[1]. Bilgin, Ö., Arens, K., and Dettloff, A. (2019). Assessment of variability in soil properties from various field and laboratory tests. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 13(4): 247-254.
[2]. Anbazhagan, P. (2018). Subsurface investigation—integrated and modern approach. In: Geotechnics for Natural and Engineered Sustainable Technologies, Springer, Singapore, pp. 245-257.
[3]. Gansonré, Y., Breul, P., Bacconnet, C., Benz, M., and Gourvès, R. (2022) Prediction of in-situ dry unit weight considering chamber boundary effects on lateritic soils using Panda® penetrometer. International Journal of Geotechnical Engineering. 16 (4): 408-414.
[4]. Siddiqui, F.I. and Osman S.B.A.B.S. (2012a). Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization. Environmental earth sciences. 70 (1): 259–267.
[5]. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil & Tillage Research. 83: 173-193.
[6]. Chambers, J.C., Kuras, O., Meldrum, P.I., Ogilvy, R.D., and Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics. 71 (6): 231–239.
[7]. Sudha, K., Israil, M., Mittal, S., and Rai, J. (2009). Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics. 67 (1): 74–79.
[8]. Hasan, M., Shang, Y., Meng, H., Shao, P., and Yi, X. (2021). Application of electrical resistivity tomography (ERT) for rock mass quality evaluation. Scientific Reports 11 (1), 23683.
[9]. Hoorde, M.V., Hermans, T., Dumont, G., and Nguyen, F. (2017). 3D electrical resistivity tomography of karstified formations using crossline measurements. Engineering geology. 220: 123–32.
[10]. Bauman, P. (2005). 2-D resistivity surveying for hydrocarbons—a primer. CSEG Recorder, April, 25–33.
[11]. Legault, J. M., Carriere, D., and Petrie, L. (2008). Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin, northern Saskatchewan. The Leading Edge. 27: 46–51.
[12]. Ejepu, J.S., Unuevho, C.I., Ako, Z.A., and Abdullahi (2018). Integrated geosciences prospecting for gold mineralization in Kwakuti, North-Central Nigeria. Journal of Geology and Mining Research. 10 (7): 81-94.
[13]. Hargrave, M.L., Somers, L.E., and Larson, T.K. (2002). The role of resistivity survey in historic site assessment and management: An example from Fort Riley, Kansas. Historical Archaeology. 36 (4): 89–110.
[14]. Tsokas, G.N., Tsourlos, P.I., Vargemezis, G., and Novack, M. (2008). Non-destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea church in Athens. Archaeological Prospection. 15: 47–61.
[15]. Piroddi, L., Calcina, S.V., Trogu, A., and Ranieri, G. (2020) Automated Resistivity Profiling (ARP) to Explore Wide Archaeological Areas: The Prehistoric Site of Mont'e Prama, Sardinia, Italy. Remote Sensing. 12 (461): 1-22.
[16]. Wilson, S.R., Ingham, M., and McConchie, J.A. (2006). The applicability of earth resistivity methods for saline interface definition. Journal of Hydrology. 316: 301–312.
[17] Galazoulas, E.C., Mertzanides, Y.C., Petalas, C.P., and Kargiotis, E.K. (2015). Large Scale Electrical Resistivity Tomography Survey Correlated to Hydrogeological Data for Mapping Groundwater Salinization: A Case Study from a Multilayered Coastal Aquifer in Rhodope, Northeastern Greece. Environmental processes. 2 (1): 19–35.
[18]. Oguama, B.E., Ibuot, J.C., and Obiora, D.N. (2020). Geohydraulic study of aquifer characteristics in parts of Enugu North Local Government Area of Enugu State using electrical resistivity soundings. Applied Water Science. 10 (5): 120.
[19]. Tabbagh, A., Dabas, M., Hesse, A. and Panissod C. (2000). Soil resistivity: a non-invasive tool to map soil structure horizonation. Geoderma. 97: 393–404.
[20]. Rucker, D., Loke, M.H., Levitt, M.T., and Noonan, G.E. (2010). Electrical resistivity characterization of an industrial site using long electrodes. Geophysics. 75 (4): 95–104.
