Document Type : Original Research Paper


1 Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

2 Research and Development Center of Sarcheshmeh Copper Complex, Rafsanjan, Iran


Flotation is the most important method for processing sulfide copper ores. Due to the high cost and environmental hazards caused by the chemical reagents used in this process (collectors, frothers, pH regulators, depressants, etc.), the possibility of replacing all these reagents or at least some of them are of special importance through environmentally friendly methods such as bio-flotation using halophilic bacteria. These bacteria have the ability of growth and proliferation in salty media and relatively neutral pHs such as sea salty water. In this research work, the four types of halophilic bacteria Halobacillus sp., Alkalibacillus almallahensis, Marinobacter sp., and Alkalibacillus sp. are studied to replace frothers (MIBC and F7240), depressant (sodium metabisulfite), and pH regulator (lime) in sulfide copper flotation using a Denver laboratory flotation cell. The results obtained indicate that each of the four types of bacteria mentioned above along with collectors (gasoil, Z11, and C7240) as the only chemical reagents (bio-flotation + collector) can depress pyrite better than the bacteria-free mode (flotation + all chemical reagents). Iron recovery in tailings in the standard flotation test is 46.8%, which is, respectively, increased to 91.9%, 74.5%, 70.3%, and 76.9% using the halophilic bacteria of Halobacillus sp., Alkalibacillus almallahensis, Marinobacter sp., and Alkalibacillus sp. On the other hand, the recovery of chalcopyrite using the bio-flotation method is lower than its recovery using the flotation method. Copper recovery in the concentrate in the standard flotation test is 89.1%, which is reached to 58.8%, 71.4%, 62.5%, and 69.4%, respectively, using the above bacteria in the bio-flotation method.


