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The presence of pores and cracks in porous and fractured rocks is mostly
accompanied by fluid flow. Poroelasticity can be used for the accurate modeling of
many rock structures in the petroleum industry. The approach of the stress to the value
of the fracture stress and the effect of pore pressure on the deformation of rock are
among the effects of fluid on the mechanical behavior of the medium. Due to the
deformation-diffusion property of porous media, governing equations, strain-
displacement, and stress-strain relationships can be changed to each other. In this
study, constitutive equations and relationships necessary to investigate the behavior
and reaction of rock in a porous environment are stated. Independent and time-
dependent differential equations for an impulse and point fluid source are used to
obtain the fundamental solutions. Influence functions are obtained by using the shape
functions in the formulation of the fundamental solutions and integrating them. To
check the validity and correctness of provided formulation, several examples are
mentioned. In the first two examples, numerical application and analytical solution are
used at different times and in undrained and drained conditions. In times 0 (undrained
response of medium) and 4500 seconds (drained response of medium), there is good
coordination and agreement between the numerical and analytical results. In the third
example, using the numerical application, a crack propagation path in the wellbore
wall is obtained, which is naturally in the direction of maximum horizontal stress.

1. Introduction

The boundary element method (BEM) is
divided into two parts, indirect and direct [1]. In
the indirect method, the solution is first executed
for the singularities that satisfy the specified
boundary conditions. The unknown parameters are
then provided indirectly through the standard
numerical techniques in terms of these singular
solutions. The direct method can directly provide
the unknown boundary parameters (stresses and
displacements) based on the specified boundary
conditions. In boundary element-based methods,
since the governing differential equations are
solved exactly in the domain of the problem, they
result in high accuracy in the solutions. The BEM
performs discretization at the boundaries, thus
decreasing the dimensionality of the problem. This
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leads to a smaller system of equations that are very
cost-effective, as it significantly decreases the
information required for analysis.

The Displacement Discontinuity Method
(DDM) is an indirect boundary element method
that is utilized for solving linear elastic fracture
mechanics (LFEM) problems. The method was
first introduced by Crouch and Starfield [2, 3]. In
this method, stresses and displacements at a point
are provided according to the normal and shear
displacement  discontinuities. Many  studies
illustrated how to use constant ordinary elements in
DDM [4-6]. The main advantage of using these
elements is their simplicity; however, they cannot
correctly forecast the stresses and displacements in
the field points adjacent to the boundaries.
Moreover, the singularity changes 1/r°° and r®® in
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the stresses and displacement equations, causing
the calculation precision at the neighborhood of the
crack tip to severely diminish [7]. In this regard,
first-order [8, 9], second-order [10, 11], and third-
order [12, 13] elements have been utilized to
conquer these problems and obtain more correct
values of stresses and displacements along
boundaries. Based on the strain elasticity stretching
notion, Exadaktylos et al. also presented a new
constant  displacement discontinuity element
formulation. This new method substantially makes
better the accuracy of DDM without using higher-
order and crack-tip elements [14-16]. However,
this formulation does not handle the crack tip
singularities. Therefore, crack tip elements were
presented to remove the obstacle [17]. To
significantly improve the accuracy of analysis in
crack problems, ordinary and crack tip higher-
order elements are used simultaneously. Yan et al.
have presented constant crack tip elements to
utilize in the DDM [18]; they developed the
method of fatigue crack growth in structures
having multiple cracks [19]. Li et al. have utilized
a method composed of the constant element
displacement discontinuity method and meshless
procedures to amplify the crack in the static and
cyclic loading conditions [20]. Discontinuities are
the main flow channels in sub-surface rocks.
Change in the fluid pressure causes matrix
deformation and  stress change;  matrix
deformation, in turn, causes fluid volume change
and fluid pressure change. Possible fracture
propagation leads to changes in pore pressure and
stress in the whole field. Variations in pore
pressure and stress at any point affect the fracture
and induce fracture deformation. This makes media
exhibit a strong coupling of mechanical and
hydraulic behavior. To investigate this coupled
hydro-mechanical behavior, the poroelasticity
theory has been developed. Problems such as
hydraulic  fracturing [21-25], in-situ stress
measurement [26-28], and geothermal [29-32] take
place in sub-surface rocks that are mostly filled
with discontinuities (such as faults) and pores.
These discontinuities and pores can be saturated
with water, oil, etc. These fluids can affect the
stress (i.e. effective stresses due to the pore
pressure effect) and displacement fields in rocks.
Also pore fluid flow happens due to the pore
pressure gradient in the rock. The flow can also be
in response to variations in macroscopic stresses
caused by natural factors [33]. In order to
accurately model these coupled internal reactions,
all of these couplings must be involved. The DDM
has been coupled with other methods such as the
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FDM and the FEM to investigate the poroelastic
effects of fracture [34-36]. For instance, Ji used the
DDM to simulate discontinuity-propagation in
porous media and coupled it with the FDM to
simulate the fluid response. Yin et al. coupled the
DDM and the FEM to study poroelastic effects in
reservoirs. Bobet and Yu presented a closed-form
solution of the crack-tip stress field [37]. They
illustrated that the induced stresses during the
draining of the media were higher than the stresses
around the crack tip under pressure in a saturated
media. Recently, many studies have focused on
presenting a mathematical formulation or
analytical solution for the hydraulic fracture
problem in a porous rock [38-46]. Yaylaci et al.
have used finite element and artificial intelligence
to study contact problem and functionally graded
materials [1-4].

The development of a new poroelastic
numerical method is a significant contribution to
the field of geomechanics, and has numerous
applications in both academia and industry. This
new method is unique compared to other numerical
studies because it incorporates the effects of fluid
flow and deformation of porous media in a single
framework. The method can accurately capture the
complex interactions between the fluid and solid
phases of porous media, which is crucial for
predicting the behavior of underground structures
and oil reservoirs. Additionally, the new method
allows for the simulation of both undrained and
drained conditions, which is not commonly
available in other numerical methods. This new
method can be used to predict the deformation,
stress, and fluid flow behavior of underground
structures such as tunnels and dams, as well as the
hydrocarbon extraction behavior in oil reservoirs.
The originality of this method lies in its ability to
provide accurate results for a wide range of
applications in geomechanics and petroleum
engineering, making it a valuable tool for
researchers and practitioners in the field. In this
study, governing equations of a porous medium are
presented. Then the required fundamental solutions
for the poroelastic first-order DDM are derived.
After that, influence functions of first-order DDM
in a poroelastic rock are introduced. Finally,
validation of the new formulation is shown by
citing two examples.

