
 
 

Journal of Mining and Environment (JME), Vol. 15, No. 1, 2024, 21-40 

 Corresponding author: huch8272@star-co.net.kp (U.Ch. Han) 

 

 
Shahrood University 

of Technology 

 
Journal of Mining and Environment (JME) 

 
Journal homepage: www.jme.shahroodut.ac.ir 

 
Iranian Society of 

Mining Engineering 
(IRSME) 

 
Determination of Mechanical Parameters of Anthracite Coal using Flying 
Squirrel Search Algorithm with Timber Load and Displacement Data 
 
Myong Nam Sin1, Un Chol Han2*, Hyon Hyok Ri1, and Sung Il Jon3 

1. Faculty of Mining Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea 
2. School of Science and Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea 
3. Department of Applied Mathematics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea 
 

Article Info  Abstract 

Received 22 March 2023 
Received in Revised form 21 April 
2023 
Accepted 4 May 2023 
Published online 4 May 2023 
 
 
 
 
DOI:10.22044/jme.2023.12869.2335 

 Anthracite coal seam of Democratic People’s Republic of Korea was broken into 
particles to be soft due to geological tectonic actions through several stages in the 
Mesozoic era. Because the folds and faults have excessively developed and the shape 
of coal seam is very complicated, it is impossible to extract the anthracite coal by 
longwall mining system, and coal has been mainly mined by entry caving mining 
system. The aim of this work is to assess effectiveness of new combination of flying 
squirrel search algorithm (SSA) and artificial neural-network (ANN) for back-
analysis of time-depending mechanical parameters of anthracite coal based on timber 
loads and displacements measured in the coal face entry. The case study deals with a 
coal face entry in Sinchang Coal Mine located in the Unsan County, South Pyongan 
Province, DPR Korea. To verify the good performance of new combination of the 
SSA and ANN, the comparison studies between proposed back-analysis method and 
other methods with the same purpose, are conducted using data measured in coal 
face entry. The mean absolute error (MAE) of weighted error norm of ANN-SSA is 
relatively smaller in comparison with other methods, which is 2.49. The new back-
analysis is the good method to determine the suitable time-dependent mechanical 
parameters of anthracite coal surrounding the entry in very soft coal seam. 
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1. Introduction 

The coal mechanical parameters and the initial 
stress have predominant influences on the stability 
of the surrounding coal of an entry in the coal 
seam. However, in practice, it is very difficult to 
determine the values of the time-dependent soft 
coal mass parameters. To obtain these values of 
the time-dependent soft coal mass parameters 
based on very limited amounts of measured data, 
back-analysis is the most commonly used 
approach worldwide. Field measurement data may 
include displacements [1–4], strains, and stresses 
[5, 6]. 

Because the displacements of a rock mass can 
be measured easily and reliably, back-analysis 
based on displacements has long been an active 
topic of research. Some important studies are 
summarized below. 

Ghorbani and Sharifzadeh [7] have proposed the 
displacement based direct back-analysis using 
univariate optimization algorithm by which geo-
mechanical properties of rocks, stress ratio, and 
joints parameters are identified. Zhang et al. [8] 
have determined the modulus of elasticity and the 
horizontal in situ stress perpendicular to the axis 
line of the opening for the Zhanghewan Pumped 
Storage Power Station in China using iterative 
algorithms such as the direct search technique and 
the damped least squares technique in 
combination with the three-dimensional finite-
element pattern technique for displacement back-
analysis. 

The values for the modulus of elasticity, the 
poisson’s ratio, and the six components of the 
initial stress levels of the ground for a tunnel have 
been identified using the three-dimensional finite-
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element method and the secant method by 
Hisatake and Hieda [9]. Han et al. [2] proposed a 
displacement back-analysis based on grey vehulst 
model, and Yang et al. [10] have estimated the 
stress increment and viscoelastic parameters of a 
surrounding rock mass for a tunnel using a three-
element model for displacement back analysis. 

In a departure from the studies described above, 
Liang et al. [11] have proposed a new back 
analysis method based on a fuzzy back-
propagation neural network (BPNN), and have 
used this method to identify the mechanical 
parameters and initial stresses of the surrounding 
rock for underground engineering projects based 
on measured displacements. Feng et al. [12] have 
suggested the new displacement back-analysis to 
identify mechanical geo-material parameters 
based on hybrid intelligent methodology, which is 
an integration of evolutionary support vector 
machines (SVMs), numerical analysis, and 
genetic algorithm. Also Feng et al. [13] have 
proposed the approach for estimating the 
mechanical rock mass parameters relating to the 
three gorges project permanent ship lock using an 
intelligent displacement back-analysis method, 
which is a combination of a neural network, an 
evolutionary calculation, and numerical analysis 
techniques. Yu et al. [14] have proposed an 
intelligent method for the effective displacement 
back-analysis of earth-rockfill dams by combining 
neural networks and evolutionary calculation, 
which can employ neural networks, with optimal 
architecture trained by the evolutionary 
calculation and Vogl’s algorithm, instead of the 
time-consuming finite element analysis. 

Zhang et al. [15] have suggested the 
displacement-based back-analysis method for the 
determination of rock mass modulus and the 
horizontal in situ stress perpendicular to the axis 
line of the tunnel excavation in hard and intact 
rock masses, whose principle is a best-fit solution 
of back-analysis by comparing the measured 
displacements near a tunnel face during 
excavation with those calculated using a three-
dimensional finite element method. Yazdani et al. 
[16] have identified the geo-mechanical properties 
of rocks, stress ratios and joint parameters of the 
Siah Bisheh powerhouse cavern in Iran using a 
univariate optimization algorithm and the Fast 
Lagrangian Analysis of Continua (FLAC) 
software package for displacement of back-
analysis. Sharifzadeh et al. [17] have estimated 
the rock properties and initial stress ratio for the 
Shibli twin tunnels in Iran based on displacement 
monitoring results using a univariate optimization 

