[1]. Cohen, R. and Exerowa, D. (2007). Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in colloid and interface science, 134, 24-34.
[2]. Vilinska, A. and Rao, K.H. (2008). Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation nad bioflocculation. Transactions of Nonferrous Metals Society of China. 18 (6): 1403-1409.
[3]. Rao, K.H., Vilinska, A., and Chernyshova, I.V. (2010). Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometallurgy. 104 (3-4): 465-470.
[4]. Dwyer, R., Bruckard, W.J., Rea, S., and Holmes, R.J. (2012). Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Mineral Processing and Extractive Metallurgy. 121 (2): 65-71.
[5]. Rao, K.H. and Subramanian, S. (2007). Bioflotation and bioflocculation of relevance to minerals bioprocessing. In Microbial processing of metal sulfides (pp. 267-286). Springer, Dordrecht.
[6]. Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkrans, B. (1981). The hydrophobicity of bacteria—An important factor in their initial adhesion at the air-water inteface. Archives of Microbiology. 128 (3): 267-270.
[7]. Pearse, M.J. (2005). An overview of the use of chemical reagents in mineral processing. Minerals engineering. 18 (2): 139-149.
[8]. Solozhenkin, P.M. and Lyubavina, L.L. (1985). Modern aspects of microbiological hydrometallurgy. Modern Aspects of Microbiological Hydrometallurgy, 409-414.
[9]. James, A.M. (1991). Charge properties of microbial cell surfaces. Microbial cell surface analysis: structural and physicochemical methods, 221-262.
[10]. Ohmura, N., Kitamura, K., and Saiki, H. (1993). Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied and Environmental Microbiology. 59 (12): 4044-4050.
[11]. Zheng, X., Arps, P.J., and Smith, R.W. (2001). Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. International Journal of Mineral Processing. 62 (1-4): 159-172.
[12]. Subramanian, S., Santhiya, D., and Natarajan, K. A. (2003). Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing. 72 (1-4): 175-188.
[13]. De Mesquita, L.M.S., Lins, F.F., and Torem, M.L. (2003). Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system. International Journal of Mineral Processing. 71 (1-4): 31-44.
[14]. Patra, P. and Natarajan, K.A. (2004). Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. International Journal of Mineral Processing. 74 (1-4): 143-155.
[15]. Hosseini, T.R., Kolahdoozan, M., Tabatabaei, Y.S.M., Oliazadeh, M., Noaparast, M., Eslami, A.F.S.A.R., and Alfantazi, A. (2005). Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria. Minerals engineering. 18 (3): 371-374.
[16]. Botero, A.E.C., Torem, M.L., and de Mesquita, L.M.S. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering. 21 (1): 83-92.
[17]. Merma, A.G., Torem, M.L., Morán, J.J., and Monte, M.B. (2013). On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Minerals Engineering, 48, 61-67.
[18]. Yang, H., Tang, Q., Wang, C., and Zhang, J. (2013). Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Minerals Engineering, 45, 67-72.
[19]. El-Midany, A.A. and Abdel-Khalek, M.A. (2014). Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel, 115, 589-595.
[20]. Sanwani, E., Chaerun, S., Mirahati, R., and Wahyuningsih, T. (2016). Bioflotation: bacteria-mineral interaction for eco-friendly and sustainable mineral processing. Procedia Chemistry, 19, 666-672.
[21]. Pineda, G.A.C. and Godoy, M.A.M. (2019). Effect of Acidithiobacillus thiooxidans-cysteine interactions on pyrite biooxidation by Acidithiobacillus ferrooxidans in the presence of coal compounds. Brazilian Journal of Chemical Engineering, 36, 681-692.
[22]. Simões, C.R., Hacha, R.R., Merma, A.G., and Torem, M.L. (2020). On the recovery of hematite from an iron ore fine fraction by electroflotation using a biosurfactant. Minerals. 10 (12): 1057.
[23]. El-Sayed, S., El-Shatoury, E.H., Abdel-Khalek, N.A., Abdel-Motelib, A., and Abdel-Khalek, M.A. (2021). Influence of Bacillus cereus-gold interaction on bioflotation of gold in the presence of potassium butyl xanthate. Biointerface Research in Applied Chemistry. 11 (5): 13005-18.
[24]. Aytar Çelik, P., Çakmak, H., and Öz Aksoy, D. (2021). Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology, 1-11.
[25]. Ashkavandi, R.A., Azimi, E., and Hosseini, M.R. (2022). Bacillus licheniformis a potential bio-collector for Barite-Quartz selective separation. Minerals Engineering, 175, 107285.
[26]. Yin, J., Chen, J. C., Wu, Q., and Chen, G.Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology advances. 33 (7): 1433-1442.
[27]. Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and molecular biology reviews. 63 (2): 334-348.
[28]. Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology. 28 (1): 56-63.
[29]. Oren, A. (2008). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems. 4 (1): 1-13.
[30]. Quillaguamán, J., Guzmán, H., Van-Thuoc, D., and Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied microbiology and biotechnology. 85 (6): 1687-1696.
[31]. Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline systems, 1(1): 1-30.
[32]. Delgado‐García, M., Valdivia‐Urdiales, B., Aguilar‐González, C.N., Contreras‐Esquivel, J.C., and Rodríguez‐Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture. 92 (13): 2575-2580.
[33]. Hozzein, W.N., Reyad, A.M., Hameed, M.S.A., and Ali, M.I. (2013). Characterization of a new protease produced by a thermohalo alkali tolerant Halobacillus strain. J Pure Appl Microbiol, 7, 509-515.
[34]. Louis, P. and Galinski, E.A. (1997). Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology. 143 (4): 1141-1149.
[35]. Vargas, C., Argandoña, M., Reina-Bueno, M., Rodríguez-Moya, J., Fernández-Aunión, C., and Nieto, J.J. (2008). Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Systems. 4 (1): 1-9.
[36]. Ventosa, A., Nieto, J.J., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and molecular biology reviews. 62 (2): 504-544.
[37]. Nasrollahzadeh, A., Jahani Chegeni, M., Moghooeinejad, A. and Manafi, Z. (2022). Bio-flotation of chalcopyrite using halophilic bacteria separately and their combination as pyrite biodepressant. Journal of Mining and Environment (JME): Articles in Press, Accepted Manuscript, Available Online from 30 November 2022.
[39]. https://www.dsmz.de/
[40]. Consuegra, G.L., Kutschke, S., Rudolph, M., and Pollmann, K. (2020). Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering. 145: 106062.
[41]. Perez-Davo, A., Aguilera, M., Ramos-Cormenzana, A., and Monteoliva-Sanchez, M. (2014). Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. International journal of systematic and evolutionary microbiology. 64 (Pt-6): 2066-2071.
[42]. Mesbah, N.M. and Wiegel, J. (2014). Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. Journal of Molecular Catalysis B: Enzymatic. 105: 74-81.
[43]. Schäfer, A., Harms, H. and Zehnder, A. J. (1998). Bacterial accumulation at the air− water interface. Environmental science & technology. 32 (23): 3704-3712.
[44]. Tolley, W., Kotlyar, D., and Van Wagoner, R. (1996). Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering. 9 (6): 603-637.
[45]. Moslemi, H. and Gharabaghi, M. (2017). A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 47: 1-18.