Document Type : Original Research Paper

Authors

1 School of Nuclear and Allied Sciences, University of Ghana, Kwabenya - Accra, Ghana

2 Radiation Protection Institute, Ghana Atomic Energy Commission, Legon – Accra, Ghana

3 National Nuclear Research Institute, Ghana Atomic Energy Commission, Legon – Accra, Ghana

Abstract

Knowledge of accurate radio-isotopic signatures of NORM waste disposal site is essential prior to the disposal, to ascertain the baseline radioactivity levels. In this work, soil and water from a NORM waste site situated at Sofokrom in the Sekondi-Takoradi Metropolis of Ghana is characterized and determined. The mean activity concentration of 226Ra, 232Th, and 40K measured in the soil samples are 40.31 ± 13.93 Bq/kg, 63.29 ± 23.18 Bq/kg, and 198.71 ± 49.10 Bq/kg, respectively, with the 226Ra and 232Th average values being higher than the average worldwide values by UNSCEAR. Also, the average activity levels of water samples from monitoring borehole measured for 226Ra and 232Th are within the WHO guidance levels of 1 Bq/L. The radiological parameters such as internal and external hazard indices (Hin and Hex), absorbed dose rate (D), and radium equivalent activity (Raeq) are estimated to assess the radiological risk to human, and compared with other similar works.  Except for the annual gonadal dose, the remaining parameters are less than the recommended values. Multivariate statistical analysis is done to establish the interrelations among the activity concentrations of the radionuclides and their radiological parameters using Pearson correlation coefficient and principal component analysis. Strong positive correlations between 226Ra, 232Th, and the radiological parameters are observed. These findings would serve as the reference point for assessing future variations in the background radioactivity level owing to the geological or human activities from the disposal of the oil waste in the environment, as well as to aid in improving the technical foundations for the management of the NORM waste.