algorithm and the FLAC. Besides, Gao and Ge 
[18] have proposed a new back-analysis method 
based on the novel evolutionary neural network 
that can be used to simultaneously determine the 
material parameters and the initial stress, which 
applies the immunized evolutionary programming 
to improve the back-analysis performance. Yu et 
a1. [19] have proposed a back-propagation neural-
network-based displacement back-analysis 
method for the identification of the geo-
mechanical parameters of the Yonglang landslide 
in China based on loading tests on a loading-test 
pile conducted to measure the displacements and 
moments. Gao et al. [20] have proposed the new 
neural network based on black hole algorithm to 
overcome the shortcomings of the traditional 
neural networks. Luo et al. [21] have proposed the 
displacement back-analysis method to calculate 
the rock mass parameters, double parameters 
analyzed by using the golden section method. 
Mohamad et al. [22] and Rezaei [23] have 
proposed the new combination and application of 
intelligent techniques including adaptive neuro-
fuzzy inference system (ANFIS), genetic 
algorithm (GA), and particle swarm optimization 
(PSO) to predict rock UCS based on indirect test 
methods. Rezaei et al. [24,25] and Wang and 
Rezaei [26] have used ANFIS-DE (differential 
evolution), ANFIS-FA (firefly algorithm), BPNN, 
radial basis function network (RBFNN) and 
multiple linear regression (MLR) techniques to 
estimate elastic modulus of intact rocks based on 
laboratory tests. 

From an analysis of previous studies, the 
following conclusions can be drawn. The basic 
methods used in the most studies have been 
numerical simulation methods and optimization 
algorithms. In these methods, numerical 
simulations are used to compute the displacements 
of the surrounding rock based on certain assumed 
values of the mechanical parameters and the 
initial stress. Then by optimizing the error 
between the computed displacements and the 
measured displacements via an optimization 
algorithm, the initially assumed values can be 
corrected into the real values. Therefore, this type 
of back-analysis is called optimization back-
analysis. However, there are a few papers that deal 
with back-analysis method based on timber load 
and displacement measured in the entry in case 
the rock pressure and displacement of the entry 
increase continuously owing to the coal softening 
with time in very soft coal such as anthracite coal. 

The aim of this work is to assess the 
effectiveness of new combination of flying 
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squirrel search algorithm (SSA) and BPNN for 
back-analysis of time-depending mechanical 
parameters of anthracite coal based on timber 
loads and displacements measured in the coal face 
entry. For doing this, we propose the methodology 
to estimate the time-depending mechanical 
parameters of coal by new combination of ANN 
and SSA. 

2. Engineering Background and Field 
Measurements 
2.1. Field condition and measuring method 

The case study deals with a coal face entry in 
Sinchang Coal Mine located in Unsan County, 
South Pyongan Province, DPR Korea. Anthracite 
coal seams were broken into particles due to 
geological tectonic actions through several stages 

in the Mesozoic era. Because the folds and fault 
are excessively developed and the shape of coal 
seam is very complicated, it is impossible to 
extract the anthracite coal by longwall mining 
system and coal is mainly mined by entry caving 
mining system. The coal faces where the load 
acting to the support and convergence of entry 
were measured are buried in 200 m deep from the 
surface. The driving cross-section of the entries is 
about 5 m2 and finished cross-section 4 m2. The 
average thickness of anthracite coal seam is 5.5 m 
and it has an gentle incline of 12°. Anthracite coal 
has been extracted by various kinds of entry 
caving coal mining systems. The principle layout 
of the enry caving mining system appied in this 
coal mine is shown in Figure 1. 

 
Figure 1. Principle layout of enry caving mining system: 

1-level haulage roadway, 2-raise, 3-entry or diagonal entry, 4-side cavern for caving, 5-crosscut 

The length of entry in this coal face is about 
25~30 m, and its maintenance period is about 30 
days. Wooden timbers are installed in the entry, 
whose diameter is about 18 cm and installation 
interval is 0.6~0.7 m. The measuring points are 5 
m away from a scraper conveyer head part and 30 
m to a conveyer end part. We measuered vertical 
and horizontal load acting to the beam and legs of 
the timber, vertical convergence between the 
crown and floor of entry and horizontal one 
between both of sidewalls of entry. Vertical load 
was measured with installation of 200 kN class 
loadcell and horizontal load by 150 kN class load 
cell. The measuring points in the coal between 
two timbers were installed to measure vertical and 
horizontal convergence. The convergences were 
measured by means of a laser distance meter, 
whose mark is DISTTMA2. 

Considering the installing condition of the 
loadcell, it was fixed between the post set up in 
the middle of timber beam and then vertical load 

acting to the timber was measured. After the 
lagging of 15 cm in diameter was put into 
between the two legs of both of timber and coal 
wall, 150 kN class loadcell was installed between 
the lagging and timber leg to measure the 
horizontal load. The installing plan of loadcells to 
measure vertical and horizontal load acting to the 
timber is shown in Figure 2. 

The measuring points were set up in the floor of 
entry and between the beams of timbers to 
measure the vertical convergence of the entry. The 
measuring points were set up in the coal wall 
between  two legs of timbers to measure the 
horizontal convergence of the entry. The 
measuring points for surveying the convergence 
were established by drilling the holes 30 mm in 
diameter and 1.5 m long and driving steel bars 
into the holes. The layout of measuring points for 
surveying the convergence of entry is shown in 
Figure 3. 
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Figure 2. Installing plan of loadcells to measure 

vertical and horizontal load acting on timber 
1-leg, 2-beam, 3-wedge, 4-lagging , 5-coal, 6-200 kN-
class loadcell, 7-150 kN-class loadcell, 8-middle post. 

Figure 3. Layout of measuring points for surveying 
vertical and horizontal convergence of entry: 1-

measuring point in the side walls, 2 and 3-measuring 
points in the roof and floor. 

2.2. Measured data analysis 
2.2.1. Analysis of loads acting on timber 

After setting up loadcells and convergence 
measuring points, loads acting to the timber and 
convergence of the entry were simultaneously 
measured at 3 days intervals during 30 days. The 
time–dependent vertical and horizontal 
distribution load acting to the timber is shown in 
Figure 4. 

As shown in Figure 4, we can find that rock 
pressure acting to the entry is unstable with the 
lapse of time and it continuously increases. Under 
the condition of knowing the vertical and 
horizontal distribution load, lateral pressure 
coefficient λ = ܲ୦

P୴
ൗ (where Pv and Ph-vertical 

and horizontal distribution load, respectively) was 
determined in the anthracite coal seam where 

measurements were conducted, whose result is 
listed in Table 1. 