2. Mlustration of First-order Displacement
Discontinuity

A displacement discontinuity element of length
2a along the x-axis is illustrated in Figure 1(a),
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which is characterized by a total displacement
discontinuity distribution u(z). Considering ux and
uy components of the total displacement
discontinuity u(z) to be constant and equal to Dx

b
|
-a +a
| —a<3<+a |

@
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and Dy, respectively, in the interval (-a, +a) as
illustrated in Figure 1(b), two displacement
discontinuity element surfaces can be noted, one on
the negative side of y and another one on the
positive side y.

(b)

Figure 1. a) Distribution of u(3) for totaldisplacement discontinuity element. b) Components of the constant

element.

The displacement includes a constant change in
value when crossing from one side of the
displacement discontinuity element to the other
side, which may be defined as:

Dx = ux(x,0 =) —ux(x,0 +)
{Dy =uy(x,0 ) —uy(x,0 +)

The positive sign convention of Dy and Dy is
illustrated in Figure 1(b) and depicts that when the
two surfaces of the displacement discontinuity
overlap, Dy is positive, which causes a physically
impossible situation. This conceptual difficulty is
resolved by considering that the element has a
finite thickness in its undeformed state, which is
small evaluated to its length but bigger than D, [3].

The  first-order  element  displacement
discontinuity formulation is based on the analytical

(1)

Element :
Do : Di): 2
| I |
[ 1 | 2 |
2a; 2a>

(a) First order element

integration of first-order shape functions of
straight-line displacement discontinuity elements.

Figure 2 (a) illustrates the linear displacement
discontinuity distribution, which may be expressed
in a total form as:

Di(3)=N1(3)(Di)1+N2(3)(Di)2i=x,y

where(D;), and (D;), is

displacement discontinuities, and

{ N1(3) = —(3— a2)/(al+ a2) 3)
N2(3) = (3 —al)/(al +a2)

are their first-order collocation shape functions.

It should be considered that a first-order element

has 2 nodes, which are the centers of the two
elements within the path element [47].

)

the first-order

(b): Crack tip first order element

Figure 2. Location of nodes for first-order displacement discontinuity elements.

3. Characteristics of porous media

The notion of first-order, isotropic
poroelasticity was explained by Biot for modeling
the reply of fluid-saturated porous solids [48] and
was developed by other [49, 50]. According to the
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basic formula of Biot, the basic dynamic
parameters of total stress o;ij and pore pressure p
along with their corresponding quantities, solid
strain ej; = (uij + uj)/2 and variation of fluid
volume per unit reference 3 are considered here. A
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fixed set of parameters for the first order isotropic
notion is shear modulus G, drained and undrained
Poisson ratios, which are, respectively, v = (3K —
2G)[2 3K + G), vo= (BKu — 2G)/2 (3Ku +
G)(drained and undrained bulk moduli K and Ku),
Skempton’s pore pressure coefficient S (ratio of
induced pore pressure to change of confined
pressure in  undrained  conditions), and
permeability coefficient « = ku (where k is
intrinsic permeability and x fluid dynamic
viscosity) [48]. The governing equations of the
first-order isotropic poroelasticity consist of the
following [48]:

« Constitutive equations:

0;; = 2Ge;; + l_—;v&-}-e — ab;p (4)
265(1 +v,)  2GS?(1 - 2v)(1+v,)?

T3 ¢ 90, — @ -2vy) ®)
* Equilibrium equations:

0i; = —F (6)
* Darcy’s law

ai = —x(pi— f2) (7
* Continuity equation:

% +qii =Y (8)

where in the above equations, e = g is the
volumetric strain, Fi = pgi bulk body force (solid
and fluid), gi gravity component in i direction, n
porosity, gi specific discharge, zchange of fluid
content, p = (1—n)ps +¢p: bulk density, ps and ps
solid and fluid part densities, respectively, fi= pQi
fluid body force, y fluid injection rate from the fluid
source, and « is the Biot coefficient of effective
stress, defined as:

_ 3(Vu - V)

T s@-2v) (A +v)
The above can be combined to yield a set of
field equations in terms of displacement and fluid
content variation. Combining Equations (4) to (6)

yields an elasticity equation with a fluid coupling
term:

©)

a

G 265 +v,)
1-2v,% " 3@ —2v,) %~

GV2uy; + —F; (10
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Combining Equations (5), (7), and (8), and also
using Equation (10) create the following diffusion

equation:
a ks(1+vy,)
e VR = R —kfuty (1)
where:
_ 2kS?G(1—v)(1 + )3 12)

91 -v)(v, —v)

is a consolidation coefficient [50].The above
equations can be utilized to obtain the needed
solution for the first-order DDM in porous rock.

4., Influence Functions of First-order
Displacement Discontinuity Method in a
Poroelastic Medium

Appendix A presents the poroelastic solution of
point plane strain displacement discontinuity [55,
56]. Poroelastic influence functions for the first
order can be obtained by distributing and
integrating this solution over an element domain ¢*
located on the local s-axis (Figure 3). For example,
utilizing the following integrals, it is possible to
present the value of the stress in the local s
direction caused by the shear displacement
discontinuity.

y(n)

-2a; /
—e—e=] :

I: > i‘ ;i

2a; 2a;
[ »|
1< 1

X
Figure 3. A first-order element in local coordinates.

x(s)

where:

(Dn)1N1(3)0211 5 (D)2 N2(3) 0211 »
(Dn)1N1(3)O(0211), and (Dy,),N,(3)O(0314) in
these equations are the fundamental solutions,
which are defined in Equations (Al) and (A2) of
Appendix A and | = 2, j = k = 1. For the time-
independent and time-dependent influence
functions, considering Equations (13) and (14) the
complete set of integrals and their solutions is
provided in Appendix B.
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+2 +2
‘73{/1; = f_z:ll(Ds)1N1 (8)0211d3 + f_z:ZZ(Ds)zNz (3)0211d3 =

8(x —3)y*

4(x —)y?