Keywords

[1]. IAEA, (2010). Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry: Vol. TSC No. 40.
[2]. Kpeglo, D.O. (2015). Radiation Exposure to Natural Radioactivity in Crude Oil and Petroleum Waste from Oil Fields in Ghana ; Modelling , Risk Assessment and Regulatory Control,” University of Ghana.
[3]. Garcia, M.S. (2011). Management of low radoactive waste - Comparatve analysis from the Norwegian oil and gas Industry,” Molde University College.
[4]. Evans, P., Jonkers, G., Steffan, E.M., Campbell, J., and Lloret, C. (2008).  Guidelines for the Management of Naturally Occurring Radioactive Material (NORM) in the Oil and Gas Industry. Industry. In Society of Petroleum Engineers (Issue 412).
[5]. Baird, R.D., Merrell, G.B., Klein, R.B., Rogers, V.C., and Nielson, K. (1990). Management and Disposal Alternatives for NORM Wastes in Oil Production and Gas Plant Equipment. In Rogers & Associates Engineering. Salt Lake City, UT, (p. Rep. RAE-8837/2-2).
[6]. Landress, M. (1997). On site treatment of NORM for surface waste disposal in Texas under Texas Railroad Commission Rule 94. In Energy Week; Proc. Int. Conf. Houston, 253 pp.
[7]. Veil, J.A., and Smith, K. (1999). NORM-disposal options, costs vary. Oil Gas J., 97, 37– 43.
[8]. Wilson,W. (1994). NORM disposal options’, Environmental Issues and Solutions in Petroleum Exploration, Production and Refining. In Proc. Int. Petrol. Conf., 775–800.
[9]. Hadley, R. (1997). Managing a potentially high profile NORM containing remediation project. In Energy Week ; Proc. Int. Conf. Houston, 253pp.
[10]. Smith, K.P., Blunt, D.L., Williams, G.P., Arnish, J.J., Pfingston, M.R., Herbert, J., and Haffenden, R.A. (1999). An assessment of the Disposal of Petroleum industry NORM in nonhazardous landfills.
[11]. Abdelbary, H.M., Elsofany, E.A., Mohamed, Y.T., Abo-aly, M.M., and Attallah M.F. (2019). “Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt.  Environ. Sci. Pollut. Res., 1-11.
[12]. Bilintoh, T.M. and Stemn, E. (2015). Municipal solid waste landfill site selection in the Sekondi-Takoradi metropolis of Ghana using fuzzy logic in a GIS environment.  J. Environ. Waste Manag. 2 (2): 71–78.
[13]. S.T.M.A. (2012). Profile of Sekondi-Takoradi Metropolis. http://stma.ghanadistricts. gov.gh.
[14]. Fei-Baffoe, B., Nyankson, E.A., and Gorkeh-Miah, J. (2014).  Municipal Solid Waste Management in Sekondi-Takoradi Metropolis, Ghana. J. Waste Manag. 1–9.
[15]. Kpeglo, D.O., Mantero, J., Darko, E.O., Faanu, A., Amoatey, E.A., Manjón, G., Vioque, I., and García-Tenorio, R. (2019). Assessment of natural radioactivity levels and associated radiological hazard in scale and sludge from Jubilee oilfield of Ghana, Int. J. Low Radiat., 11(2): 143–157. doi: 10.1504/IJLR.2019.103346.
[16]. Usikalu, M.R., Fuwape, I.A., Jatto, S.S., Awe, O.F., Rabiu, A.B., and Achuka, J.A. (2017). Assessment of radiological parameters of soil in Kogi State, Nigeria.  Environ. Forensics. 18 (1): 1–14.
[17]. Esan, D.T., Ajiboye, Y., Obed, R.I., Ojo, J., Adeola, M., and Sridhar, M.K. (2022). Measurement of Natural Radioactivity and Assessment of Radiological Hazard Indices of Soil Over the Lithologic Units in Ile-Ife Area, South-West Nigeria.  Environ. Health Insights, 16.
[18]. Mbonu, C.C. and Ben, U.C. (2021). Assessment of radiation hazard indices due to natural radioactivity in soil samples from Orlu, Imo State, Nigeria. Heliyon. 7 (8): e07812.
[19]. Maxwell, O., Oluwasegun, A.O., Joel, E.S., Ijeh, I.B., Uchechukwu, O.A., Oluwasegun A., Ogunrinola, I.E., Angbiandoo, T.T., Ifeany, A.O., and Alam, M.S. (2020). MethodsX Spatial distribution of gamma radiation dose rates from natural radionuclides and its radiological hazards in sediments along river Iju, Ogun state Nigeria. MethodsX [Internet]. 2020;7 (101086): 1–15.
[20]. Uosif, M.A.M., Mostafa, A.M.A., Elsaman, R., and Moustafa, E. (2014). Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J. Radiat. Res. Appl. Sci. 7 (4).
[21]. Abedin, J., Karim, R., Hossain, S., Deb, N., Kamal, M., and Miah, H.A. (2019). Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln. Arabian Journal of Geosciences, 12:236
[22]. Yalcin, F., Ilbeyli, N., Demirbilek, M., Yalcin, M.G., Gunes, A., Kaygusuz, A., and Ozmen, S.F. (2020). Estimation of natural radionuclides’ concentration of the plutonic rocks in the Sakarya zone, Turkey using multivariate statistical methods. Symmetry (Basel). 12 (6): 1–18.
[23]. Faanu, A, Adukpo, O.K., Larbi, L.T., Lawluvi, H., Kpeglo, D.O., Darko, E.O., Reynolds, G.E., and Awudu, R.A. (2016). Natural radioactivity levels in soils , rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana.
[24]. WHO (2011). Guidelines for Drinking-water Quality. 4th edition, 211pp.