 
Figure 4. Change charateristics of vertical and 

horizontal distribution load acting to the timber 
depending on time. 

Table 1. Change of lateral pressure coefficient depending on time. 
Measured date 

(days) 
Vertical distribution 

 load (KPa) 
Horizontal distribution 

 load (KPa) 
Lateral pressure 

 coefficient 
3 5.6 14.8 2.64 
6 7.4 19.2 2.6 
9 12.5 26.9 2.152 
12 23.6 35.7 1.512 
15 24.5 38.5 1.57 
18 34.2 54.5 1.593 
21 42.1 60.6 1.44 
24 52.3 85.7 1.64 
27 85.6 130.95 1.53 
30 105.4 260.76 2.47 

Average 39.32 72.76 1.914 
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Table 1 shows that the lateral pressure 
coefficients are changed along with time, their 
range is 1.44~2.64, and average value is about 2. 

2.2.2. Analysis of convergence displacements of 
entry 

The middle post starts to is driven into the floor 
of entry under the rock pressure two days after 
installing the measurement points. The reason is 
that coal is so soft that floor coal can’t resist the 
timber legs driving. As the entry deformation was 
so large that it was nearly collapsed at near 
completion of measurement, convergences 
measured in 27 and 30 days were not exact. 
Therefore, the values are excepted from analysis 
and the vertical and horizontal convergence of the 
entry depending on time is shown in Figure 5, 
which is graphed by using rest measured values. 
As shown in Figure 5, we can find that the entry 
deformation is unstable with the lapse of time, and 
it continuously increases.  

 
Figure 5. Change charateristics of vertical and 
horizontal convergence of entry in coal seam 

depending on time. 

3. Methodology for predicting mechanical 
parameters of coal by back-analysis 
3.1. Rock pressure characteristics of entry in 
anthracite coal seam 

The reason why rock pressure of the entry 
driven in the anthracite coal seam is large is as 
follows according to field observation. In case the 
intact coal is extracted from anthracite coal seam, 
we can see severe rock pressure phenomena. The 
phenomenon that the entry deformation under the 
above condition becomes large can not be fully 
described. If a space in the coal seam that has 
been compressed due to complicated tectonic 

actions is formed, coal is in contact with air to 
swell, so the mechanical parameters of coal 
undergo a great change in the process. The 
cohesion and internal friction angle of 
charactering the coal strength and the elastic 
modulus of charactering the coal deformability 
become weak with the lapse of time, which is the 
process of coal swelling. 

As shown in the above section, the increase of 
vertical and horizontal load acting to the timber 
with the lapse of time can be considered as plastic 
zone growth because the cohesion and internal 
friction angle of charactering the coal strength 
become weak along with time. It is very difficult 
to illustrate this process on an analytic basis but it 
can be easily analyzed by applying an intelligent 
back analysis method. The Mohr-Coulomb 
criterion is used in numerical simulation of coal 
failure process. 

3.2. Back-analysis based on flying squirrel 
search algorithm (SSA) 

Shown in Figure 6 is the flowchart for back-
analyzing the mechanical parameters of anthracite 
coal by combining finite difference method (FDM) 
with neural network and SSA. 

 
Figure 6. Back-analysis flowchart by combining 

FDM with ANN and SSA. 

In order to back-analyze the mechanical 
parameters of coal according to the flowchart 
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shown in Figure 6, we should go through the 
following steps. 

Firstly, in order to measure the vertical and 
horizontal load acting to the timber and vertical 
and horizontal convergence of the entry during 
drifting and coal mining, the measuring points are 
set up at the position some away from the driving 
face and the values are recorded that are measured 
at fixed time intervals until the entry suffers from 
severe mining effect. 

Secondly, the ranges of the mechanical 
parameters of coal should be preliminarily 
selected based on measured data and engineering 
experiences. 

After establishing the numerical model, various 
input values based on preliminarily-selected 
mechanical parameters are used to calculate the 
convergences of the entry and plastic zone size 
surrounding the entry. The output values from 
FLAC3D modelling approach the approximate 
range of measured results through repeated 
numerical simulation, so we can determine the 
ranges of mechanical parameters of rock mass to 
arrange the parameter combinations for the FDM. 

Thirdly, based on the experimental factors and 
design levels as well as the basic principles of 
orthogonal experimental design, an orthogonal 
layout is used to arrange the parameter 
combinations for the FDM. 

Fourthly, using above numerical simulation data 
weights and biases are determined by neural 
network to establish the database, which can be 
used by SSA. 

Fifthly, the mechanical parameters are finally 
determined with measured time in a new 
combination of the neural network and SSA based 
on measured load and displacement. 

3.3. Flying squirrel search algorithm (SSA) 

In the recent years, Jain et al. [27] have 
proposed a new simple and powerful nature-
inspired algorithm called squirrel search algorithm 
(SSA) for unconstrained numerical optimization 
problems. This algorithm simulates the dynamic 
foraging strategy of southern flying squirrels and 
their efficient way of gliding known as 
locomotion. 

As the squirrel search method is one of swarm 
intelligent search methods, it has been estimated 
that its search efficiency is very high. The main 
idea of this method is as follows. 

The swarm of squirrels is randomly located in 
the search space. Here, we suppose that squirrels 
are always on any trees. The feed that squirrels 

like most is hickory tree, which is defined as the 
best location (minimum fitness value) where a 
squirrel among the swarm takes. The tree that 
squirrel likes next is acorn tree and we consider it 
as a tree with the position that the order of fitness 
values among the swarm becomes greater from 
the second to the fourth. The positions of rest 
squirrels are on normal trees without feed. 
Squirrels on the acorn trees are going to the 
hickory trees. Squirrels on the normal trees are 
going to the acorn trees or hickory trees. 
However, presences of predator make them 
cautious and are forced them to use small random 
walk to search a nearby hiding location. Predator 
to squirrels can appear with constant probability 
Pd. The flying squirrels which could not explore 
the forest for optimal feed source in late winter 
and still survived may forage in new directions. It 
is assumed that only those squirrels that could not 
search the hickory nuts feed source and still 
survived will move to different directions in order 
to find better feed source. 