(x—3)

L ;1-f+2a1 B B p
2m(1 - vu)[ a J s, [((x -2 +y2)3 ((x—-23)?2+y2)? ((x—3?2+ yz)] 8

. 1f+2a1 [ 8y4 B 4y2 B 1 ]d
2) 40 [(G=22+y3 (-2 +y22 (-2 +y9)| ™
. lf+2az [ 8(x — g)y‘l 3 4(x _ g):yz B (x _ g) ]d
) g, [(G=22+y° (=22 +y? (-7 +yD)| "
+1f+2a2 8y4 B 4y2 B 1 J
2) 5, [((x —)2+y2)3  ((x—2)2+y2)? ((x—2)2 + yz)] 5] (13)
_ G ((x _ g\)((x _ 5)2 + 3y2)> 3=+2a, . ((x _ g\)((x _ 5)2 + 3y2)> =+2a,
4m(1l —v,) ((x —3)2+y2)2 =20, ((x—2)?2+y2)? =20,
_ G (x—2a)((x — 2a;)? + 3y?) (x +2a,)((x +2a,)* + 3y?)
T 4n(l-vw) [( ((x —2a,)% + y?)? B ((x +2a,)? + y?2)? )
(x—2a,)((x — 2a)? +3y%)  (x +2a,)((x + 2a,)? + 3y?)
( ((x —2a3)? +y?)? - ((x + 2a,)? + y?)? )]
Qo = [ (D)1 N ()O(0211)d3 + [ 152 (D5)2 N (3)O(0211 ) d5 =
2G ( u ) -1 1 2 2713=+2a,
B Pl (L LG D PR Dy I Oy iy
1 1 2 2q13=+20,
T R G G b R G L RECE il [y
ey G D@ - G- D1 @ e 2t -yt s [
1 1 2 2q13=+20,
(s Rl LRGSR CRPD R CRT O B REICER S SE (i) BR

= n(lG 3(3;3?1”3 V) [( :

1
((x—2a)2+y2)3  ((x+2a)%+ y2)3)

x ([(x —2a,)3y? — (x — 2a)2)[1 — (1 + £2)e 5]+ 2(x — 2a,)*¢*e ']
- [(x +2a,)(3y?2— (x + 2a1)2)[1 -1+ fz)e‘sz] +2(x + 2a1)3f4e‘52])
1

1
N (((x —2a,)? +y2)3  ((x +2ay)% +y?)3

)

x ([ = 2a,)(3y* — (x — 2a2))[1 - (1 + §De ¥ [+2(x — 2a,)*¢ e ]
— (e +2a,)(By? — (x +2a,)H)[1— A+ &2)e™"] + 2(x + 2a2)3€4e‘52])]

5. Validation of the Proposed Formulation

In the following, several examples of crack
opening displacement (COD) and crack
propagation are presented to investigate the
performance and accuracy of the provided
formulation. The first two examples show the crack
opening displacement using analytical and
numerical methods and compare the results. The
third example shows the crack propagation path in
the wellbore wall using the written code [58].

5.1. Crack opening displacement in undrained
and drained conditions

In this section, a combination of analytical and
numerical examples is presented to validate
provided formulation. Crack opening displacement
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(COD) is evaluated in these examples. Snowden's
solution is used in the analytical part. The exact
value of COD in Equation (15) can be computed
[57].

221(1—1/)
G

where |, v, G, and L are the internal pressure,
poisson coefficient, shear modulus, and crack
length, respectively, and —L < x < +L.

Figure 4 shows a thin crack with constant
internal pressure | and length 2L.

In the numerical part, the code written for
poroelastic media [54] is used, because the
calculation of influence functions is the last step
before numerical implementation. Therefore, the
correctness of the prepared formulation results in

COD =412 — x (15)
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providing a correct output of the numerical
method. The following examples include two
sections with undrained conditions and drained
conditions.

5.1.1. Crack opening displacement in
undrained condition

In general, the undrained response of the
medium expresses the condition that the time
required for fluid movement between rock
elements by mass transfer is very short so that no
mass transfer takes place.

Among parameters that allow a better
understanding of behavior from a poroelastic
medium are Biot's coefficient and Skempton's
coefficient.

To check the correctness of the prepared
formulation, crack opening displacement in
poroelastic media is investigated. In this example,
modeled crack length is one meter (the crack is
horizontal and without an angle). The number of
elements forming the crack is 20. The considered
parameters for the model are given in Table 1.

Numerical and analytical predictions of crack
opening displacement are compared in Figure 5. As

Table 1. Parameters used in model analysis.

Undrained Poisson ratio (vu) 0.29
Skempton’s coefficient (S) 0.90
Permeability (k) (mdarcy) 1
Biot’s coefficient (o) 0.67
Generalized consolidation coefficient (c) (m2/s) ~ 0.003
Shear modulus(G) (GPa) 13
Internal pressure (MPa) 25
Time (s) 0

5.2. Effect of angle of initial cracks relative to
in-situ stresses on crack propagation process in
well wall

The effect of the angle of the initial cracks on
the crack propagation path is investigated under
different insitu stresses. Figure 7 shows the
overview of modeling. The considered parameters
for the model are given in Tables 2 and 3.
Naturally, the path of crack propagation should be
in the direction of maximum horizontal stress (ay),
which is obtained in the three cases of Figure 8.

Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

can be seen, analytical and numerical charts are in
good agreement with each other. The error in
estimating crack opening displacement for the

first-order element mode

is 1.15% lower than of constant element mode.

5.1.2. Crack opening displacement in drained
condition

In general, a drained response occurs after a
relatively long time, and shows a state in that fluid
is not stationary in pores. As a result, deformation

changes from a short time to a long time.

The number of elements, length, and crack

mode are the same as in the previous example.

The considered parameters for the model are

given in Table 2.

Numerical and analytical predictions of crack
opening displacement are compared in Figure 6. As
can be seen, analytical and numerical charts are in
good agreement with each other. The error in
estimating crack opening displacement for the
first-order element mode is 0.52% lower than for

the constant element mode.

Table 2. Parameters used in model analysis.

Drained poisson ratio (v) 0.1
Skempton’s coefficient (S) 0.90
Permeability (k) (mdarcy) 1
Biot’s coefficient (o) 0.67
Generalized consolidation coefficient (c) 0.003
(m2/s)

Shear modulus (G) (GPa) 13
Internal pressure (MPa) 25
Length of each time step (s) 0.05
Time (s) 4500

Table 3. Parameters used in model analysis.

a for the chart (a) (degree) 0

1/ay for the chart (a) 1.2
ay /oy for the chart (a) 0.5
a for chart (b) (degree) 30
1/ay for chart (b) 15
ay,/ ay for chart (b) 0.6
a for chart (c) (degree) 60
1/ ay for chart (c) 1.0
oy /oy for chart (c) 0.5
R (radius of the wellbore) (meter) 0.5
an (initial crack length) (meter) 1.0
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Figure 5. Comparison of analytical and numerical
(first-order poroelastic DDM formulation and
constant poroelastic DDM formulation) results of
COD in undrained conditions.

Figure 7. An overview of the modeling of the effect
of the angle of initial cracks along with in situ
stresses on the crack propagation process in the well
wall.