[21]. Braga, A.C.O., Malagutti, F.W., Dourado, J.C., and Chang, H.K. (1999). Correlation of Electrical Resistivity and Induced Polarization Data with Geotechnical Survey Standard Penetration Test Measurements. Journal of Environmental and Engineering Geophysics. 4 (2): 123-130.
[22]. Cosenza, P., Marmet, E., Rejiba, F., Cui, Y.J., Tabbagh, A., and Charlery, Y. (2006). Correlations between geotechnical and electrical data: A case study at Garchy in France. Journal of Applied Geophysics. 60: 165–178.
[23]. Anita, B.J. and Kondracka, M. (2016). Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems. Geomorphology. 274: 193-209.
[24]. Devi, A., Israil, M., Anbalagan, R., and Gupta, P.K. (2017). Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region. Journal of Applied Geophysics. 144: 78-85.
[25]. Horo, D., Pal, S.K., Singh, S., and Srivastava, S. (2020). Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Journal of Exploration Geophysics. 51 (5): 507-522.
[26]. McCarter, W.J. (1984). The Electrical Resistivity Characteristics of Compacted Clays. Geotechnique. 34 (2): 263-267.
[27]. McCarter, W.J. and Desmazes, P. (1997). Soil Characterization using Electrical Measurements. Geotechnique. 47 (1): 179-183.
[28]. Ozcep, F., Yildirim, E., Tezel, O., Asci, M., and Karabulut, S. (2010). Correlation between electrical resistivity and soil-water content based artificial intelligent techniques. International Journal of Physical Sciences. 5: 047-056.
[29]. Parashar, V. and Mishra, B. (2021). Designing efficient soil resistivity measurement technique for agricultural wireless sensor network. International Journal of Communication Systems. 34 (8), e4785.
[30]. Gonçalves, J.T.D., Botelho, M.A.B., Machado, S.L., and Guireli Netto L. (2021). Correlation between field electrical resistivity and geotechnical SPT blow counts at tropical soils in Brazil. Environmental Challenges. 5, 100220.
[31]. Telford, E., Geldart, W. M., and Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press, UK.
[32]. Reynolds, J. (1997). An Introduction to Applied and Environmental Geophysics. Wiley, New York, 796 P.
[33]. Vasantrao, B.M., Bhaskarrao, P. J., Mukund, B. A., Baburao, G. R., and Narayan, P. S. (2017). Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: a case study from Dhule district (M.S.), India. Applied Water Science. 7: 4321–4340.
[34]. Pekeris, C.L. (1940). Direct Method of Interpretation in Resistivity Prospecting. Geophysics. 5 (1): 31-42.
[35]. Koefoed, (1965). Direct methods of interpreting resistivity observations. 13 (4): 568–591.
[36]. Loke, M.H. (2011). Electrical Resistivity Surveys and Data Interpretation. In: Gupta H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht.
[37]. Compagnie Generate de Geophysique (1963). Master curves for electrical sounding [2d rev. ed.]: The Hague, European Assoc. Explor. Geophysicists.
[38]. Orellana, E. and Mooney, H.M. (1966). Master Tables and Curves for Vertical Electrical Sounding over Layered Structures. Inerciencia Costanilla de Los Angeles, Los Angeles, 125 P.
[39]. Rijkswaterstaat (1969). Standard graphs for resistivity prospecting: The Hague, European Assoc. Explor. Geophysicists, The Hague.
[40]. Flathe, H. (2006). Five-layer master curves for the hydrogeological interpretation of geoelectric resistivity measurements above a two-storey aquifer. Geophysical Prospecting. 11 (4): 471-508.
[41]. Sankar Narayan, P.V. and Ramanujachar, K. R. (1967) Short note-an inverse slope method of determining absolute resistivities. Geophysics. 32: 6-15.
[42]. Baig, M.Y.A. (1980). Direct slope technique of determining absolute resistivity. Journal of Civil Engg Div Institution of Engineers (India). 61: 55-60.
[43]. Davidov, G. K. (1936). Determination of soil salt content with electrical conductivity. (In Russian). In: Physics of soils. Selhozizdat. Moscow.
[44]. Yoon, G.L. and Park, J. B. (2001) Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils. Journal of Hazardous Materials. 84: 147–161.