The squirrel searches feed to move away to trees 
in fixed area (search area) with repeating such 
processes. 

[SSA algorithm] 

Step 1: Generate equable random locations for n 
number of flying squirrels in allowable search 
space. Select probability criterions R1, R2 and R3 
for searching (0.7 of probability criterions is used in 
this study case). The number of search is defined as 
t = 0. 

Step 2: Evaluate fitness of each flying squirrel’s 

location 
2

0z-f(x) (x) L
. 

Sort the locations of flying squirrels in 
ascending order depending upon their fitness 
value. 

The flying squirrel with minimal fitness value is 
supposed on the hickory nut tree t

hx . The next 
three best flying squirrels are considered to be on 
the acorn nut trees ݔ௔

௜ (i = 1, 2, 3) and they are 
assumed to move towards hickory nut tree. 

The remaining flying squirrels are supposed to 
be on normal trees ݔ௡

௜  (i = 1,…, n-4). 

Step 3: Update the position of each flying squirrel as 
follows: 

-Flying squirrels on acorn trees are moving towards 
hickory nut tree with R1 of probability 
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3,2,1),(1  ixxGdxx t
ahcg

t
a

t
a iii

  (1) 

where hx is the location of flying squirrel 
that reached hickory nut tree, gd  is random 

gliding distance and cG is gliding constant 

-Flying squirrels on normal trees are moving towards 
acorn trees with R2 of probability. 

,4,,1),(1  nixxGdxx t
nacg

t
n

t
n ijii

  (2) 

-Flying squirrels on normal trees are moving towards 
hickory trees with R3 of probability. 

,4,,1),(1  nixxGdxx t
nhcg

t
n

t
n iii

  (3) 

-The rest flying squirrels are moving towards random 
directions to avoid predator 

(D) Ux ~  (4) 

where U(D) is equally distributed function in 
space D. 

Step 4: Make seasonal judgment. If the late winter is 
judged, the positions of the flying squirrels that did 
not search acorn trees in the past

 
are initialized 

again. 

-Calculate the judgment threshold of the late winter. 

mtt
m eSS /

0


 
(5) 

where S0-initial threshold, tm-limitation of time 
steps. 

-When it is late winter, search for the flying squirrels 
only on normal trees in the past and update their 
locations. 





3

1i
h

i
a xxS

 
(6) 

If S < Sm, idUx t
ni

i(D), ~   

where id means index set of the flying squirrels 
only on normal trees in the past.  

Step 5: If stop condition is not satisfied, go to step 2 
with t = t + 1. If stop condition is satisfied, the 
location of flying squirrel with the lowest fitness 
value is taken as final optimal solution to finish 
search process.  

The search area D in the algorithm is defined as 
4-demention space as follows. 

],[ min

4

min
i

i

i xxD 
 

(7) 

where ixmin  and  
ixmax  are the upper and lower 

bounds of range corresponding to measuring date 
of i-th input parameter, respectively. The generation of random vectors corresponding 
to x~U(D) are proceeded as follows. 

Txxx ),,( 41   (8) 

)()1,0( minmaxmin
iii

i xxrandxx   (9) 

Combined flowchart of neural and SSA is 
shown in Figure 6. 

The method for determining optimal mechanical 
parameters of coal is presented step by step under 
the given condition. 

4. Case Study 
4.1. Determining ranges and levels of back-
analysis parameters 

The numerical simulations of mechanical model 
established were conducted with change in 
mechanical parameters of coal, so that output 
values simulated from FLAC3D approach 
approximate range of measured convergence and 
support load. Mechanical parameters of anthracite 
coal and host rock of relevant coal mine were 
measured under the experimental condition, 
whose value range is shown in Table 2. 

Table 2. Mechanical parameters of anthracite coal and host rock. 

No. Rock name 
Compressive 

strength 
(MPa) 

Tensile strength 
(MPa) 

Cohesion 
(MPa) 

Internal friction 
angle 

(°) 

Elastic modulus 
(× 104 MPa) 

1 Anthracite coal 5~13 0.5 1.3~3.1 44 0.5 
2 Shale 17-39 3-5 4.2~8.5 15~30 3~5 
3 Sandy shale 39-40 4-8 6 30 4~6 
4 siltstone 36~56 1~2 17 35~56 2.67 
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The hanging wall rocks of anthracite coal 
consist of shale and sandy shale, while footwall 
rock consists of siltstone. The computational 
model scope is 60 m in the x-direction, 10 m in y-
direction and 65 m in z-direction and coal 
thickness 5.5 m (Figure 7). There are 28 764 
hexahedron elements. 

As the studied coal face is buried in 200 m deep 
from the surface, the vertical distribution load, 

௭ܲ = ܪߛ = 25000 × 167.5 = 4 187 500 ܲܽ =
4.185 MPa  is given on the top boundary and 
lateral distribution load is the same to the vertical 
distribution load multiplied by 2 (lateral pressure 
coefficient determined by the field measuring 
data), that is, ୶ܲ = ୷ܲ = ܪߛߣ = 2 × 25000 ×
167.5 = 8 375 000 ܲܽ = ,ܽܲܯ 8.375  is given 
on the both lateral boundaries. Corresponding 
displacement constrains are given on the rest 
boundary surfaces of the model, that is, x, y, and z 
direction displacement of the model bottom are 
zero and y directional displacements in the front 
and back plane of the model zero. 

The vertical and horizontal distribution loads are 
given in the interior of model depending on the 
depth. Material constitutive model is Mohr–
Coulomb failure criterion. The material 
parameters of Mohr–Coulomb failure criterion are 
volume modulus, shear modulus, cohesion, 
internal friction angle, dilatant angle and tensile 
strength. During numerical simulation, only 
mechanical parameters of coal are changed and 
properties of host rock remain constant. 

In order to consider the interaction between the 
timber installed in the entry and coal seam around 
it, vertical distribution reaction is given on the 

roof, which is distribution load on the timber 
beam at the moment when the post starts to be 
driven into the floor coal divided by beam square, 
that is, 7.056 kN/(2.2×0.18) m2 = 17.82 kPa. 
Horizontal distribution reaction is also given on 
the both sidewalls of entry, whose calculating 
method is the same above, that is, 28.224 
kN/(0.15×2.1) m2 = 89.6 kPa. 

