[1]. Jafariesfad, N. Geiker, M.R. Gong, Y. Skalle, P. Zhang, Z. and He, J.C. (2017). Cement sheath modification using nanomaterials for long-term zonal isolation of oil wells: Review. J. Petrol Sci Eng. 156: 662−672.
[2]. Cheng, X. Liu, K. Zhang, X. Li, Z. and Guo, X. (2018). Integrity changes of cement sheath due to contamination by drilling fluid. Adv Cem Res. 30: 47−55.
[3]. Kremieniewski, M. (2020). Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies. 13, 1583.
[4]. Pikłowska, A. Ziaja, J. and Kremieniewski, M. (2021). Influence of the Addition of Silica Nanoparticles on the Compressive Strength of Cement Slurries under Elevated Temperature Condition. Energies. 4, 5493.
[5]. Gao, C. and Wu, W. (2018). Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete. International Journal of Pavement. Research and Technology. 11: 374−380.
[6]. Wang, W. and Dahi Taleghani, A. (2017). Impact of hydraulic fracturing on cement sheath integrity; A modelling approach. J. Nat Gas Sci Eng. 44, 265−277.
[7]. Xu, NW. Dai, F. Wei, MD. Xu, Y. and Zhao, T. (2015). Numerical observation of three dimensional wing-cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading. Rock Mech Rock Eng. 32 (2):33-44.
[8]. Xiaowei, C. Sheng, H. Xiaoyang, G. and Wenhui, D. (2017). Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement. Appl Surf Sci. 409: 325−342.
[9]. Liu, T. Lin, B. and Yang, W. (2017). Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression. Tectonophysics. 32: 330−343.
[10]. Ladva, H.K.J. Craster, B. Jones, T.G.J. Goldsmith, G. and Scott, D. (2005). The Cement-to-Formation Interface in Zonal Isolation. SPE Drill. Completion. 20: 186−197.
[11]. Dai, F. Chen, R. and Xia, K. (2010) A Semi-Circular Bend Technique for Determining Dynamic Fracture Toughness. Exp Mech. 50: 783−791.
[12]. Wang, P. Xu, J. Fang, X. Wen, M. Zheng, G. and Wang, P. (2017). Dynamic splitting tensile behaviors of red-sandstone subjected to repeated thermal shocks: Deterioration and micro-mechanism. Eng. Geol. 223,1−10.
[13]. Fowell, R.J. (1995). Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disk (CCNBD) specimen. Int. J. Rock Mech. Mineral Sci. Geomech. Abstr. 32 (1): 57–64.
[14]. Lim, I.L. Johnston, I.W. Choi, S.K. Boland, J.N. (1994a). Fracture testing of a soft rock with semi-circular specimens under threepoint bending. Part 1, 2. Int. J. Rock Mech. Mineral Sci. Geomech. Abstr. 31 (3): 185–212.
[15]. Lim, I.L. Johnston, I.W. and Choi, S.K. (1994b). Assessment of mixedmode fracture toughness testing methods for rock. Int. J. Rock Mech. Mineral Sci. Geomech. Abstr. 31 (3): 265–272.
[16]. Ouchterlony, F. (1981) Extension of the compliance and stress intensity formulas for the single edge crack round bar in bending, in: Fracture Mechanics for Ceramics, Rocks, and Concrete, AStM International.
[17]. Khan, K. (2000). Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia, Rock mechanics and rock engineering, 33 (3): 179-206.
[18]. Iqbal, M. (2006). Experimental calibration of stress intensity factors of the ISRM suggested cracked chevronnotched Brazilian disc specimen used for determination of mode-I fracture toughness, International Journal of Rock Mechanics and Mining Sciences, 43 (8): 1270-1276.
[19]. Tutluoglu, L. (2011). Mode I fracture toughness determination with straight notched disk bending method, International Journal of Rock Mechanics and Mining Sciences, 48 (8): 1248-1261.
[20]. Guo, H. Aziz, N.I. and Schmidt, L.C. (1993). Rock fracture toughness determination by the Brazilian test. Eng Geol. 33 (3):177–188.
