Document Type : Original Research Paper


1 Geology Department, Faculty of Science, Fayoum University, Egypt

2 Geology Department, Faculty of Science, Cairo University, Egypt


The northwestern margin of the Red Sea is developed as several rift-related fault blocks. These fault blocks comprise two mega tectono-stratigrahicsuccessions; the Pre-riftsuccessioncould be sub-divided intothe Precambrian Basement rocks and theUpperCretaceous-Lower Eocenedeposits,whilst the Syn-rift sequence includesthe Oligocene to Quaternary deposits. Lithologic differentiation of these rock units being encountered in thestudied area is accomplishedutilizing different remote sensing imagery enhancement techniques of the OLI data (Landsat-8) aided with field verification. Spectral signature analysis of different rock units, false-color composite, band-ratio, principle component analysis, minimum noise fraction, and independent component analysis are powerful tools in discrimination of the main rock units.The maximum likelihood distance supervised classificationtechnique is a robust tool in the identification of the contact between the different rock units. Radiometrically terrain corrected (RTC) DEM data extracted from PALSAR with a spatial resolution of 12.5m is utilized for the construction of a 3D perspective view image of the studied area. The present study offers a unique method for lithologic discrimination of main rock unitsutilizing OLI images, and introduces an enhanced high-resolution structural map of the studied area aided with field verification.


[1]. Rowan, L.C., Mars, J.C., and Simpson, C.J. (2005). Lithologic mapping of the Mordor NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens. Environ., 99 (1-2), 105-126.
[2]. Hassan, S., Abdeen, M.M., El-Kazzaz, Y.A., and Attia, G.M. (2008). Characterization of Oligocene sands and gravels, Wadi Ghoweiba, Northwest Gulf of Suez, Egypt, using spectral- signature and principal component analysis of Terra Aster images. The Egyptian Journal of Remote Sensing and Space Sciences, 11:73-92.
[3]. Afify, A.A., Arafat, S.S., AboelGhar, M., and Khader, M.H. (2010). Physiographic soil map delineation for the Nile alluvium and Desert outskirts in middle Egypt using remote sensing data of EgyptSat-1. Egypt J Remote Sens Space Sci 13 (2):129-135.
[4]. Amer, R., Kusky, T., and Ghulam, A. (2010). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sc 56 (23):75-82
[5]. Arnous, M. and Sultan, Y. (2014). Geospatial technology and structural analysis for geological mapping and tectonic evolution of Feiran-Solaf metamorphic complex, South Sinai, Egypt. Arab J. Geosci., 7, 3023-3049.
[6]. Hassan, S.M. and Sadek, M.F. (2017). Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: the Korbiai-Gerf nappe complex, South Eastern Desert, Egypt. J. African Earth Sci. 134, 404-418.
[7]. Badr, Y.S. (2017). Application of remote sensing technique in geologic mapping of hydrothermal alteration zones and possible radioactive potenconcernedtialities at Ras Barud - Um Tagher area, North Eastern Desert, Egypt. PhD Thesis, Faculty of Science, Menoufiya University, Menoufiya, 164p.
[8]. Hamimi, Z., Hagag, W., Kamh, S., and El-Araby, A. (2020). Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert, Egypt. Arab. J. Geosci. 2020, 13, 414.
[9]. Ghasemzadeh., S., Maghsoudi, A., Mahyar Yousefi., M., and Mark J. Mihalasky., M.J. (2022). Information value based geochemical anomaly modeling: a statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Appl. Geochem. 136, 105177.
[10]. Saed, S., Aziz I., H., Daneshvar., N., Afzal, P., S.A. Whattam., S.A., and Mohammad., Y.O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International, 1-27.
[11]. Mirsepahvand., F, Jafari., M. R., Afzal., P., and MA Arian., M.A. (2022). Identification of Alteration Zones using ASTER Data for Metallic Mineralization in Ahar region, NW Iran Journal of Mining and Environment 13 (1), 309-324.
[12]. El Gammal, E.M., Salem, S.M., and Greiling, R.O. (2013). Applications of geomorphology, tectonics, geology and geophysical interpretation of, East Kom Ombo depression, Egypt, using Landsat images. Egypt J Remote Sens Space Sci 16 (2):171-187.