For example, after 6 days lapse of time when the 
measuring points are installed to determine the 
ranges and levels of back analyzed parameters of 
coal consisting of E, μ, C, and φ, Figures 8-11 
show the results of vertical and horizontal 
convergence of the entry and vertical and 
horizontal distribution load acting to the timber 
calculated from FLAC3D. 

 
Figure 7. Numerical model. 

  
Figure 8. Settle curve of entry roof simulated by FLAC3D 
after 6 days lapse of time when measurement points are 

installed. 

Figure 9. Swelling curve of entry floor simulated by FLAC3D 
after 6 days lapse of time when measurement points are 

installed. 
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Figure 10. Convergence curve of entry sidewall simulated by FLAC3D after 6 days lapse of time when 

measurement points are installed. 

After 6 days lapse of time when the measuring 
points are installed, the sum of roof settle and 
floor swelling of the entry is its convergence, 
which is 6.5 cm. 

After 6 days lapse of time when the measuring 
points are installed, the convergence of sidewalls 
of the entry is two times of convergence in its one 
sidewall , which is 8.4 cm. 

After 6 days lapse of time when the measuring 
points are installed, vertical and horizontal load 
acting to the timber are the same as the plastic 
area around the entry multiplied by 19 kN/m3 of 
volumetric weight. Table 3 shows initial 
prediction values of convergences and loads of the 
entry with measured dates simulated by the 
above-mentioned method. 

 
Figure 11. Plastic zone arrounding the entry 

simulated by FLAC3D after 6 days lapse of time 
when measurement points are installed. 

Table 3. Range of convergences and loads of entry simulated by FLAC3D. 

Time 
(days) 

Poisson’s 
ratio  

Elastic 
modulus 
(MPa) 

Lateral 
pressure  

coefficient 

Cohesion 
(MPa) 

Internal 
friction 
angle (°) 

Vertical 
distribution  
load ( KPa) 

horizontal 
distribution  
load (KPa) 

Vertical 
convergence 

(m) 

Horizontal 
convergence 

(m) 
3 0.3 499.92 2 4.0 44 3.8 9.5 0.034 0.02 
6 0.3 260 2 3.7 42 7.6 15.2 0.065 0.084 
9 0.3 129.24 2 3.0 34 51.3 39 0.18 0.294 

12 0.3 83.67 2 3.05 35 26.6 34.2 0.22 0.34 
15 0.3 51.66 2 3.0 34 29.8 38 0.36 0.57 
18 0.3 43.056 2 2.9 33 34.88 47.5 0.41 0.68 
21 0.3 41.4 2 2.85 32.6 35.9 58.9 0.42 0.70 
24 0.3 39.33 2 2.8 32 41.8 79.8 0.44 0.72 

 

As a result of numerical simulation, the back-
analyzed parameters cover the range that the 
center of Poisson’s ratio is 0.3, range of elastic 
modulus 39.33~499.2MPa, cohesion 2.8~4.0MPa, 
and internal friction angle 32~44°. 

 

4.2. Elasto–plastic simulation of entry by 
FLAC3D with orthogonal layout 

After setting up the measuring points, elasto–
plastic simulation of the entry by FLAC3D was 
conducted according to the measuring interval. 
The above-mentioned numerical model, boundary 
and initial condition remained unchanged and 
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only mechanical parameters of coal were changed. 
The levels of the factors for an orthogonal 

experiment according to the measuring intervals 
are shown in Table 4. 

Table 4. Factor levels of parameters used in FLAC3D simulation according to measuring time. 
Measuring 

interval (days) Level Poisson’s 
ratio 

Elastic modulus 
(MPa) 

Cohesion 
(MPa) 

Internal friction 
Angle (°) 

3 
1 0.31 443.2 3.8 43.5 
2 0.3 499.9 4.0 44 
3 0.29 563.6 4.26 44.5 

6 
1 0.31 236.77 3.65 41.5 
2 0.3 260 3.7 42 
3 0.29 322 3.75 42.5 

… … … … … … 

24 
1 0.32 36.18 2.79 31.8 
2 0.31 39.33 2.8 32 
3 0.29 44.8 2.81 32.2 

 
Numerical simulations were conducted by 

FLAC3D according to the orthogonal experiment 
layout with factor levels shown in Table 4 and 
orthogonal experiment layout and numerical 
simulation results are shown in Table 5. Here, A 
means Poisson’s ratio, B elastic modulus, C 
cohesion, and D internal friction angle in Table 5. 
Orthogonal experiment layout L12(43) was used to 
consider the mixed effect of several parameters 
and numerical simulations were conducted to 
change mechanical parameters of corresponding 
levels. Generally, we conducted numerical 
simulations numbered 96. 

4.3. Relation model between mechanical 
parameters of coal and supposed load and 
convergence by hierarchical neural network 

The relation between input and output of the 
hierarchical neural network is as follows. 



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where  n is number of input signals of neural 
network, p is the number of output signals of 
neural network, nk is the number of neurons in the 

k-th layer, Lnumber of layers of neural network,
0
ii zx   ),1( ni  is i-th input signal of neural 

network, 
T

nxxx ),,,( 21 x is the input signal 
vector of neural network, ),1( pjzz L

jj   is the 
output signal of j-th neuron of neural network,  
z=(z1, z2,…,zp)T is the output signal vector of 
neural network, zj

k( knj ,1 ) is the output signal 
of j-th neuron in the k-th layer, uj

k( knj ,1 ) is the 
internal potential signal of j-th neuron in the k-th 
layer, 

k
jiw  is the combined weight of i-th neuron in 

the k-1-th layer, and j-th neuron in the k-th layer, 
k
jh is bias value of j-th neuron in the k-th layer, 

and fj
k( knj ,1 ) is the output function of j-th 

neuron in the k-th layer. 
In this study, the input vector 

Txxx ),,,( 421 x  consists of E, μ, C, and φ 
and output vector z = (z1, z2,…, z4)T is two 
convergence displacements and two loads acting 
on the timber. 