6. Conclusions

Fundamental solutions in the displacement
discontinuity method (DDM) contribute a
displacement jump since this method is suitable for
problems including fractures and discontinuities.
However, the basic DDM and its higher-order
extensions are all confined to elastic problems. In
geo-mechanics, many situations such as hydraulic
fracturing, in-situ stress measurement, and
geothermal take place in a poroelastic media.

Because the porous media are affected by the
deformation-diffusion reaction, it is necessary to
utilize the theory of poroelasticity. The possibility
of developing boundary element methods for
porous media may be achieved when the
fundamental solutions of poroelastic media are
given. In order to derive the fundamental solutions
for the porous first-order  displacement

Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023
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Figure 6. Comparison analytical and numerical (first-
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order poroelastic DDM formulation and constant
poroelastic DDM formulation) results of COD in
drained condition.

O

(b)

()

Figure 8. Crack propagation path at different
angles and in-situ stresses in well wall.

discontinuity, the fundamental solutions of the
first-order displacement discontinuity of the
impulse point and the source were utilized. The
fundamental solution makes the influence function
in the final DDM formulation. First, the
fundamental solutions were derived. Then the first-
order shape functions were calculated. Finally, the
shape functions of the fundamental solutions were
integrated to calculate the influence functions. The
validity of the new formulation was proved using
the numerical application and analytical solutions.
The results of numerical models were obtained at 0
and 4500 seconds. The results of analytical models
obtained utilizing the undrained and drained
Poisson's ratio. These results, which are stated by
citing two examples, show a good agreement and
coordination between the numerical and analytical
results. In the end, by mentioning another example,
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the path of crack propagation in the well wall is
demonstrated using the numerical application,
which is consistent with the natural results.

References

[1]. Crouch, SL. and Starfield, AM. (1983). Boundary
Element Methods in Solid Mechanics: With
Applications in Rock Mechanics and Geological
Engineering. Allen & Unwin.

[2]. Crouch, SL. (1976). Engineering U of MD of C and
M, Program NSF (U.S). RA to NN. Analysis of Stresses
and Displacements Around Underground Excavations.

[3]. Crouch, SL. (1976). Solution of plane elasticity
problems by the displacement discontinuity method. I.
Infinite body solution. Int J Numer Methods Eng. 10 (2):
301-343.

[4]. Chaoxi, L. and Suaris, W. (1991). Hadamard’s
principle for displacement discontinuity modeling of
cracks. Eng FractMech; 39:141-5.

[5]. Fatehi-Marji, M. (2011). On the crack propagation
mechanism of brittle rocks under various loading
conditions.

[6]. Haeri, H. Shahriar, K. Fatehi-Marji, M. and
Moarefvand, P. (2014). Experimental and numerical
study of crack propagation and coalescence in pre-
cracked rock-like disks. Int J Rock Mech Min Sci;
67:20-8.

[7]. Fatehi-Marji, M. (2014). Rock fracture mechanics
with displacement discontinuity method. Ger L Lambert
Acad Publ.

[8]. Crawford, A.M. and Curran, J.H. (1982). Higher-
order functional variation displacement discontinuity
elements. Int J Rock Mech Min Sci Geomech Abstr ;19:
143-8.

[9]. Napier, JA.L. and Malan, D.F. (1997). A
viscoplastic discontinuum model of time-dependent
fracture and seismicity effects in brittle rock. Int J Rock
Mech Min Sci; 34 (7): 1075-89.

[10]. Fatehi-Marji, M. (2015). Simulation of crack
coalescence mechanism underneath single and double
disc cutters by higher order displacement discontinuity
method. J Cent South Univ; 22 (3):1045-54.

[11]. Abdollahipour, A. and Fatehi-Marji, M. (2020). A
thermo-hydromechanical displacement discontinuity
method to model fractures in high-pressure, high-
temperature environments. RenewEnergy.

[12]. Fatehi-Marji, M. (1996). Modeling of cracks in
rock fragmentation with a higher order displacement
discontinuity method. Ankara, Turkey: Middle East
Technical University.

[13]. Abdollahipour, A. Fatehi-Marji, M. Yarahmadi-
Bafghi, A. and Gholamnejad, J. (2016). On the accuracy
of higher order displacement discontinuity method

608

Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

(HODDM) in the solution of linear elastic fracture
mechanics problems. J Cent South Univ; 23 (11):2941—
50.

[14]. Exadaktylos, G. and Xiroudakis, G. (2010). The
G2 constant displacement discontinuity method—Part I:
Solution of plane crack problems. Int J Solids Struct;
47(18-19): 2568-77.

[15]. Dehghani-Firoozabadi, M.H. Fatehi-Marji, M.
Abdollahipour, A. Yarahamdi-Bafghi, A. and
Mirzaeian, Y. (2022). Simulation of Crack Propagation
Mechanism in Porous Media using Modified linear
Element Displacement Discontinuity Method. VVolume
13, Issue 3, July 2022, Pages 903-927.

[16]. Exadaktylos, G. and Xiroudakis G. (2010). A G2
constant  displacement discontinuity element for
analysis of crack problems. Comput Mech; 45 (4):245-
61.

[17]. Fatehi-Marji, M. Hosseini-Nasab, H. and Kohsary,
A.H. (2007). A new cubic element formulation of the
displacement discontinuity method using three special
crack tip elements for crack analysis. JP J Solids Struct;
1:61-91.

[18]. Yan, X. (2005). An efficient and accurate
numerical method of stress intensity factors calculation
of a branched crack. J Appl Mech; 72:330-40.

[19]. Yan, X. (2006). Multiple crack fatigue growth
modeling by displacement discontinuity method with
crack-tip elements. Appl Math Model; 30 (6):489-508.

[20]. Li, J. Sladek, J. Sladek, V. and Wen, P.H. (2020).
Hybrid meshless displacement discontinuity method
(MDDM) in fracture mechanics: static and dynamic. Eur
J Mech

[21]. Naredran, V.M. and Cleary, M.P. (1983). Analysis
of growth and interaction of multiple hydraulic
fractures. Reserv. Stimul. Symp., San Francisco.

[22]. Adachi, J.1. and Detournay, E. (2008). Plane strain
propagation of a hydraulic fracture in a permeable rock.
Engng Fract Mech 2008; 75:4666—94. mech.04.006.

[23]. Ito, T. (2008). Effect of pore pressure gradient on
fracture initiation in fluid saturated porous media: Rock.
Eng Fract Mech; 75:1753-62.

[24]. Huang, J. Griffiths, D.V-V and Wong, S. (2012).
Initiation pressure, location and orientation of hydraulic
fracture. Int J Rock Mech Min Sci; 49: 59-
67.2011.11.014.

