Quillaguaman, J., Guzman, H., Van-Thuoc, D. and Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85, 6, 1687–1696.
[8]. Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1:5, 1–30.
[9]. Delgado-García, M., Valdivia-Urdiales, B., Aguilar-González, C.N., Contreras-Esquivel, J.C. and Rodríguez-Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric, 92, 2575–2580.
[10]. Hozzein, W.N., Reyad, A.M., Abdel Hameed, M.S. and Ali, M.I.A. (2013). Characterization of a new protease produced by a thermohaloalkali tolerant Halobacillus strain. Journal of Pure and Applied Microbiology, 7,509–515.
[11]. Louis, P. and Galinski, E.A. (1997). Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology, 143, 1141–1149.
[12]. Vargas, C., Argandoña, M., Reina-Bueno, M., Rodríguez-Moya, J., Fernández-Aunión, C. and Joaquín, J.N. (2008). Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Systems, 4:14.
[13]. Ventosa, A., Nieto, J.J. and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62, 2, 504–544.
[14]. Cohen, R. and Exerowa, D. (2007). Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science, 134–135, 24–34.
[15]. Sharma, P.K., Hanumantha Rao, K., Natarajan, K.A. and Forssberg, K.S.E. (2000). Bioflotation of sulphide minerals in the presence of heterotrophic and chemolitotrophic bacteria. In: Massacci, P. (Ed.), Proc. XXI International Mineral Processing Congress (IMPC), Developments in Mineral Processing, No. 13. Elsevier, B8a, pp. 93–103.
[16]. Hosseini Tabatabaei, R. (2003). Feasibility study of bioflotation of Sarcheshmeh copper sulfide ore. Master of Science Thesis in Mineral Processing, University of Tehran, In Persian.
[17]. Kolahdoozan, M., Tabatabaei, H., Oliazadeh, M., Noaparast, M., Tabatabaei, Y.S.M., Shahverdi, A.R., Eslami, A. and Manafi, Z. (2004). Bioflotation of Sarcheshmeh copper sulphide ore. Particle Size Enlargement in Mineral Processing, Proceedings of the 5th UBC-McGill Biennial International Symposium on Fundamentals of Mineral, COM 2004, August 22-25, 43rd Annual Conference of Metallurgists of CIM, August 22 - 25, 2004, Hamilton, Toronto, Canada.
[18]. Hosseini, T.R., Kolahdoozan, M., Tabatabaei, Y.S.M., Oliazadeh, M., Noaparast, M., Eslami, A., Manafi, Z. and Alfantazi, A. (2005). Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria. Minerals Engineering, 18, 371–374.
[19]. Botero, A.E.C., Torem, M.L. and de Mesquita, L.M.S. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering, 21, 83–92.
[20]. Govender, Y. and Gericke, M. (2011). Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Minerals Engineering, 24, 1122–1127.
[21]. Khoshdast, H. (2011). Investigating the possibility of flotation of copper ores using Rhamnolipid biosurfactants as frother. PhD dissertation in Mineral Processing, Shahid-Bahonar University of Kerman, In Persian.
[22]. Kim, G., Choi, J., Choi, S.Q., Song, Y. and Kim, H. (2016). Bioflotation of malachite from complex system using Rhodococcus opacus. International Mineral Processing Congress (IMPC), XXVIII International Mineral Processing Congress Proceedings.
[23]. Olivera, C.A.C., Merma, A.G., Puelles, J.G.S. and Torem, M.L. (2017). On the fundamentals aspects of hematite bioflotation using a Gram positive strain. Minerals Engineering, 106, 55 – 63.
[24]. Kim, G., Choi, J., Silva, R.A., Song, Y. and Kim, H. (2017). Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus. Hydrometallurgy, 168, 94–102.
[25]. Abedi Ashkavandi, R., Azimi, E. and Raouf Hosseini, M. (2022). Bacillus licheniformis a potential bio-collector for barite-quartz selective separation. Minerals Engineering, 175, 107285.
[26]. Simões, C.R., Hacha, R.R., Merma, A.G. and Torem, M.L. (2020). On the recovery of hematite from an iron ore fine fraction by electroflotation using a biosurfactant. Minerals. 10 (12):1057.
[27]. El-Sayed, S., El-Shatoury, E.H., Abdel-Khalek, N.A., Abdel-Motelib, A. and Abdel Khalek, M.A. (2021). Influence of Bacillus cereus-Gold interaction on bio-flotation of gold in the presence of potassium butyl xanthate. Biointerface Research in Applied Chemistry. 11 (5): 13005–13018.
[28]. Pineda, G.A.C. and Godoy, M.A.M. (2019). Effect of Thiobacillus thiooxidans-cysteine interactions on pyrite biooxidation by Acidithiobacillus ferrooxidans in the presence of coal compounds. Brazilian Journal of Chemical Engineering. 36 (2): 681–692.
[29]. Çelik, P.A., Çakmak, H. and Öz Aksoy, D. (2021). Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology, 1–11.
[30]. Moreno, P.A., Aral, H., Cuevas, J., Monardes, A., Adaro, M., Norgate, T. and Bruckard, W. (2011). The use of seawater as process water at Las Luces copper–molybdenum beneficiation plant in Taltal (Chile). Minerals Engineering, 24, 852–858.
[31]. Pérez-Davó, A., Aguilera, M., Ramos-Cormenzana, A. and Monteoliva-Sánchez, M. (2014). Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. International Journal of Systematic and Evolutionary Microbiology, 64, 2066–2071.
[32]. Mesbah, N.M. and Wiegel, J. (2014). Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. Journal of Molecular Catalysis B: Enzymatic, 105, 74–81.
[33]. Samaei‑Nouroozi, A., Rezaei, S., Khoshnevis, N., Doosti, M., Hajihoseini, R., Khoshayand, M.R. and Faramarzi, M.A. (2015). Medium‑based optimization of an organic solvent‑tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles, 19, 5, 933 – 947.
[34]. Schäfer, A., Harms, H. and Zehnder, A.J.B. (1998). Bacterial accumulation at the air-water interface. Environmental Science & Technology. 32 (23): 3704–3712.
[35]. Tolley, W., Kotlyar, D. and Van Wagoner, R. (1996). Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering, 9, 6, 603 – 637.
[36]. Moslemi, H. and Gharabaghi, M. (2017). A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry, 47, 1–18.
[37]. Banat, I. M., Makkar, R.S. and Cameotra, S.S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology. 53 (5): 495–508.