Detailed structure parameters of the neural 
network are listed in Table 6. 
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Table 5. Orthogonal layout L12(43) and values simulated by FLAC3D. 
Measuring 

interval 
(days) 

Simulation 
plan 

Factors 

A B C D Vertical 
Load (kPa) 

Horizontal 
load (kPa) 

Vertical 
convergence (m) 

Horizontal 
convergence (m) 

3 

1 1 1 1 1 5.7 13.3 0.034 0.051 
2 1 2 2 2 5.7 11.4 0.034 0.05 
3 1 3 3 3 5.7 13.3 0.032 0.048 
4 2 1 1 2 5.7 15.2 0.034 0.05 
5 2 2 2 3 5.7 15.2 0.0324 0.049 
6 2 3 3 1 5.7 13.3 0.031 0.0314 
7 3 1 1 1 5.7 17.1 0.032 0.05 
8 3 2 2 2 5.7 15.2 0.0314 0.048 
9 3 3 3 3 3.8 13.3 0.0308 0.046 

10 1 1 3 3 5.7 13.3 0.034 0.07 
11 1 2 1 1 7.6 17.1 0.0332 0.0332 
12 1 3 2 2 5.7 15.2 0.0328 0.0488 

6 
 

1 1 1 1 1 7.6 19 0.072 0.0104 
2 1 2 2 2 7.6 19 0.064 0.1004 
3 1 3 3 3 7.6 17.1 0.068 0.097 
4 2 1 1 2 7.6 19 0.066 0.103 
5 2 2 2 3 7.6 19 0.064 0.10 
6 2 3 3 1 7.6 20.9 0.064 0.097 
7 3 1 1 1 7.6 19 0.066 0.103 
8 3 2 2 2 5.7 17.1 0.0634 0.099 
9 3 3 3 3 5.7 19 0.062 0.095 

10 1 1 3 3 5.7 19 0.0664 0.104 
11 1 2 1 1 7.6 19 0.065 0.102 
12 1 3 2 2 7.6 19 0.064 0.098 

… … … … … … … … … … 

24 

1 1 1 1 1 53.2 84.4 0.454 0.76 
2 1 2 2 2 53.2 83.6 0.44 0.72 
3 1 3 3 3 51.3 72.2 0.441 0.70 
4 2 1 1 2 49.4 85.5 0.452 0.76 
5 2 2 2 3 49.4 77.9 0.432 0.72 
6 2 3 3 1 52.3 83.6 0.42 0.70 
7 3 1 1 1 49.4 89.8 0.45 0.76 
8 3 2 2 2 49.4 83.6 0.43 0.72 
9 3 3 3 3 47.5 74.1 0.44 0.69 

10 1 1 3 3 45.6 74.1 0.46 0.766 
11 1 2 1 1 55.1 83.9 0.44 0.71 
12 1 3 2 2 53.2 83.6 0.43 0.70 

Table 6. Characteristics of BP neural network. 
Index  Value 

Number of input neurons 4 
Number of output neurons 4 
Number of hidden layer 1 
Number of neurons in the hidden layer 30 
Transfer function of hidden layer  tansig 
Learning error  10-5 

 
The basic skills for establishing the optimal 

neural network architecture is to search for 
number of hidden layers and number of neurons in 
each layer. The optimal neural network structure 

searched through several tens of training is 4-30-4 
based on engineering experience and judgment, 
whose learning error curve is shown in Figure 12. 
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Figure 12. Error convergence curve of neural network learning. 

The weights and biases between input layer and 
hidden layer, hidden layer, and output layer are 
searched through the neural network training. The 
maximum relative error is less than 3% from 
testing result on the back-propagation neural 
network structure established. 

The non-linear relation f(x)z  between the 
input parameters and output values according to 
the measured intervals of 3 days, 6 days, 9 
days,…, 24 days from the start of measurement are 
established by using the above-mentioned method 
to make the database for combining operation 
with SSA algorithm. 

Non-linear relation equation f(x)z  is 
composed in detail as follows: 






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2

11
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12

1(tan
zW
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That is: 

  21 h)hz  xWsigWxf 12 (tan)(  
(12) 

where W1 and W2 are weight vector of 4 × 4 
matrix type, respectively. h1 and h2 are bias vector 
of 4 × 1 matrix type, respectively. x is input vector 
of 4 × 1 matrix type. z1 is hidden output vector of 
4 × 1 matrix type. z is output vector of 4 × 1 
matrix type. 

If input vector 
Txxx ),,,( 421 x , that is 

Poisson’s ratio, elastic modulus, cohesion, and 
internal friction angle of anthracite coal are given, 
output vector z = (z1, z2,…,z4)T , that is vertical and 
horizontal distribution load on the timber and 
vertical and horizontal convergence of entry can 
be solved from Eq. (12). Therefore, mechanical 
parameters of coal can be determined from the 
above function relation. 

5. Results and Discussion 

Under the condition that the relation between 
mechanical parameters of coal and the 
displacements and loads on timber are given 
through the neural network training, mechanical 
parameters of coal corresponding to the measured 
displacement and load on the timber z0 refers to 
the problem for solving x0 satisfying )f(xz 00   
from f(x)z   with sufficient correctness. 

This problem can be solved as following 
optimal problem: 

2
0 0

Dx
z-f(x) argmin


x  (13) 

Figure 13 shows the combined flowchart of 
ANN and SSA proposed in this paper in more 
detail. 
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Figure 13. SSA search flowchart combined with ANN. 

For example, when input parameter values and 
measured values corresponding to 3 days after 
installing the measuring points (that is, vertical 
and horizontal distribution load acting to the 
timber and vertical and horizontal convergence of 
the entry) are substituted into SSA to conduct 

searching operation, obtained convergence curve 
of fitness function is shown in Figure 14. The 
changing characteristics of mechanical parameters 
predicted from the SSA are given in Table 7 
according to the measuring interval. 