[1]. Cohen, R. and Exerowa, D. (2007). Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in colloid and interface science, 134, 24-34.
[2]. Vilinska, A. and Rao, K.H. (2008). Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation nad bioflocculation. Transactions of Nonferrous Metals Society of China. 18 (6): 1403-1409.
[3]. Rao, K.H., Vilinska, A., and Chernyshova, I.V. (2010). Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometallurgy. 104 (3-4): 465-470.
[4]. Dwyer, R., Bruckard, W.J., Rea, S., and Holmes, R.J. (2012). Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Mineral Processing and Extractive Metallurgy. 121 (2): 65-71.
[5]. Rao, K.H. and Subramanian, S. (2007). Bioflotation and bioflocculation of relevance to minerals bioprocessing. In Microbial processing of metal sulfides (pp. 267-286). Springer, Dordrecht.
[6]. Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkrans, B. (1981). The hydrophobicity of bacteria—An important factor in their initial adhesion at the air-water inteface. Archives of Microbiology. 128 (3): 267-270.
[7]. Pearse, M.J. (2005). An overview of the use of chemical reagents in mineral processing. Minerals engineering. 18 (2): 139-149.
[8]. Solozhenkin, P.M. and Lyubavina, L.L. (1985). Modern aspects of microbiological hydrometallurgy. Modern Aspects of Microbiological Hydrometallurgy, 409-414.
[9]. James, A.M. (1991). Charge properties of microbial cell surfaces. Microbial cell surface analysis: structural and physicochemical methods, 221-262.
[10]. Ohmura, N., Kitamura, K., and Saiki, H. (1993). Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied and Environmental Microbiology. 59 (12): 4044-4050.
[11]. Zheng, X., Arps, P.J., and Smith, R.W. (2001). Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. International Journal of Mineral Processing. 62 (1-4): 159-172.
[12]. Subramanian, S., Santhiya, D., and Natarajan, K. A. (2003). Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing. 72 (1-4): 175-188.
[13]. De Mesquita, L.M.S., Lins, F.F., and Torem, M.L. (2003). Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system. International Journal of Mineral Processing. 71 (1-4): 31-44.
[14]. Patra, P. and Natarajan, K.A. (2004). Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. International Journal of Mineral Processing. 74 (1-4): 143-155.
[15]. Hosseini, T.R., Kolahdoozan, M., Tabatabaei, Y.S.M., Oliazadeh, M., Noaparast, M., Eslami, A.F.S.A.R., and Alfantazi, A. (2005). Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria. Minerals engineering. 18 (3): 371-374.
[16]. Botero, A.E.C., Torem, M.L., and de Mesquita, L.M.S. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering. 21 (1): 83-92.
[17]. Merma, A.G., Torem, M.L., Morán, J.J., and Monte, M.B. (2013). On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Minerals Engineering, 48, 61-67.
[18]. Yang, H., Tang, Q., Wang, C., and Zhang, J. (2013). Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Minerals Engineering, 45, 67-72.
[19]. El-Midany, A.A. and Abdel-Khalek, M.A. (2014). Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel, 115, 589-595.
[20]. Sanwani, E., Chaerun, S., Mirahati, R., and Wahyuningsih, T. (2016). Bioflotation: bacteria-mineral interaction for eco-friendly and sustainable mineral processing. Procedia Chemistry, 19, 666-672.
[21]. Pineda, G.A.C. and Godoy, M.A.M. (2019). Effect of Acidithiobacillus thiooxidans-cysteine interactions on pyrite biooxidation by Acidithiobacillus ferrooxidans in the presence of coal compounds. Brazilian Journal of Chemical Engineering, 36, 681-692.
[22]. Simões, C.R., Hacha, R.R., Merma, A.G., and Torem, M.L. (2020). On the recovery of hematite from an iron ore fine fraction by electroflotation using a biosurfactant. Minerals. 10 (12): 1057.
[23]. El-Sayed, S., El-Shatoury, E.H., Abdel-Khalek, N.A., Abdel-Motelib, A., and Abdel-Khalek, M.A. (2021). Influence of Bacillus cereus-gold interaction on bioflotation of gold in the presence of potassium butyl xanthate. Biointerface Research in Applied Chemistry. 11 (5): 13005-18.
[24]. Aytar Çelik, P., Çakmak, H., and Öz Aksoy, D. (2021). Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology, 1-11.
[25]. Ashkavandi, R.A., Azimi, E., and Hosseini, M.R. (2022). Bacillus licheniformis a potential bio-collector for Barite-Quartz selective separation. Minerals Engineering, 175, 107285.
[26]. Yin, J., Chen, J. C., Wu, Q., and Chen, G.Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology advances. 33 (7): 1433-1442.
[27]. Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and molecular biology reviews. 63 (2): 334-348.
[28]. Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology. 28 (1): 56-63.
[29]. Oren, A. (2008). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems. 4 (1): 1-13.
[30]. Quillaguamán, J., Guzmán, H., Van-Thuoc, D., and Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied microbiology and biotechnology. 85 (6): 1687-1696.
[31]. Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline systems, 1(1): 1-30.
[32]. Delgado‐García, M., Valdivia‐Urdiales, B., Aguilar‐González, C.N., Contreras‐Esquivel, J.C., and Rodríguez‐Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture. 92 (13): 2575-2580.
[33]. Hozzein, W.N., Reyad, A.M., Hameed, M.S.A., and Ali, M.I. (2013). Characterization of a new protease produced by a thermohalo alkali tolerant Halobacillus strain. J Pure Appl Microbiol, 7, 509-515.
[34]. Louis, P. and Galinski, E.A. (1997). Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology. 143 (4): 1141-1149.
[35]. Vargas, C., Argandoña, M., Reina-Bueno, M., Rodríguez-Moya, J., Fernández-Aunión, C., and Nieto, J.J. (2008). Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Systems. 4 (1): 1-9.
[36]. Ventosa, A., Nieto, J.J., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and molecular biology reviews. 62 (2): 504-544.
[37]. Nasrollahzadeh, A., Jahani Chegeni, M., Moghooeinejad, A. and Manafi, Z. (2022). Bio-flotation of chalcopyrite using halophilic bacteria separately and their combination as pyrite biodepressant. Journal of Mining and Environment (JME): Articles in Press, Accepted Manuscript, Available Online from 30 November 2022.
[40]. Consuegra, G.L., Kutschke, S., Rudolph, M., and Pollmann, K. (2020). Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering. 145: 106062.
[41]. Perez-Davo, A., Aguilera, M., Ramos-Cormenzana, A., and Monteoliva-Sanchez, M. (2014). Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. International journal of systematic and evolutionary microbiology. 64 (Pt-6): 2066-2071.
[42]. Mesbah, N.M. and Wiegel, J. (2014). Purification and biochemical characterization of halophilic, alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. Journal of Molecular Catalysis B: Enzymatic. 105: 74-81.
[43]. Schäfer, A., Harms, H. and Zehnder, A. J. (1998). Bacterial accumulation at the air− water interface. Environmental science & technology. 32 (23): 3704-3712.
[44]. Tolley, W., Kotlyar, D., and Van Wagoner, R. (1996). Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering. 9 (6): 603-637.
[45]. Moslemi, H. and Gharabaghi, M. (2017). A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 47: 1-18.