[45]. Schwartz, B.F., Schreiber, M.E., and Yan, T. (2008). Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of Hydrology. 362: 234-246.
[46]. Son, Y., Oh, M., and Lee, S. (2010). Estimation of soil weathering degree using electrical resistivity. Environmental Earth Sciences. 59 (6): 1319–1326.
[47]. Nouveau, M., Grandjean, G., Leroy, P., Philippe, M., Hedri, E., and Boukcim, H. (2016). Electrical and thermal behavior of unsaturated soils: experimental results. Journal of Applied Geophysics. 128: 115-122.
[48]. Wang, J., Zhang, X., and Du, L. (2017). A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil. Journal of Applied Geophysics. 145: 12–16.
[49]. Sai, V.V., Hemalatha, T., and Ramesh, M.V. (2017). An affordable non-destructive method for monitoring soil parameters in large scale using electrical resistivity technique, International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), March, 755-761.
[50]. Tang, L., Wang, K., Jin, L., Yang, G., Jia, H., and Taoum, A. (2018). A resistivity model for testing unfrozen water content of frozen soil. Cold Regions Science and Technology. 153: 55-63.
[51]. Siddiqui, F.I. and Osman, S.B.A.B.S. (2012b). Integrating Geo-Electrical and Geotechnical Data for Soil Characterization. International Journal of Applied Physics and Mathematics. 2 (2): 104–106.
[52]. Mathematics. 2(2): 104–106. [52]. Chu, Y., Liu, S., Wang, F., Cai, G., and Bian, H. (2017). Estimation of heavy metal-contaminated soils mechanical characteristics using electrical resistivity. Environmental Science and Pollution Research. 24(15): 13561–13575.
[53]. Bery, A.A. and Ismail, N.E.I.H. (2017). Empirical correlation between electrical resistivity and engineering properties of soils. Soil Mechanics and Foundation Engineering. 54 (6): 425–429.
[54]. Akintorinwa, O.J. and Oluwole, S.T. (2018). Empirical relationship between electrical resistivity and geotechnical parameters: A case study of Federal University of Technology campus, Akure, SW, Nigeria. NRIAG Journal of Astronomy and Geophysics. 7: 123-133.
[55]. Pandey, L.M.S., Shukla, S.K., and Habibi, D. (2015). Electrical resistivity of sandy soil. Géotechnique Letters. 5: 178-185.
[56]. Rezaei, S., Shooshpasha, I., and Rezaei, H. (2018). Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone. Earth Sciences Research Journal. 22 (3): 195-204.
[57]. Sun, Q and Lü, C. (2019). Semiempirical correlation between thermal conductivity and electrical resistivity for silt and silty clay soils. Geophysics. 84 (3): 99-105.
[58]. Sun, Q., Lyu, C. and Zhang, W. (2020) The relationship between thermal conductivity and electrical resistivity of silty clay soil in the temperature range- 20 C to 10 C. Heat and mass transfer. 56: 2007-2013.
[59]. Schwarz, H. and Bertermann, D. (2020) Mediate relation between electrical and thermal conductivity of soil. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 6 (3): 1-16.
[60]. Richard, G., Cousin, I., Sillon, J.F., Bruand, A., and Gu'erif, J. (2001). Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. European Journal of Soil Science. 52 (1): 49–58.
[61]. Pereira, J. O., Defossez, P., and Richard, G. (2007). Soil susceptibility to compaction as a function of some properties of a silty soil as affected by tillage system. European Journal of Soil Science. 58 (1): 34–44.
[62]. Seladji, S., Cosenza, P., Tabbagh, A., Rangerd, J., and Richard, G. (2010). The effect of compaction on soil electrical resistivity: a laboratory investigation. European journal of soil science. 61 (6): 1043–1055.
[63]. Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C., Ahmad, F., Baharuddin, M.F.T., Tajudin, S.A.A., and Madun, A. (2017). The Influences of Basic Physical Properties of Clayey Silt and Silty Sand on Its Laboratory Electrical Resistivity Value in Loose and Dense Conditions. Sains Malaysiana. 46: 1959–1969.