[25]. Yu, W. Luo, Z. Javadpour, F. Varavei, A. and
Sepehrnoori, K. (2014). Sensitivity analysis of hydraulic
fracture geometry in shale gas reservoirs. JPetSciEng;
113:1-7.

[26]. Bush, D.D. and Barton, N. (1989). Application of
small-scale hydraulic fracturing for stress measurements
in bedded salt. Int J Rock Mech Min Sci Geomech
Abstr; 26:629-35.



Dehghani Firoozabadi et al.

[27]. Schmitt, D.R. and Zoback, M.D. (1989).
Poroelastic effects in the determination of the maximum
horizontal principal stress in hydraulic fracturing tests—
A proposed breakdown equation employing a modified
effective stress relation for tensile failure. Int J Rock
Mech Min Sci Geomech Abstr; 26:499-506.

[28]. Abdollahipour, A. Fatehi Marji, M. and
Yarahmadi-Bafghi, A.R. (2013). A fracture mechanics
concept of in-situ stress measurement by hydraulic
fracturing test. 6th Int. Symp. In-situ Rock Stress,
Sendai, Japan: ISRM.

[29]. Legarth, B. Huenges, E. and Zimmermann, G.
(2005). Hydraulic fracturing in a sedimentary
geothermal reservoir: Results and implications. Int J
Rock Mech Min Sci ;42:1028-1041.

[30]. Reinicke, A. Zimmermann, G. (2010). Hydraulic
stimulation of a deep sandstone reservoir to develop an
enhanced geothermal system:laboratory and field
experiments. Geothermics39:70-77.

[31]. Davis, R. and Carter, L. (2013). Fracking Doesn’t
Cause Significant Earthquakes. Durham Univesity.

[32]. Hofmann, H. Babadagli, T. and Zimmermann, G.
(2014). Hot water generation for oil sands processing
from enhanced geothermal systems: Process simulation
for different hydraulic fracturing scenarios. Appl
Energy 113:524-547.

[33]. Jaeger, J. Cook, N. and Zimmerman, R. (2009).
Fundamentals of rock mechanics. Wiley, New York.

[34]. Boonei, T.J. Ingraffea, A.R. Roegiers, J.C. (1991).
Simulation of hydraulic fracture propagation in
poroelastic rock with application to stress measurement
techniques. Int J Rock Mech Min Sci Geomech abstr
28:1-14.

[35]. Yin, S. Dusseault, M.B. and Rothenburg, L.
(2007). Analytical and numerical analysis of pressure
drawdown in a poroelastic reservoir with complete
overburden effect considered. Adv Water Resour
30:1160-1167.

[36]. Ji, L. (2013). Geomechanical aspects of fracture
growth in a poroelastic, chemically reactive
environment. The University of Texas at Austin.

[37]. Bobet, A. and Yu, H. (2015). Stress field near the
tip ofa crack in a poroelastic transversely anisotropic
saturated rock. Eng Fract Mech 141:1-18.

[38]. Greetesma, J. and de Klerk, F. (1969). A rapid
method of predicting width and extent of hydraulic
induced fractures. J Pet Tech 21:1571-1581.

[39]. Detournay, E. (2004). Propagation regimes of
fluid-driven fractures in impermeable rocks. Int J
Geomech 4:35-45.

[40]. Mitchell, S, Kuske, R. and Peirce, A. (2006). An
asymptotic framework for finite hydraulic fractures
including leak-off. SIAM J Appl Math 67:364-386

609

Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

[41]. Garagash, D. (2007). Plane-strain propagation of a
fluid-driven fracture during injection and shut-in;
asymptotics of large toughness. Engng Fract Mech
74:456-481.

[42]. Mitchell, S. Kuske, R. and Peirce, A. (2007). An
asymptotic framework for the analysis of hydraulic
fractures: the impermeable case. J Appl Mech Trans
ASME 74:365-372.

[43]. Hu, J. and Garagash, D. (2010). Plane-strain
propagation of a fluid-driven crack in a permeable rock
with fracture toughness. J Eng Mech ASCE 136:1152—
1166.

[44]. Lobao, M. Eve, R. Owen, DRJ. et al. (2010).
Modelling of hydrofracture flow in porous media.
EngngComput 27:129-154.

[45]. Behnia, M. Goshtashi, K. Fatehi Marji, M. and
Golshani, A. (2012). On the crack propagation modeling
of hydraulic fracturing by a hybridized displacement
discontinuity/ boundary collocation method. J Min
Environ; 2.

[46]. Darvish, H. Nouri-Taleghani, M. Shokrollahi, A.
and Tatar, A. (2015). Geo-mechanical modeling and
selection of suitable layer for hydraulic fracturing
operation in an oil reservoir (south west of Iran). J
African Earth Sci; 111:409-20.

[47]. Yaylaci, M. Merve, A. Ecren, U. Yaylaci H.
(2022). The contact problem of the functionally graded
layer resting on rigid foundation pressed via rigid punch,
Steel and Composite Structures. 43 661-672.

[48]. M. Yaylaci, M. Abanoz, E.U. Yaylaci, H. Olmez,
D.M. Sekban, A. Birinci, Evaluation of the contact
problem of functionally graded layer resting on rigid
foundation pressed via rigid punch by analytical and
numerical (FEM and MLP) methods, Archive of
Applied Mechanics. 92 (2022) 1953-1971.

[49]. M. Turan, E. Uzun Yaylaci, M. Yaylaci, Free
vibration and buckling of functionally graded porous
beams using analytical, finite element, and artificial
neural network methods, Archive of Applied
Mechanics. 93 (2023) 1351-1372.

[50]. Oner, E. Sengiil Sabano, B. Uzun Yaylaci, E.
Adiyaman, G. Yaylaci, M. Birinci, A. (2022) On the
plane receding contact between two functionally graded
layers using computational, finite element and artificial
neural network methods, ZAMM - Journal of Applied
Mathematics and Mechanics / Zeitschrift Fir
Angewandte Mathematik Und Mechanik. 102.
https://doi.org/10.1002/zamm.202100287.

[51]. Shou, K. J. and Crouch, S. L. (1995). ‘A Higher
Order Displacement Discontinuity Method for Analysis
of Crack Problems’; Int. J. Rock Mech. Min. Sci. and
Geomech. Abstr, 32, pp. 49-55.

[52] Biot, MA. (1941). General theory of three-
dimensional consolidation. J Appl Phys 12:155-164.


https://doi.org/10.1002/zamm.202100287.

Dehghani Firoozabadi et al.

[53]. Verruijt, A. (1969). Elastic storage in aquifers.
Flow through porous media. Academic Press, New
York, pp 331-376.

