[1]. Dominy, S.C., Noppe, M.A. and Annels, A.E. (2002). Errors and uncertainty in mineral resource and ore reserve estimation: the importance of getting it right. Exploration and Mining Geology, 11 (1-4): 77–98.
[2]. Hajsadeghi, S., Asghari, O., Mirmohammadi, M., Afzal, P. and Meshkani, S.A. (2020). Uncertainty-Volume fractal model for delineating copper mineralization controllers using geo-statistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bulletin of the Mineral Research and Exploration, 161 (161): 1–11.
[3]. Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F. and Hamed, Y. (2021). Geostatistics-based Method for Irregular Mineral Resource Estimation, in Ouenza Iron Mine, Northeastern Algeria. Geotechnical and Geological Engineering, 39(5): 3337–3346.
[4]. Kerbati, N.R., Gadri, L.,
Hadji, R., Hamad, R. and Boukelloul, M.L. (2020). Graphical and numerical methods for stability analysis in surrounding rock of underground excavations, example of Boukhadra Iron Mine NE Algeria. Geotechnical and Geological Engineering, 38, 2725–733.
[5]. Soltani, F., Moarefvand, P., Alinia, F. and Afzal, P. 2019. Characterizing Rare Earth Elements by coupling multivariate analysis, factor analysis and geo-statistical simulation; case-study of Gazestan deposit, central Iran. Journal of Mining and Environment, 10 (4): 929–945.
[6]. Yasrebi, A.B., Hezarkhani, A., Afzal, P., Karami, R., Eskandarnejad Tehrani, M. and Borumandnia, A. 2020. Application of an Ordinary Kriging-Artificial Neural Network for Elemental Distribution in Kahang Porphyry Deposit, Central Iran. Arabian Journal of Geosciences, 13, 748 (1–14).
[7]. Sotoudeh, F., Ataei, M., Kakaie, R. and Pourrahimian, Y. (2020). Application of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty. Journal of Mining and Environment, 11 (3): 695–709.
[8]. Shafayi, S.H. and Mohammad Torab, F. (2022). Ore Deposit Boundary Modification in Afghanistan Aynak Central Copper Deposit using Sequential Indicator Simulation and Indicator Kriging. Journal of Mining and Environment, 13 (2): 325–340.
[9]. Ongarbayev, I. and Madani, N. (2022). Anisotropic Inverse Distance Weighting Method: an Innovative Technique for Resource Modeling of Vein-type Deposits. Journal of Mining and Environment, 13 (4): 957–972.
[10]. Afeni, T.B., Lawal, A.I. and Adeyemi, R.A. (2020). Re-examination of Itakpe iron ore deposit for reserve estimation using geo-statistics and artificial neural network techniques. Arabian Journal of Geosciences, 13 (657).
[11]. Afeni, T.B., Akeju, V.O. and Aladejare, A.E. (2021). A comparative study of geometric and geo-statistical methods for qualitative reserve estimation of limestone deposit. Geoscience Frontiers, 12 (1): 243–253.
[12]. Zhang, J. and Yao, N. (2008). The geo-statistical framework for spatial prediction. Geo-spatial Information Science, 11(3): 180–185.
[13] Yasrebi, J., Saffari, M., Fathi, H., Karimian, N., Moazallahi, M. and Gazni, R. (2009). Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences, 4 (1): 93–102.
[14]. Badel, M., Angorani, S. and Panahi, M.S. (2011). The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences, 37 (4): 530–540.
[15]. Kis, I.M. (2016). Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend): case study of the Sandrovac Field. Rudarsko Geolosko Naftni Zbornik, 31 (2): 41–58.
[16]. Tercan, A.E. and Karayigit, A.I. (2001). Estimation of lignite reserve in the Kalburcayiri field, Kangal basin, Sivas, Turkey. International Journal of Coal Geology, 47 (2): 91–100.
[17]. Misra, D., Samanta, B., Dutta, S. and Bandopadhyay, S. (2007). Evaluation of artificial neural networks and kriging for the prediction of arsenic in Alaskan bedrock-derived stream sediments using gold concentration data. International Journal of Mining, Reclamation and Environment, 21 (4): 282–294.
[18]. Heriawan, M. N. and Koike, K. (2008). Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geo-statistics. International Journal of Coal Geology, 73 (3–4): 307–330.