[13]. Sadeghi., B., Khalajmasoumi., M., Afzal., P., Parviz Moarefvand., P., Yasrebi. A. B., Andy Wetherelt., A., Foster., P., and Ziazarifi., A. (2013). Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1:100,000 mapping sheet of Central Iran. Journal of African Earth Sciences 85 (2013), 103-114.
[14]. Hammed, M. S. and Abdel Khalek, A. (2015). 3d Digital Geological Mapping and Lithological Characterization of The Northwestern Margin of The Gulf of Suez, Egypt By Integration of Remotely Sensing Data. Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Volume 1.
[15]. Pour, A.B. and Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. J. Taibah Univ. Sci. 9, 155-166.
[16]. Salem, S.M. and El Gammal, E.A. (2015). Iron ore prospection East Aswan, Egypt using remote sensing techniques. Egypt J Remote Sens Space Sci 16 (2):195-206.
[17]. Seleim, A. M. and Hammed, M. S. (2016). Applications Of Remote Sensing In Lithological Mapping Of East Esh El Malaha Area, Southwest Gulf Of Suez–Egypt. International Journal of Scientific and Engineering Research, 7 (12): 691-701.
[18]. Khawfany, A., Aref, M.A., Matsah, M.I., and Taj, R.J. (2017). Utilizing Landsat-8 data in mapping of sabkha, mangroves, and land covers in Jizan coastal plain, southwestern Saudi Arabia. Arab. J. Geosci. 10 (5).
[19]. Hassan, S., El Kazzaz ,Y., Taha, M., and Mohammad, A. (2017). Late Neoproterozoic basement rocks of Meatiq area, Central Eastern Desert, Egypt: petrography and remote sensing characterizations. J Afr Earth Sc 131:14-31.
[20]. Hammam, A., Gaber, A., Abdelwahed, M., and Hammed, M.S. (2018). Geological mapping of the Central Cairo-Suez District of Egypt, using space-borne optical and radar dataset, The Egyptian Journal of Remote Sensing and Space Sciences, 23 (3): 275-285.
[21]. Hammed, M. S., Shallaly, N. A., Abdel Ghani., I. M., Badr., Y. S., and Sayed, S. A. (2020). Application of Remotely Sensing Data in the Geologic and Radioactive Mapping of Wadi Fatirah Precambrian Rocks, North Eastern Desert, Egypt. Nuclear Sciences Scientific Journal 9: 227- 253.
[22]. Mohamed., T.A.M.,  Al-Naimi., L. S.,  Mgbeojedo., T. I., and Agoha., C.C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan. Journal of Petroleum Exploration and Production (2021) 11:1123-1138.
[23]. Khalifa, A., Bashir, B., Çakir, Z., Kaya, Ş., Alsalman, A., and Henaish, A. (2021). Paradigm of Geological Mapping of the Adıyaman Fault Zone of Eastern Turkey Using Landsat 8 Remotely Sensed Data Coupled with PCA, ICA, and MNFA Techniques. ISPRS Int. J. Geo-Inf. 2021.
[24]. El-Qassas, R., Ahmed, S., Abd-ElSalam, H., and Abu-Donia, A. (2021). Integrating of Remote Sensing and Airborne Magnetic Data to Outline the Geologic Structural Lineaments That Controlled Mineralization Deposits for the Area around Gabal El-Niteishat, Central Eastern Desert, Egypt. Geomaterials, 11, 1-21.
[25]. Kamal El-Din., G. M., El-Noby., E., Abdelkareem., M., and Hamimi., Z. (2021). Using multispectral and radar remote sensing data for geological investigation, Qena-Safaga Shear Zone, Eastern Desert, Egypt. Arab. J. Geosci. 14:997.
[26]. Seleim, A.M., Bekiet, M.H., and Hammed., M.S. (2022). Enhanced lithological mapping of Durba-Araba basement blocks, along the eastern margin of the Central Gulf of Suez Rift, Egypt, using Landsat-8 Datat. Arabian Journal of Geosciences, 10208.
[27]. Kröner, A., Krüger, J.,and  Rashwan, A.A.A. (1994).  Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai.  Geol Rundsch, 83:502–513.
[28]. Stern, R.J. (1994). Arc assembly and continental collision in the Neoproterozoic East African orogen: implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22: 319-351.
