[1]. Hosseini, M., Dolatshahi, A., and Ramezani, E. (2022). Effect of sodium sulfate and chlorine ion on the properties of concrete containing micro-silica, concrete containing zeolite powder and its comparison with ordinary concrete. Journal of Mining Engineering, 17(57), 55-67.
[2]. Aydan, Ö. (2017). Rock dynamics. CRC Press.
[3]. Zhou, Y., and Zhao, J. (Eds.). (2011). Advances in rock dynamics and applications. CRC press.
[4]. Thai, D.K., Tran, M.T., Phan, Q.M., and Pham, T.H. (2021, June). Local damage of the RC tunnels under ballistic missile impact investigated by finite element simulations. In Structures (Vol. 31, pp. 316-329). Elsevier.
[5]. Daraei, A., Hama Ali, H.F., Qader, D.N., and Zare, S. (2022). Seismic retrofitting of rubble masonry tunnel: evaluation of steel fiber shotcrete or inner concrete lining alternatives. Arabian Journal of Geosciences, 15 (11): 1074.
[6]. Tsinidis, G., Pitilakis, K., and Anagnostopoulos, C. (2016). Circular tunnels in sand: dynamic response and efficiency of seismic analysis methods at extreme lining flexibilities. Bulletin of earthquake engineering, 14 (10): 2903-2929.
[7]. Tsinidis, G., Rovithis, E., Pitilakis, K., and Chazelas, J.L. (2016). Seismic response of box-type tunnels in soft soil: experimental and numerical investigation. Tunnelling and Underground Space Technology, 59, 199-214.
[8]. Wang, T.T., Kwok, O.L.A., and Jeng, F.S. (2021). Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review. Engineering Geology, 287, 106090.
[9]. Zaid, M., Athar, M., and Sadique, M. (2021). Effect of rock weathering on the seismic stability of different shapes of the tunnel. In Proceedings of the Indian Geotechnical Conference 2019 (pp. 637-650). Springer, Singapore.
[10]. Najm, S.J., and Daraei, A. (2023). Forecasting and controlling two main failure mechanisms in the Middle East’s longest highway tunnel. Engineering Failure Analysis, 146, 107091.
[10]. Hagan, T.N. (1980). Rock breakage by explosives. In Gasdynamics of Explosions and Reactive Systems (pp. 329-340). Pergamon.
[11]. Persson, P.A., Holmberg, R., and Lee, J. (2018). Rock blasting and explosives engineering. CRC press.
[12]. Sedlacek, G., Kammel, C., Kühn, B., and Hensen, W. (2007). Condition assessment and inspection of steel railwaybridges, including stress measurements in riveted, bolted and welded structures: Sustainable Bridges Background document SB3. 4
[13]. Friedman, E., Johnson, S., and Mitton, T. (2003). Propping and tunneling. Journal of Comparative Economics, 31 (4): 732-750.
[14]. Yan, Z.G., Zhu, H.H., Ju, J.W., and Ding, W.Q. (2012). Full-scale fire tests of RC metro shield TBM tunnel linings. Construction and Building Materials, 36, 484-494.
[15]. Kuesel, T.R., King, E.H., and Bickel, J.O. (2012). Tunnel engineering handbook. Springer Science & Business Media. pp 102-106.
[16]. Bell, F.G. (2003). Geological hazards: their assessment, avoidance and mitigation. CRC Press. pp 68-73.
[17]. Lak, M., Marji, M.F., Bafghi, A.Y., and Abdollahipour, A. (2019). Analytical and numerical modeling of rock blasting operations using a two-dimensional elasto-dynamic Green's function. International Journal of Rock Mechanics and Mining Sciences, 114, 208-217.
[18]. Zaid, M., and Sadique, M.R. (2020). Numerical modelling of internal blast loading on a rock tunnel. Adv Comput Des, 5 (4): 417-443.
[19]. Mussa, Mohamed H., Azrul A. Mutalib, Roszilah Hamid, Sudharshan R. Naidu, Noor Azim Mohd Radzi, and Masoud Abedini. (2017). Assessment of damage to an underground box tunnel by a surface explosion. Tunnelling and underground space technology 66, 64-76.
[20]. Zhang, L., and Yang, X. (2016). Soil-tunnel interaction under medium internal blast loading. Procedia engineering, 143, 403-410.
[21]. Li, C., and Li, X. (2018). Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads. International Journal of Rock Mechanics and Mining Sciences, 112, 323-338.
[22]. Sadique, M., Zaid, M., and Alam, M. (2022). Rock tunnel performance under blast loading through finite element analysis. Geotechnical and Geological Engineering, 40 (1): 35-56.
[23]. Hajibagherpour, A.R., Mansouri, H., and Bahaaddini, M. (2020). Numerical modeling of the fractured zones around a blasthole. Computers and Geotechnics, 123, 103535.
[24]. Zhang, S., Wang, L., and Gao, M. (2019). Experimental investigation of the size effect of the mode I static fracture toughness of limestone. Advances in Civil Engineering, 2019.
[25]. Golewski, G.L., and Sadowski, T. (2016). Macroscopic evaluation of fracture processes in fly ash concrete. In Solid State Phenomena (Vol. 254, pp. 188-193). Trans Tech Publications Ltd.
[26]. Golewski, G.L., and Sadowski, T. (2016). A study of mode III fracture toughness in young and mature concrete with fly ash additive. In Solid State Phenomena (Vol. 254, pp. 120-125). Trans Tech Publications Ltd.
[27]. Golewski, G.L. (2022). Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theoretical and Applied Fracture Mechanics, 121, 103553.
[28]. Jablonski, J., Carlucci, P., Thyagarajan, R., Nandi, B., and Arata, J. (2013). Simulating underbelly blast events using Abaqus/Explicit-CEL. DASSAULT SYSTEMES SIMULIA CORP PROVIDENCE RI.
[29]. Pan, Q., Li, S., Liu, Y., Xu, X., Chang, M., and Zhang, Y. (2021). Meso-Simulation and Experimental Research on the Mechanical Behavior of an Energetic Explosive. Coatings, 11 (1): 64.
[30]. Qiu, G., Henke, S., and Grabe, J. (2009, May). Applications of Coupled Eulerian-Lagrangian method to geotechnical problems with large deformations. In Proceeding of SIMULIA customer conference (pp. 420-435).
[31]. Urtiew, P.A., and Hayes, B. (1991). Parametric study of the dynamic JWL-EOS for detonation products. Combustion, Explosion and Shock Waves, 27 (4): 505-514.
[32]. Alejano, L.R., and Bobet, A. (2015). Drucker–prager criterion. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, 247-252.
[33]. Yu, T.T.J.G., Teng, J.G., Wong, Y.L., and Dong, S.L. (2010). Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Engineering structures, 32 (3): 665-679.
[34]. Hosseini, M., Dolatshahi, A.R., and Ramezani, E. (2022). Effect of Acid Rain on Physical and Mechanical Properties of Concrete Containing Micro-Silica and Limestone Powder. Journal of Mining and Environment, 13 (1): 185-200.
[35]. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B., and Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27 (1): 68-78.
[36]. Chessa, J., Smolinski, P., and Belytschko, T. (2002). The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53 (8): 1959-1977.
[37]. Arshadnejad, S., Goshtasbi, K., and Aghazadeh, J. (2011). A model to determine hole spacing in the rock fracture process by non-explosive expansion material. International Journal of Minerals, Metallurgy, and Materials, 18, 509-514.
[38]. Liu, R., Zhu, Z., Li, Y., Liu, B., Wan, D., and Li, M. (2020). Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting. Engineering Fracture Mechanics, 225, 106460.