[54]. Rice, J.R. and Cleary, M.P. (1976). Some basic
stress diffusion solutions for fluid saturated elastic. Rev
Geophys 14:227-241.

Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

[55]. Detournay, E. and Cheng, A. (1987). Poroelastic
solution of a plane strain point displacement
discontinuity.

[56]. Abdollahipour, A. (2015). Crack propagation
mechanism in hydraulic fracturing procedure in oil
reservoirs. University of Yazd, Yazd.

[57]. Sneddon, I.N. (1951). Fourier transforms.
McGraw-Hill Book Company, New York.
Appendix A
G 1
Oij = —msa)r—z[srirj Ml o —2(8ialifj + 850 il ) —(8cBjz + 838iz — 8812 | (A1)
2Gc(v, —
Ooijye = m = (Rarmrars —12(8,mrs + Sarir)
—3(8i8j2 + 8jxSia — 361812 |[1 — (L + E2)e~¢] A2)
—[12r7i14 5 — 6(BiariT; + 8ijTiT2) — 2848, — 28j18ip + 48;j 0k |ETe 6
[4r 1T,z — 4(5 iTkT2 + O r]) + 45115,(2]{ e‘gz)
SG(1+ Uu) 1
Pi = 3 —v) ) t)r_2(5i2 —2r1;) (A3)
45Gc(1+v,) 1 B B
Pi= (=) 78 Gadte ™+ 2rira —c65)¢%e ™) (A)
3c(vy — V) 1
qij = méi(t) r*3 (8i2 r’j =+ szr’i =+ Sijryz - 4r’i r’j ryz) (A5)
6c*(v, —v) 6,—¢2 o g2
O = = i@ - v) A+ v [2(512T1 + 81z = 301107 + 4(8pri —miryra)Ete ™| (A-6)
Appendix B
Time-independent part of influence functions
+2a,; +2a;
o5t =0 [ MG Do -5 ds+ 0, | Mol = Do (x—57)dg =
2a, —2a,
G [y 8(x—3)%’ 2y(x —3)° 2l 8(x—g)y® 2y(x-3 |,
2n(1—w) [Ff [((x —2+y)¢ ((x—3)? +y2)2] & 2f [((x —7+y) (-pr+yDr| ™
1 +2a, [ 8(X _ §)2 3 2y(x _ §)2 ]
+— f dz
((x—22+y2)?  ((x—3)%+y?2)?
f+2a2 [ 8(x —3)y? 3 2y(x—3) ] d ] _ (B.1)
T2), G2+ -2 + 22
G y(yz —(x— 5)2) 3=+2a, . y(yz —(x— 5)2) 3=+2a, B
An(1—v,) |\ ((x —3)? +y?)? =20 ((x—2)? +y?)? =20 -
G yO? = (c—2a))  yG? - (x+2a)M) | (yG? - (x—2a))  y(? — (x +2a,)?)
(L —w) [\((x —2a;)2 +y?)?  ((x +2a,)? + y?)? ((x=2a)2 +y2)?  ((x+2a;)* +y?)?
+2a, +2a,
dSA = (D )1_[ Ny (x —3)0111(x —3,¥) d3 + (Ds)zf Np(x — o1 (x —3,y) dz = (B8.2)

2a, —2a,

610



Dehghani Firoozabadi et al. Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

G —1 [+2a 8y(x — )* 2y(x —3)?2 12 8y(x—2)3 2y(x —3)
201 - v,) [7f 1 [((x —9Z+y28 (-9 +y2)2] a3 Ef [((x — 2+ B (-9 +y2E| B
L1 1 f+2a2 [ 8y(x _ §)4 B 2y(x _ §)2 ] d ]
2a, [((x=23)2+y2)3  ((x—23)? +y?)?
f+2a1 [ 8y(x _ §)3 B 2y(x _ §) ] _
T2 ) e, [G=7 9 (=2 + 22| 2
G 1(y@x -2 +y)\["  1/y@x -2 +y)\|T 7]
2n(—v,) E( (G- 22 +y7)? ) o E( (G— 22 +y7)? ) 3] -

G y(B(x — 2a,)2 +y?)  y(B(x +2a,)? +y?) . y(3(x —2a,)? +y?)  y(3(x+2a,)? +y?)
[( ((x=2a)?2+y2)2  ((x+2a,)? +y?)? ) ( )]

an(1-v,) ((x—2a)2+y?)?  ((x +2a,)% +y?)?

+2a,

+2a,
fon'l = (Dn)lf Ny (x = 3)oy12(x — 3,¥) dz + (Dn)zf Ny (x —3)0112(x —3,y) dz =
—2a,

—2a,

G __1f+2a1 8(x _ §)3 2 B (x _ g) d +_f+2a1 8(x — &)2 2 3 d
2n(1—v,) [ a ) zq, [((x —2)2+y2)3  ((x—3)?%+ yz)] 875 —2a, [((X -22+y2)3 ((x—2)?%+ )’2)] 8
+1f+2a2|: 8(x_§)3y2 B (X—g) ]
20, [((x=23)?+y)? ((x—23)*+y?)

f+2a2 8(){—:5)2 2 1 el =
"2, [((x—§)2+y2)3_((x—§)2+y2)] 3]‘ (B.3)

3=+2a,; :|
3=-2a;

G [((x -)(*—(x - 3)2)>

e (G0 - -9
4n(l—v) ((x — )2 +y2)2

((x —3)% + y?)?

3=-2a;

G [((x —2a)(y* = (x —2a;)?)  (x+2a)(y* — (x +2a,)*)

4n(l—v) ((x —2a,;)2 +y2)2 B ((x +2a,)? + y2)2
(x = 2a,)(y? = (x = 2a,)?)  (x + 2a,)(y? = (x + 2a,)?)
( ((x—2a)2+y?)?2  ((x+2ay)? +y?)? )]
+2a, +2a,
dnl = (D, )1f Ny (x =305 (x — 3, ) d3 + (Dn)zf Ny (x = 3)025(x — 3,¥) d3
2a, —2a,
G —_1f+2a1 8(x — »)y* 3 4(x —3)y? _ (x—3) d
2n(l-v)|a (-2 +y2°  (—22+y?? (-2 +yD)|"2
+2a, 4y2 1 p
2f [((x—3)2+y2)3 (-7 +y2)? _((x—3)2+y2)] 3
L1 f[ o Mgy D]
al_zq, [((x=23)2+y%)% ((x—3)2+y%)* ((x—23)?*+y?)