 
Figure 14. Convergence curve of fitness function according to generations. 
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Table 7. Optimal values of mechanical parameters of anthracite coal estimated form SSA. 
Time 
(day) 

Fitness  
function Poisson’s ratio  E (MPa) C (MPa) ૎ (°) 

3 0.3545 0.308499 563.541 4.19894 44.4796 
6 13.5361 0.291138 321.974 3.73667 41.5066 
9 33.9152 0.30508 148.267 3.34982  37.0005 
12 86.0943 0.295423 71.7582 3.00389  35.1152 
15 121.0306 0.304686 48.0516 3.04995  33.5006 
18 143.2855 0.310126 47.6557 2.86503  32.8495 
21 178.8186 0.314098 43.8695 2.81458  32.708 
24 216.7034 0.29389 43.4604 2.80998  31.8002 

 
To verify the good performance of new 

combination of the ANN and SSA, the 
comparison studies between back analysis method 
by ANN-SSA and those by ANN-PSO [22] and 
ANN-GA [20] with same purpose are conducted 
using data measured in coal face entry of 
Sinchang coal mine (Figures 4 and 5) as an 
example. As the verification is performance 
estimation of optimization methods, modeling 
method of vertical and horizontal load and vertical 
and horizontal convergence of coal face entry by 
ANN does not change and the optimization of Eq. 
(13) on model function is conducted using above 
three intelligent back-analysis methods. This time, 
parameters in every method are established in 
Table 8 according to literatures [22]. 

The errors of measured values (Figures 4 and 5) 
and back-estimation values by ANN-SSA, ANN-

PSO, and ANN-GA are as follows depending on 
time (3-24 days). 

Table 8. Established values of simulation 
parameters. 

GA parameter Value 
Size of population 50 
Rate of mutation 0.05 
Rate of cross-over 0.7 
PSO parameter Value 
Size of population 50 
W 0.5 
C1 2 
C2 2 
SSA parameter Value 
Size of population 50 
Gc 1.9 
Ri 0.7 
dg 2 
tm 50 

 
Figure 15. Comparison between measured vertical distribution load acting to the timber and values estimated by 

ANN-SSA, ANN-PSO, and ANN-GA. 
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Table 9. Absolute errors of estimated vertical load (unit: kPa). 
Dates ANN-SSP ANN-PSO ANN-GA 

3 0.05 0.82 0.13 
6 0.09 0.13 0.21 
9 0.7 0.8 0.78 

12 2.5 1.8 2.1 
15 4.7 3.9 3.8 
18 2.9 3.5 4.9 
21 1.8 2.9 3.8 
24 4.3 4.2 4.3 

Mean 2.13 2.25625 2.5025 

 
Figure 16. Comparison between measured horizontal distribution load acting to the timber and values estimated 

by ANN-SSA, ANN-PSO and ANN-GA. 

Table 10. Absolute errors of estimated horizontal load (unit: kPa). 
Dates ANN-SSP ANN-PSO ANN-GA 

3 1.3 1.3 2.3 
6 1.6 2.6 2.7 
9 3.3 3.9 1.1 

12 3.6 1.6 3.4 
15 3.2 3.6 3.9 
18 3.7 3.9 4.1 
21 2.7 2.9 3.1 
24 6.4 6.8 7.1 

Mean 3.225 3.325 3.4625 
 
As shown in Figures 15 and 16 and Tables 9 and 

10, the mean absolute errors between the vertical 
and horizontal distribution load and predicted 
values from the method proposed in this paper are 
very small, which are 2.13 kPa and 3.225 kPa, 
respectively. However, the mean relative errors 
between the values predicted in accordance with 

ANN-GA, ANN-PSO and measured values are 
larger than 2.25 kPa and 3.3 kPa, respectively. 

Therefore, the vertical and horizontal 
distribution load predicted from ANN-SSA is 
revealed to be in good agreement with the 
corresponding measured vertical and horizontal 
distribution load. 
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Figure 17. Comparison between vertical convergence measured in entry and values estimated by ANN-SSA, 

ANN-PSO and ANN-GA. 

 
Figure 18. Comparison between horizontal convergence measured in entry and values estimated by ANN-SSA, 

ANN-PSO and ANN-GA. 

Table 11. Absolute errors of estimated vertical 
convergence (unit: cm). 

Date ANN-SSP ANN-PSO ANN-GA 
3 0.09 1.2 1.8 
6 0.2 0.8 1.2 
9 0.4 1.2 1.8 

12 3.1 2.5 0.3 
15 0.9 1.3 1.3 
18 3 2.1 2.3 
21 2.1 3.2 1.9 
24 2.4 2.1 3.1 

Mean 1.52375 1.8 1.7125 

Table 12. Absolute errors of estimated horizontal 
convergence (unit: cm). 

Date ANN-SSP ANN-PSO ANN-GA 
3 0.1 0.15 1.3 
6 1.27 1.91 1.17 
9 1.5 2.5 1.9 

12 0.9 1.3 1.9 
15 1.4 1.3 1.4 
18 2.6 1.6 1.6 
21 1.7 2.7 2.7 
24 1.3 1.9 2.3 

Mean 1.34625 1.67 1.78375 
 

As shown in Figures 17 and 18 and Tables 11 
and 12, the mean absolute errors between the 
vertical and horizontal convergence and values 
predicted from ANN-SSA are very small and 
maximum relative error is less than 1.53 cm and 
1.346 cm, respectively. However, the mean 

absolute errors between the values predicted in 
accordance with ANN-GA and ANN-PSO and 
measured values are less than 1.7 cm and 1.6 cm, 
respectively. Therefore, the vertical and horizontal 
convergence predicted from ANN-SSA is revealed 
to be in good agreement with the corresponding 
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measured vertical and horizontal convergence. 
As shown in the above figures and tables, ANN-

SSA method proposed in this paper is relatively 
smaller in view of the mean absolute error. As the 
absolute errors between measured values and 
back-estimated values become larger with the 
increase of measurement days (3-24 days), the 
mean absolute error (MAE) of weighted error 
norm of Eq. (13) is selected as the comprehensive 
comparison standard. 





N

t
tpredmeas Wzz

N
MAE

1

1
 (14) 

where Wt –weighted value about covariance 
matrix of vertical and horizontal load and vertical 
and horizontal convergence simulated according 
to Table 5. 

As shown in the Table 13, MAE of ANN-SSA is 
relatively smaller in comparison with other 
methods. 

It can be seen that the mechanical parameters of 
rock mass around the drifts or chambers driven in 

soft rock seam can be predicted with high 
accuracy by the method proposed in this paper. 
The elastic modulus, cohesion and internal 
friction angle of anthracite coal depending on time 
are shown in Figures 19, 20, and 21. 