[64]. Roodposhti, H.R., Hafizi, M.K., Kermani, M.R.S., and Nik, M.R.G. (2019). Electrical resistivity method for water content and compaction evaluation, a laboratory test on construction material. Journal of Applied Geophysics. 168: 49–58.
[65]. Naseem, A., Jalal, F.E., Backer, H.D., Schotte, K., and Kashif, M. (2018). Correlation of Electrical Resistivity Test with the Geotechnical Parameters of Sandy Soil, Conference of the Arabian Journal of Geosciences, Springer, Cham, November, 191-193.
[66]. Giao, P.H., Chung, S.G., Kim, D.Y., and Tanaka, H. (2003). Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. Journal of Applied Geophysics. 52 (4): 157-175.
[67]. Long, M., Donohue, S., L’Heureux, J.S., Solberg, I.L., Rønning, J.S., Limacher, R., O'Connor, P., Sauvin, G., Romoen, M., and Lecomte, I. (2012). Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal. 49 (10): 58-1168.
[68]. Oh, S. and Sun, C.G. (2008). Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environmental Geology. 54: 31-42.
[69]. Liu, S.Y., Du, Y. J., Han, L.H., and Gu, M. F. (2008). Experimental study on the electrical resistivity of soil–cement admixtures. Environmental Geology. 54: 1227-1233.
[70]. Hatta, K.A. and Syed Osman, S.B.A. (2015). Correlation of electrical resistivity and SPT-N value from standard penetration test (SPT) of sandy soil. Applied Mechanics and Materials. 785: 702–706.
[71]. Nath, S.K., Patra, H.P., and Shahid, S. (2000). Geophysical prospecting for ground water. Oxford and IBH Publishing, New Delhi
[72]. Patra, H.P. and Nath, S.K. (1999). Schlumberger geoelectric sounding in ground water. Principles, interpretation and applications. Balkema Publishers, Rotterdam, p 153.
[73]. Zohdy A.A. (1974). Use of Dar Zarrouk curves in the interpretation of vertical electrical sounding data (No. 1313-D). US Govt. Print. Off.
[74]. Zohdy A.A. (1975). Automatic interpretation of Schlumberger sounding curves, using modified Dar Zarrouk functions (No. 1313-E). US Govt. Print. Off.
[75]. Batte, A.G., Barifaijo, E., Kiberu, J.M., Kawule, W., Muwanga, A., Owor, M., and Kisekulo, J. (2010). Correlation of Geoelectric Data with Aquifer Parameters to Delineate the Groundwater Potential of Hard rock Terrain in Central Uganda. Pure and applied geophysics. 167 (12): 1549–1559.
[76]. Tizro, A.T., Voudouris, K.S., Salehzade, M., and Mashayekhi. H. (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeology Journal. 18: 917–929.
[77]. Sattar, G.S., Keramat, M., and Shahid, S. (2016). Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh. Applied Water Science. 6 (1): 35–45.
[78]. Halihan, T., Albano, J., Comfort, S.D. and Zlotnik, V.A. (2011). Electrical Resistivity Imaging of a Permanganate Injection During in Situ Treatment of RDX-Contaminated Groundwater. Ground Water Monitoring & Remediation. 32 (1): 43–52.
[79]. Singh, S. and Singh, V.S. (2016). Estimation of Hydraulic Characteristics from Electrical Resistivity Data in Coastal Aquifers of Southern India. Journal Geological Society of India. 88 (1): 77-86.
[80]. Aleke, C.G., Ibuot, J.C., and Obiora, D.N. (2018). Application of electrical resistivity method in estimating geohydraulic properties of a sandy hydrolithofacies: a case study of Ajali Sandstone in Ninth Mile, Enugu State, Nigeria. Arabian Journal of Geosciences. 11, 322.
[81]. Hasan, M., Jun, S.Y., Jun, J.W., and Akhter, G. (2019). Investigation of fractured rock aquifer in South China using electrical resistivity tomography and self-potential methods. Journal of Mountain Science. 16 (4): 850-869.
[82]. Singh, K.P. (2005). Nonlinear estimation of aquifer parameters from surficial resistivity measurements. Hydrology and Earth System Sciences Discussions. 2 (3): 917–938.