[25]. Penabei, S., Bongue, D., Maleka, P., Dlamini, T., Saïdou, Guembou Shouop, C.J., Halawlaw, Y.I., Ngwa Ebongue, A., and Kwato Njock, M. G. (2018). Assessment of natural radioactivity levels and the associated radiological hazards in some building materials from Mayo-Kebbi region, Chad. Radioprotection. 53 (4): 265–278.
[26]. Osman R., Dawood Y.H., Melegy A., El-Bady M.S., Saleh. A., and Gad. A. (2022) Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere (Basel). 13 (98).
[27]. Chandrasekaran, A., Ravisankar, R., Senthilkumar, G., Thillaivelavan, K., Dhinakaran, B., Vijayagopal, P., Bramha, S. N., and F, B. V. (2014). Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills , Tamilnadu, India. Egypt. J. Basic Appl.
[28]. Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Prakash, J.P., Vijayalakshmi, I., Vijayagopal, P., and Venkatraman, B. (2014). Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu , India with statistical approach.  Radiat. Phys. Chem., 103, 89–98.
[29]. Shabib, M., El-Taher, A., Mohamed, N.M.A., Madkour, H.A., and Ashry, H.A. (2021). Assessment of radioactivity concentration of natural radionuclides and radiological hazard indices in coral reefs in the Egyptian Red Sea.  J. Radioanal. Nucl. Chem. 329 (3): 1199–1212.
[30]. Maitham, S.A. (2017). Radiation Hazard Index of Common Imported Ceramic Using for   Building Materials in Iraq Aust. J. Basic & Appl. Sci. 11 (10): 94–102.
[31]. Ravisankar, R., Vanasundari, K., Suganya, M., Raghu, Y., Rajalakshmi, A., Chandrasekaran, A., Sivakumar, S., Chandramohan, J., Vijayagopal, P., and Venkatraman, B. (2013). Multivariate Statistical Analysis of Radiological Data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–27.
[32]. Sivakumar, S., Chandrasekaran, A., Ravisankar, R., Ravikumar, S.M., Prince Prakash Jebakumar, J., Vijayagopal, P., Vijayalakshmi, I., and Jose, M.T. (2014). Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J Taibah Univ Sci.8 (4):375–84.
[33]. Doyi, I., Essumang, D., Gbeddy, G., Dampare, S., Kumassah, E., and Saka, D. (2018). Ecotoxicology and Environmental Safety Spatial distribution , accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin , Ghana. Ecotoxicol Environ Saf. 165: 540–6.
[34]. Ahmad, A.Y., Al-ghouti, M.A., Alsadig, I., and Abu-dieyeh, M. (2019). Vertical distribution and radiological risk assessment of 137 Cs and natural radionuclides in soil samples.
[35]. Senthilkumar, R.D. and Narayanaswamy, R. (2016). Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses, J. Radiat. Res. Appl. Sci. 9 (4): 449–456.
[36]. Habib, A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Phoungthong, K., Khan, R., and Rashid, B. (2018). Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim. Acta, 1–17.
[37]. Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Prince Prakash Jebakumar, J., Vijayalakshmi, I., Vijayagopal, P., and Venkatraman, B. (2015). Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach.  Mar. Pollut. Bull. 97 (1–2): 419–430.
[38]. Faanu, Augustine. (2011). Assessment of Public Exposure to Naturally Occurring Radioactive Materials from Mining and Mineral Processing Activities of Tarkwa Goldmine In Ghana. PhD Thesis.
[39]. Ademola, A.K., Bello, A.K., and Adejumobi, A.C. (2014). Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, South-Western, Nigeria. J. Radiat. Res. Appl. Sci., 7, 249–255.
[40]. Chowdhury, M. I., Kamal, M., Alam, M. N., Yeasmin, S., and  Mostafa, M. N. (2006). Distribution of naturally occurring radionuclides in soils of the southern districts of Bangladesh. Radiat. Prot. Dosimetry. 118 (1): 126–130, doi: 10.1093/rpd/nci335.
[41]. Cevik, U., Damla, N., and Nezir, S. (2007). Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel. 86 (16): 2509.
[42]. Hrichia, H., Baccoucheb, S., and Belgaied, J.E. (2015). Evaluation of radiological impacts of tenorm in the Tunisian petroleum industry. J. Environ. Radioact. 115: 107–113.
[43]. Alshahri F. (2019). Natural and anthropogenic radionuclides in urban soil around non-nuclear industries ( Northern Al Jubail ), Saudi Arabia : assessment of health risk. Environ Sci Pollut Res. 
[44]. Yakovlev, E.Y., Zykov E.N. Zykov, S.B., Malkov, A.V., and Bazhenov A.V. (2020). Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district , NW Russia. Environ Earth Sci. 79 (218).
[45]. UNSCEAR. (2000). Sources and Effects. United Nations Scientific Committee on the Effects of Atomic Radiation. Annex B Vol. I. 118pp.
[46]. Akortia, E., Glover, E.T., Nyarku, M., Dawood, A. M.A., Essel, P., Sarfo, E. O., Ameho, E.M., Aberikae, E.A., and Gbeddy, G. (2021). Geological interactions and radio-chemical risks of primordial  radionuclides 40K, 226Ra, and 232Th in soil and groundwater from potential radioactive waste disposal site in Ghana. J Radioanal Nucl Chem. 328 (2): 577–589.