[29]. Stern, R.J. (2002). Crustal evolution in the East African Orogen: a neodymium isotopic perspective. Journal of African Earth Science, 34:109-117.
[30]. Johnson, P.R., Andresen., A., Collins., A.S., Fowler., A.R., Fritz., H., Ghebreab., W., Kusky., T., and Stern., R. J. (2011). Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic event in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167-232.
[31]. Nasiri Benzenjani, R., Pease, V., Whitehouse, M.J., Shalaby, M.H., Kadi, K.A., and Kozdroj, W. (2014). Detrital zircons geochronology and provenance of the Neoproterozoic Hammamat Group (Igla Basin), Egypt and the Thalbah Group, NW Saudi Arabia: Implications for regional collision tectonics. Precambr Res 245:225-243.
[32]. Basta, F.F., Maurice, A.E., Bakhit, B.R., Azer, M.K., and El-Sobky, A.F. (2017). Intrusive rocks of the Wadi Hamad Area, North Eastern Desert, Egypt: change of magma composition with maturity of Neoproterozoic continental island arc and the role of collisional plutonism in the differentiation of arc crust. Lithos, Volumes 288–289: 248-263.
[33]. Said, R. (1990). The Geology of Egypt. Balkema, Rotterdam, Brookfield, 730 p.
[34]. Youssef, M.I. (1957). Upper Cretaceous rocks in Kosseir area. Bull. lnst. Desert Egypte 7 (2): 35-54.
[35]. Tarabili, E.E. (1966). General outlines of epeirogenesis and sedimentation in the region between Safaga, Quseir, and southern Wadi Qena area, Eastern Desert, Egypt. American Association of Petroleum Geology Bulletin 50: 1890-1898.
[36]. Abd El-Razik, T.M. (1967). Stratigraphy of the sedimentary cover of the Anz-Atshan-south Duwi district. Bull. Fac. Sci., Cairo Univ. 41: 153-179.
[37]. Said, R. (1962). The Geology of Egypt. Elsevier, Amsterdam-New York, 377p.
[38]. Sadek, A. and Abdel Razik, T.M. (1970). Zonal stratigraphy of the lower Tertiary of Gebel Urn El Huetat Red Sea by means of nannofossils. 7th Arabian Petroleum Congress., Kuwait, Paper 51, 16p.
[39]. Abdel Razik, T.M. (1972). Comparative studies on the upper Cretaceous-early Paleocene sediments of the Red Sea coast, Nile Valley and Western Desert, Egypt. 8th Arab Petroleum Congress., Algiers, B-3, 23p.
[40]. Schrank, E. (1984). Organic-geochemical and palynological studies of a Dakhla Shale profile (late Cretaceous) in southeast Egypt, Part A: Succession of microfloras and depositional environment. Berl. geowiss. abh. reihe a. geol. palaeontol., Berlin. 50: 189-207.
[41]. Khalil, S.M. and Mc Clay, K.R. (2009). Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Marine and Petroleum Geology, 26, 1018–1034.
[42]. Akkad, S. and Dardir, A.A. (1966). Geology and phosphate deposits of Wasif, Safaga area. Egyptian Geological Survey, Cairo, Paper No.36, 35p.
[43]. El Gezeery, M.N. and Marzouk, I.M. (1974). Miocene rock stratigraphy of Egypt. Egyptian Journal of Geology, 18: 1-59.
[44]. Phillobbos, E.R., El Haddad, A.A., and Mahran, T.M. (1988). Comparison between Miocene and Pliocene facies distribution related to syn-rift tectonics along the Egyptian Red Sea coastal area. Egyptian General Petroleum Corporation, Ninth Petroleum Exploration and Production Conference, 1: 246-254.
[45]. Farahat, E.S., Shehata. A., and Hauzenberger, C. (2017). Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes. Bull Volcanol (2017) 79: 9.
[46]. El Bassyony, A.A. (1982). Stratigraphical Studies on Miocene and Younger Exposures Between Quseir and Berenice, Red Sea Coast, Egypt. PhD thesis, Ain Shams University, Cairo, 200p.