(B.4)

+2a, 8y 4y 1
+§f_2az [((x  EE T LI (CEFA el (Cr yz)] dﬁ]
_ G [((x -((x—3)?+ 3y2)> e . ((x -3)((x —3)* + 3y2)>
T 4An(l-v,) ((x—3)* +y?)? . ((x —3)* +y?)?
_ G (x—2a)((x —2a;)? + 3y?) (x+2a)((x +2a,)? + 3y?)
T 4n(l-vw) [( ((x — 2a,)? +y?)?  ((x+2a)+y2)? )
(x —2a,)((x — 2a,)? +3y2)  (x + 2a,)((x + 2a,)? + 3y?)
( ((x —2az)* + y?)?  ((+20)7 +y7)? )]

3=+2a2:|
3=-2a3

611



Dehghani Firoozabadi et al. Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

+2a,

+2a,
o8 = (D), f Ny (x = 2)0312 (x — 5,9) dz + (D), f
2a,

—2a,

B G (y(yz _ (x _ §)Z)> 3=+2a, . (y(yz _ (x _ §)Z)> 3=+2a,

B 477-'(1 - Vu) ((X - :5)2 + y2)2 3=—2a, ((X - :5)2 + y2)2 3=—2a, (BS)
an(l —v,) |[\((x — 2a;)2 +y2)*  ((x + 2a,)* + y?)?

(y(yz ~(r—2a)) Y-+ 2a2)2)>]

((c—2a)2 +y2)?2  ((x + 2a,)? +y?)?

G
Ny (x = 3)0212(x — 3,y) dg = 2n(1—v,)
u

+2a,

+2a,
P2 = (D)), f Ny (x - Dpa(x — 3,7)d3+ (Dy), f Ny (x — 9Py (x — 3, y)d3
2a,

2a,

BG(L+v,)[-1 2] 2(x—3)%y +2a, 2(x —3)y
T3 —v) Ff [((x—§)2+y2)2] & 2f ra, [((x—§)2+y2)2] 3
1 +2a, 2(x_§)2y +2a, 2(x_§)y
+Ef_2a2 [((x_§)z+yz)z] 2f2a2 [ (= )2+y2)2] ] (B.6)
SG(1+v,) y F=+2a,
) ((x —3)? +y2)

3=+2a;

I )

_ S +v) [( y 3 y )+( y _ y )]
ol —-v) \(x—2a)2+y2  (x+2a)2+y2 (x—2a,)2 +y%2  (x+2a,)?+y?

Time-dependent part of influence functions

2Gc(v, —v) -1 1
m(1—v,)(1—v) [7 ((x—2)2 +y?)3
X [y30r - 2% —y)[1 - @+ )] - 20 - DPygte ||

Oayy” =
3—+2a1 1 1

—2a, E((x —2)% +y2)3
x[y@ =2~y = A+ e ] = 20— Dyt F TN + s
x[yBGr—2° —y)1 - @+ e ] -2 - Dygte €] [L 0 + 2(G-92+y??
x [y(E =97 ~y)[L- @+ e ]~ 20— yete [
Gy =) 1 1
Tl -v)[A-v) [(((x —2a,)2 +y2)3  ((x+2a,)? + y2)3)
x| (v(30 = 20,2 = y)[1 - (@ + §9e ]
—2(x = 2a1)?y§*e ") =(y(3(x + 2a,)? = yH)[1 = (1 + e %] = 2(x +2a,)?y¢ e )]

1 1

(8.7

N (((x —2a)f+y2)?  ((x+2a,)% + y2)3)
x [(y(3(x —2a,)% - yz)[l -+ fz)e‘fz]
— 2(x - 2a,)?y&*e ")~ (y(3(x + 2a5)% — y?)[1 - (1 + §2)e "] — 2(x + 2az)2y€4e'$z)]]

612



Dehghani Firoozabadi et al. Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

Ogdsh = 2Ge(vy —v) [—1 1

= S =)@ ) x (v =30 =)L = L+ 2)e ] —2y%te ) [T
1

7((){_5)2 +y?)3 3=-2a,
x (7% - 30x ~ 91— (L + )] - 235t 220

+ - - @@
2((x —3)2 +y2)3 —2a,
1 2 2

+ (G =22+ 77" (y(yz - 3(x— :5)3)[1 —(1+¢&2)es ] —2y3¢&%e¢ )|
1

—3(x—3)A)[1- @A +&De] - 2y3¢%e )|

3=+2a;

3=-2a,
3=+2a,

T2 G+ ) b0 3=—2a2]

Ge(vy, —v) g2 _s2qY(y?* = 3(x —2a,)?) (B.8)

= T G A=) {[1 — (1+82)e 8 —2y3¢te~¢] =27+ y12)3

y(y? = 3(x + 2a,)?) 2y3¢te¢ . 2y3¢te=¢
C ((x+2a)2+y2)?®  ((x— 2a1)z * yz)z ((x +)22)a1)2 ?212)3 : .
_e2 2 Y(y* =3(x —2a y(y*—3(x+2a
+ [1 — (1 +&2)e5 —2y3¢&te~? ] (G —2a,)2 + y22)3 TG+ 2a,)% + y22)3
2y3€4e_§2 . 2}’3{46_52
_((x_2a2)2+y2)3 ((x+2a2)2 +y2)3}

Gy < 007 3 -9 W e)e T 2yt )T

+2a,

ds,A _
O,y =

2Gc(v, —v) [-1 1
(1 —v,)([1—v) [
1

Gy < 007 -3 - [1- @ e ] -2yt )T
1 —3(x—§)3)[l—(l+fz)e_$2] —2)’3‘54‘?_52)@22:
3=+2a2]

3=-2a,

et ey OV
1 2 2
NN RSO (YO* =3 =321 - @ +¢)e | -2y )]
Ge(v, —v) e _21 (% —3(x —2a,)?) (B.9)
:m{“‘ L+ gD —2y%te | Tr— s s
y(yz _ 3(X + 2a1)2) 2y3€4e—§2 2y3€4e_$2
C ((c+2a)2+y2)®  ((x— 2a1)z + yz)z (Cx +)22)a1)2 ;%;2)3 ( o
2 2y = 3(x —2a, y(y* —3(x + 2a,
- @r e - 2ykte ] ((x—2a)2+y?)3  ((x+2a,)% +y?)?
2y3€4e—$2 . 2y3€4e—$2
_((x_2a2)2+y2)3 ((x+2a2)2 +y2)3}

naA _ ZGC(VU. - V) -1 1

Oa')?x - T[(l —vu)(l—v) [7((){-:5)2 +y2)3

x [(x = 92(( = 9)° = 3y)[1 - (L + e ]+ 2(x — )?y2te ||
1 1

T2 G-y

x [0 =) (=22 = 3yA[1 = L+ §)e ']+ 2(x — Ry?ete ]|
1 1

T A 9T Y

x [(x = 92(( = 9)° = 3y)[1 - (L + e ]+ 2(x — )?y2te ||
1 1

[ = D((x—3)* = 3yM)[1 - A+ §)e ]+ 2(x - ;)y%%—?]liﬁiﬁ]