[21]. Awaji, H. and Sato, S. (1978). Combined mode fracture toughness measurement by disk test. J Eng Mater Technol. 100(2):175–182.
[22]. Atkinson, C. Smelser, R.E. and Sanchez, J. (1982). Combined mode fracture via the cracked Brazilian disk test. Int J Fract. 18(4):279–291.
[23]. Aliha, M.R.M. Ayatollahi, M.R. Smith, D.J. and Pavier, M.J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech. 77(11): 2200–2212.
[24]. Aliha, M.R.M. Ayatollahi, M.R. and Akbardoost, J. (2012). Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng. 45 (1):65–74.
[25]. Aliha, M.R.M. Sistaninia, M. Smith, D.J. Pavier, M.J. and Ayatollahi, M.R. (2012). Geometry effects and statistical analysis of mode I fracture in guiting limestone. Int J Rock Mech Min Sci. 51:128– 135.
[26]. Chen, C.H. Chen, C.S. and Wu, J.H. (2008). Fracture toughness analysis on cracked ring disks of anisotropic rock. Rock Mech Rock Eng. 41(4):539–562.
[27]. Wang, Q.Z. and Xing, L. (1999). Determination of fracture toughness KIc by using the flattened Brazilian disc specimen for rocks. Eng Fract Mech. 64 (2):193–201.
[28]. Keles, C. and Tutluoglu, L. (2011). Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method. Int J Fract. 169 (1):61–75.
[29]. Amrollahi, H. Baghbanan, A. and Hashemolhosseini, H. (2011). Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens. Int J Rock Mech Min Sci. 48 (7):1123–1134.
[30]. Tang, T. Bazant, Z.P. Yang, S. and Zollinger, D. (1996). Variable-notch one-size test method for fracture energy and process zone length. Eng Fract Mech. 55(3):383–404.
[31]. Yang, S. Tang, T.X. Zollinger, D. and Gurjar, A. (1997). Splitting tension tests to determine rock fracture parameters by peak-load method. Adv Cem Based Mater. 5:18–28.
[32]. Külekçi, G. (2021). Comparison of EFNARC and Round Plate Bending Test Methods used in Measurement of Toughness Index, Recep Tayyip Erdogan University Journal of Science and Engineering. 2(2):120-126.
[33]. Kulekci, G., Yilmaz, A.O. and Çullu, M. (2021). Experımental Investıgatıon of the Usabılıty of Constructıon Waste as Aggregate, Journal of Mining and Environment. 12 (1): 63-76.
[34]. Külekçi, G. (2021. Comparison of field and laboratory result of fiber reinforced shotcrete application. Periodica Polytechnica Civil Engineering. 65 (2): 463-473.
[35]. Külekçi, G. (2019). Energy Absorption Measurement in Shotcrete by EFNARC Plaque Deflection Experiment ICADET.
[36]. Külekçi, G. and Çullu, M. (2021). The Investigation of Mechanical Properties of Polypropylene Fiber-Reinforced Composites Produced with the use of Alternative Wastes, Journal of Polytechnic. 24 (3): 1171-1180
[37]. Petroleum and Natural Gas Industries−Cements and Materials for Well Cementing. (2005). Part 1: Specification; EN ISO 10426-1.
[38]. Potyondy, D.O. (2012). A flat-jointed bonded-particle material for hard rock. Paper presented at the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, USA. 55-61.
[39]. Potyondy, D.O. (2015). The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosystem Engineering, 18 (1): 1–28.
[40]. Potyondy, D.O. (2017). Simulating perforation damage with a flat-jointed bonded-particle material. Paper presented at the 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA. 77-82.
[41]. Chen, W. Konietzky, H. Tan, X. and Frruhwirt, T. (2016). Pre-failure damage analysis for brittle rocks under triaxial compression. Computers and Geotechnics. 74: 45-55.
[42]. Koksal, F. (2013). Fracture energy-based optimisation of steel fibre reinforced concretes. Engineering Fracture Mechanics. 107: 29 –37.