[47]. Philobbos, E.R., El Haddad, A.A., Luger, P., Bekir, R., and Mahran, T.M. (1993). Syn-rift Miocene sedimentation around fault blocks in the Abu Ghusun-Wadi el Gemal area, Red Sea, Egypt. In: Philobbos, E.R., Purser, B.H. (eds.), Geodynamics and Sedimentation of the Red Sea-Gulf of Aden Rift System. Geological Society of Egypt, Special Publication, 1: 115-142.
[48]. Orszag-Sperber, F., Purser, B.H., Rioual, M., and Plaziat, J.C. (1998). Post Miocene sedimentation and rift dynamics in the southern Gulf of Suez and northern Red Sea. In: Purser, B.H., Bosence, D.W.J. (eds.), Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, p. 427-447.
[49]. Sabins, F.F. (2000). Remote sensing: principles and interpretation (3rd edition). New York Freeman, New York, 494p.
[50]. Drury, S.A. (2004). Image interpretation in geology (3rd edition), Routledge, Oxfordshire, 304p.
[51]. Afify, H. A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: a case study in New Burg El-Arab area. Alexandria Engineering Journal, 50 (2): 187-195.
[52]. El Zalaky, M.A., Essam, M.E., and El Arefy, R.A. (2018). Assessment of band ratios and feature-oriented principal component selection (FPCS) techniques for iron oxides mapping with relation to radioactivity using landsat 8 at Bahariya Oasis. Egypt. Researcher 10(4):1-10.
[53]. Jensen, J.R. (1986). Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice-Hall, Englewood Cliffs, New Jersey, 379p.
[54]. Chen, C. H. and Zhang, X. (1999). Independent component analysis for remote sensing study. Proceedings of SPIE, 387, 150–158.
[55]. Gholami., R., Moradzadeh., A., and Yousefi., M. (2012). Assessing the performance of independent component analysis in remote sensing data processing. J. Indian Soc. Remote Sens. 40, 577–588.
[56]. Tempfli, K., Huurneman, G.C., Bakker, W. H., Janssen, L.L.F., Feringa, W.F., Gieske, A.S.M., Grabmaier, K.A., Hecker, C.A., Horn, J.A., Kerle, N., van der Meer, F.D., Parodi, G.N., Pohl, C., Reeves, C.V., van Ruitenbeek, F.J.A., Schetselaar, E.M., Weir, M.J.C., Westinga, E., and Woldai, T. (2009). Principles of remote sensing: an introductory textbook. (ITC Educational Textbook Series; Vol. 2). International Institute for Geo-Information Science and Earth Observation. 591p.
[57]. Continental Oil Company (CONOCO). (1987). Geological map of Egypt (scale 1:500 000) 1987-1988. Egypt. Gen. Petrol. Corp. and Conoco, 20 sheets.
[58]. Khalil, S. and  McClay, K. (2001). Tectonic evolution of the northwestern Red Sea-Gulf of Suez rift system. Geological Society of London, Special Publication 187, 453-473.
[59]. Khalil, S.M. and McClay, K.R. (2002). Extensional fault-related folding, northwestern Red Sea, Egypt. Special Volume. Journal of Structural Geology 24, 743-762.
[60]. Khalil, S. and McClay, K. (2018). Extensional fault-related folding in the northwestern Red Sea, Egypt: segmented fault growth, fault linkages, corner folds and basin evolution. Geological Society of London, Special Publication, 476, 49-81.
[61]. Morley, C.K., Nelson, R.A., Patton, T.L., and Munn, S.G. (1990). Transfer zones in the East African Rift System and their relevance to hydrocarbon exploration in rifts. AAPG Bull., 74, 1234-1253.
[62]. Abdelkareem, M., Akrby, A., Fakhry, M. and Mostafa., M. (2022). Using of remote sensing and aeromagnetic data for predicting poten­tial areas of hydrothermal mineral deposits in the Central Eastern Desert of Egypt. Journal of Geography and Cartography (2021) Volume 4 Issue 2, 36-49.
[63]. Mitchell, A.H.G. and Garson, M.S. (1981). Mineral deposits and global tectonic setting. Academic Press, 405pp.
[64]. Attawiya, M.Y. (1983). Geochemistty and genesis of the uranium minemlization of El Misikat area, Egypt. Ann. Geol. Surv. Egypt 13:67-74.
[65]. Yousefi, M. and Hronsky, J.M.A. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry 149 (2023) 105561.