[19]. Heriawan, M.N. and Koike, K. (2008). Uncertainty assessment of coal tonnage by spatial modeling of seam distribution and coal quality. International Journal of Coal Geology, 76 (3): 217–226.
[20]. Tahmasebi, P. and Hezarkhani, A. (2010). Comparison of optimized neural network with fuzzy logic for ore grade estimation. Australian Journal of Basic and Applied Sciences, 4 (5): 764–772.
[21]. Olea, R.A., Luppens, J.A. and Tewalt, S.J. (2011). Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit. International Journal of Coal Geology, 85 (1): 78–90.
[22]. Shahbeik, S., Afzal, P., Moarefvand, P. and Qumarsy, M. (2014). Comparison between ordinary kriging (OK) and inverse distance weighted (IDW) based on estimation error. case study: Dardevey iron ore deposit, NE Iran. Arabian Journal of Geosciences, 7 (9): 3693–3704.
[23]. Thakur, M., Samanta, B., and Chakravarty, D. (2014). Support and Information Effect Modeling for Recoverable Reserve Estimation of a Beach Sand Deposit in India. Natural Resources Research, 23 (2): 231–245.
[24]. Daya, A.A. and Bejari, H. (2015). A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran. Arabian Journal of Geosciences, 8 (8): 6003–6020.
[25]. Daya, A.A. (2015). Ordinary kriging for the estimation of vein type copper deposit: A case study of the Chelkureh, Iran. Journal of Mining and Metallurgy A: Mining, 51 (1): 1–14.
[26]. Thakur, M., Samanta, B. and Chakravarty, D. (2016). A non-stationary spatial approach to disjunctive kriging in reserve estimation. Spatial Statistics, 17, 131–160.
[27]. Jafrasteh, B., Fathianpour, N. and Suárez, A. (2018). Comparison of machine learning methods for copper ore grade estimation. Computational Geosciences, 22 (5): 1371–1388.
[28]. Rahimi, H., Asghari, O. and Afshar, A. (2018). A geo-statistical investigation of 3D magnetic inversion results using multi-Gaussian kriging and sequential Gaussian co-simulation. Journal of Applied Geophysics, 154, 136–149.
[29]. Rezaei, A., Hassani, H., Moarefvand, P. and Golmohammadi, A. (2019). Grade 3D Block Modeling and Reserve Estimation of the C-North Iron Skarn Ore Deposit, Sangan, NE Iran. Global Journal of Earth Science and Engineering, 6, 23–37.
[30]. Arinze, I.J., Emedo, C.O. and nad Ugbor, C.C. (2019). A scalar-geometric approach for the probable estimation of the reserve of some Pb-Zn deposits in Ameri, southeastern Nigeria. Journal of Sustainable Mining, 18 (4): 208–225.
[31]. Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F. and Hamed, Y. (2020). Semi-variograms and kriging techniques in iron ore reserve categorization: application at Jebel Wenza deposit. Arabian Journal of Geosciences, 13 (16): 1–10.
[32]. Uyan, M. and Dursun, A.E. (2021). Determination and modeling of lignite reserve using geostatistical analysis and GIS. Arabian Journal of Geosciences, 14 (312).
[33]. Dinda, K. and Samanta, B. (2021). Non-Gaussian Copula Simulation for Estimation of Recoverable Reserve in an Indian Copper Deposit. Natural Resources Research, 30 (1): 57–76.
[34]. Madani, N., Maleki, M. and Soltani-Mohammadi, S. (2022). Geo-statistical modeling of heterogeneous geo-clusters in a copper deposit integrated with multinomial logistic regression: An exercise on resource estimation. Ore Geology Reviews, 150 (3–4): 105132.
[35]. Pebesma, E.J. (2004). Multivariable geo-statistics in S: the gstat package.
Computers & Geosciences, 30 (7): 683–691.
[36]. Seyed Mousavi, S.Z., Tavakoli, H., Moarefvand, P. and Rezaei, M. (2020). Micro-structural, petro-graphical and mechanical studies of schist rocks under the freezing-thawing cycles. Cold Regions Science and Technology, 174, 103039.
[37]. Seyed Mousavi, S.Z. and Rezaei, M. (2022). Correlation assessment between degradation ratios of UCS and non-destructive properties of rock under freezing-thawing cycles. Geoderma, 428, 116209.