Table 13. MAE according to methods. 
No Method MAE 
1 ANN-SSA 2.49 
2 ANN-PSO 3.12 
3 ANN-GA 3.68 

 
As shown in Figure 19, it can be seen the elastic 

modulus of anthracite coal predicted from ANN-
SSA decreased depending on time, especially, 
rapidly drops for 12 days after driving entry and 
installing timbers and slowly after 12 days. This is 
agreed with the tendency that vertical and 
horizontal displacement measured from the field 
continuously increase. It is also predicted that 
anthracite coal surrounding the entry nearly failed 
after 12 days.  

  
Figure 19. Change of the elastic modulus of anthracite 

coal depending on time. 
Figure 20. Change of the cohesion of anthracite coal 

depending on time. 

As shown in Figure 20, it can be seen that the 
cohesion of anthracite coal predicted from ANN-
SSA decreased depending on time, especially, 
rapidly drops for 12 days after driving entry and 
installing timbers and slowly after 12 days. This is 
agreed with the tendency that vertical and 
horizontal load measured from the field 
continuously increase. It is also proved that 
anthracite coal surrounding the entry nearly failed 
after 12 days. Therefore, we can predict that 
whole weight of coal upper the beam and leg of 
wooden timer acts to them depending on time. 

 
Figure 21. Change of the internal friction angle of 

anthracite coal depending on time. 
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As shown in Figure 21, it can be seen that the 
internal angle of anthracite coal predicted from 
ANN-SSA also decreased slowly with time. It is 
proved that the internal angle of anthracite coal 
has considerable influence the weakening of coal 
strength. 

Therefore, the vertical and horizontal 
distribution load and vertical and horizontal 
displacement predicted from ANN-SSA are 
revealed to be in good agreement with the 
corresponding data measured from field, which 
has validated that the accuracy and reliability of 
depending-time mechanical parameters of 
anthracite coal and ANN-SSA proposed in this 
paper. 

6. Conclusions 

The aim of this work was to assess effectiveness 
of new combination of ANN and SSA back-
analysis of time-depending mechanical parameters 
of anthracite coal based on timber loads and 
displacements measured in the coal face entry. For 
this, we proposed the methodology that could 
predict the time-depending coal mechanical 
parameters by the combination of FLAC3D 
numerical simulation based on measured load and 
displacement, establishment of three layers BPNN 
and SSA. 

The main results of this study are as follows: 
1. The study clarified the reason why rock pressure 

of the entry driven in the anthracite coal seam was very 
severely through the in situ observation and 
measurement. 

2. This paper proposed the methodology for back-
analyzing the mechanical parameters of anthracite coal 
by using the combination of FDM with ANN and SSA, 
which can make clear the rock pressure phenomena of 
the entry that are very difficult to illustrate this process 
analytically and by other back analysis methods. 

Based on an FDM computation using the back-
analyzed optimal mechanical parameters, the 
displacements and support loads for all 
monitoring points of the multi-point displacement 
measurement were computed and found to exhibit 
good agreement with the measured values. The 
method developed in this study can provide a 
useful basis for predicting time-dependent 
behavior of medium surround the drift or chamber 
driven in such soft rock as the anthracite coal. 
Future work will address the comprehensive 
consideration of time-dependent mechanical 
characteristics of coal seam, hanging wall and 
footwall rock seam to measure rational entry 
maintenance. 
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 يسنجاب پرنده با داده ها يجستجو تمیبا استفاده از الگور تیزغال سنگ آنتراس یکیمکان يپارامترها نییتع
  لارده چوبی  ییبار و جابجا
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  چکیده:

شد   لیبه ذرات تبد کی مرحله در دوران مزوزوئ نیدر چند یشناس نیو زم یساخت نی اقدامات زم لیخلق کره به دل کیدموکرات  يجمهور تیزغالسنگ آنتراس هیلا
  ستمیتوسط س  تیاست، استخراج زغالسنگ آنتراس  دهیچیپ  اریزغالسنگ بس  هیو شکل لا  اندافتهیاز حد توسعه    شی ها بو گسل   هان یکه چ  ییتا نرم شود. از آنجا

  د یجد بیترک یاثربخش یابیکار ارز نیاستخراج شده است. هدف از ا یبیاستخراج تخر ستمیاست و زغالسنگ عمدتاً توسط س رممکنیغ  یکار طولان استخراج جبهه
(  يجستجو  تمیالگور پرنده  عصبSSAسنجاب  شبکه  و  براANN(  یمصنوع   ی)  تحل  هیتجز  ي)  زغالسنگ   یکیکانم  يپارامترها  یبرگشت  ل یو  زمان  به  وابسته 

کار زغالسنگ در جبهه  يورود  کیبه    يکار زغالسنگ است. مطالعه موردشده در جبهه  يریگاندازه  ییو جابجا  یچوب  يهاهیوارده بر پا  يبر اساس بارها  تیآنتراس
پUnsanواقع در شهرستان    Sinchangمعدن زغالسنگ   استان  ،  ANNو    SSA  دیجد  بیعملکرد خوب ترک  دییتأ  يبرا.  پردازدی کره م  DPR  ،یجنوب  ونگانی، 

کار زغالسنگ  جبهه   يشده در ورود  يریگاندازه   يهاهدف، با استفاده از داده   نی با هم  گرید  يهاو روش   يشنهادیپ  یبرگشت  ل یروش تحل  نیب  ياسه یمطالعات مقا
  ی برگشت  لیاست. تحل  2.49ها نسبتاً کوچکتر است که  روش  ریسه با سایدر مقا  ANN-SSA  یوزن  ي) هنجار خطاMAEمطلق (   يخطا  نیانگی. مشودی انجام م

 .نرم است اری زغالسنگ بس هیدر لا يدر اطراف ورود تیوابسته به زمان مناسب زغالسنگ آنتراس  یکیمکان  يپارامترها نییتع يبرا یروش خوب دیجد

  .وابسته به زمان یکیپارامتر مکان ،یشبکه عصب ،ییبرگشت جابجا لی، تحلSSA کلمات کلیدي:

 

 

 

 