_ Ge(v, —v) 1 1

Tl -v)A-v) [(((x —2a,)? +y?)3 T((x+2a)F + y2)3)

x ([0 = 2a,)(Cx = 20,)? = 3yD[1~ (1 + £ | +2(x — 2a,)y2¢%e~5")

= (Ge+2a)((x +200)? = 3y?)[1 = (1 +§2)e 4] ) + 2(x + 2a,)y 2 e ")

3=+2a,
3=-2a;

+2a,

—-2a,

3=+2a,
3=-2a;

1 1
* (((x —2a,)?+y2)3  ((x+2a,)*+ y2)3)
x ([(x —2a,)((x — 2a,)? - 3y2)[1 -1+ fz)e‘fz] +2(x — 2a2)y2«,‘4e‘52)
- ((x +2a,)((x + 2a,)% — 3y2)[1 -1+ fz)e‘gz]) +2(x + 2a2)y2«,‘4e‘52)]

613



Dehghani Firoozabadi et al. Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023

dn A —
0oy = A= v =)

x [ =22y~ = 2)[1 - L+ +2(x — )%~

2Gc(vy, —v) [—1 1

T —
20— 92 +y2)7
1 1

T =) -

x ([(x —2a;)(3y? — (x — 2a1)?)[1 - (1 + §2)e ' [+2(x — 2a;)3¢ e~

— [(x+2a1)(By* — (x + 2a,))[1 — (1 + e '] + 2(x + 2a1)*¢*e ™))
1 1

a ((x—3)2+y?)3

+2a,
—-2a,

1 1 [(x—g)(Byz—(x—g)z)[l—(l"'fz)e_&]+2(x—§)3f4€_$2]|

3=+2a,
3=-2a,

T CED SO

x[(e= D2(3y? = (x = DI~ A+ e |+ 20 - igte 200

1 1
20y - (B.11)
%[ = D@7 - (= D1 - @+ e ]+ 20— e[ |

Ge(vy, —v) 1 1
[(((X —2a,)2+y?)3  ((x+2a,)%+ )’2)3)

N (((x —2a,)2 +y2)3  ((x+2a,)? + y2)3)
x ([(c = 2a)(3y? — (x — 2a5)2)[1 — (1 + §3)e~5 [+ 2(x — 2a,)%¢*e ¥

— [+ 2a,)(By? — (x + 2a)?)[1 — (1 + E2)e 8] + 2(x + 2a2)3f4e‘52])]

dn,A
Oy,

2Ge(v, —v) -1 1
Tl -v)A-v) [

a ((x—2)?+y?2)3

2 2y3=+2a, 1 1
x Y@= 97 =y = @+ e - 2= et C N + S
* @G =27 =L - @ e ] 2= Dy CNT L+ Dy
3=+2a; +

0, VG DTy

[
x [y(3(x _ 5)3 —yz)[l _ (1 + 52)6—52] _ 2(x _ 3)3)’{46‘52”
[ 3=+2a2]

x [y(3(x — 2)% — y»)[1 - (1 +&2)e] — 2(x — p)?yé*e ] |2,
Gy, =) 1 1
Tl -v)@A-v) [(((x —2a,)2+y2)3 T (e + 2a,)?% + y2)3)

x [(y(B(x -2a,)% - yz)[l -+ fz)e‘fz]
—2(x — 2a1)2yf4e‘52)—(y(3(x +2a,)% — yz)[l -1+ fz)e‘sz] —2(x + 2a1)2yf4e‘52)]
1 1

(B.11)

* (((x —2a,)? +y?2)3 ner 2a,)% + y2)3)
x [(y(3(x — 2a,)% — y?)[1 - (1 + &¥)e~¢’]
- 2(x — 2a,)?yé*e ")~ (y(3(x + 2a,)% — y2)[1— (1 +§2)e '] — 2(x + 2a2)2yf4e-fz)]]
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2Gc(v, —v) -1 1
Tal-v)A-v) [7((96 —3)2+y?)3
[3’(3(x —2)3 - yZ)[l (1+¢&2)e" 52] —2(x — )yé*e —$z]|3—+z

dnd _
Ooyy

a1 1

a, 2((X—§)2 +y2)3
x[Y3G =2 = yA[L- W+ e =2~ 0 e N0+ oy
x @G =9 -yIlL- @+ e ]~ 20Dyt Tl + S
[y(3(x —3)?— y2)[1 (1+&2)e- 52] — 2(x — 3)?yéte _;z]|3—+2az]
_ Gelvy—v) 1 1 (B.12)
T -v)(1-v) [(((x —2a;)?2+y2)? ((x+2a)?+ y2)3)
x| (v(30 = 20,7 = y)[1 - (1 + £9e ]
—2@—2@¥ﬁ%*ﬁ—®6u+fﬁy—y%h—a+ék*1—ﬂx+mowﬁfyﬂ
+(«x—2%y+y53_GX+2@V+yQJ
x [(y(3(x —2a,)% - yz)[l -+ fz)e‘fz]
—2@—2@Vw%*ﬁ—@@u+z@y—yﬁh—a+ék*1—ﬂx+m»wéf“M
Oo df/l SG(l + Vu f f Z\)f ) (-(y2/(x-23)2+y?2)€2)
% T —vy) || [(G— 3)2 +y?) 5)2 +y?
3=+2a,
. -y)]
—2a4,
[ / serf (- 2¢ ) O/ (= *+y*)E%)
((x— )2+y2) (x 3)? +y?
3=+2a,
(x—§)2+y (e _$Z)I \
—2a,
_56a+w) m (1 =2a)8 1\ (02 /tx-2a,)496%)
Ten(l-v) ((x=2ay)? +y2 )f rf (x —2a,)? + y? €
_ (x - 2a1) _ _52
(x —2a,)? +y? (=) (B.13)

T terf (x +2a,)¢ e(-(r%/(x+2a,)2+y?)E?)
G+ 2007 + 55" (e +2a1) +y7

(x +2aq) 2
"G+ 2a )21+y2 (1-e )”

(x —2a,)¢ ey sy
" ((x—2a2)2+y)fef<(x—2a2)22+yz>e( 0702024080

" (x—2a,) 2
“Gzayr )

i 2 2 ferf (x + 26122)6 3 e(_(yz/(x“'zaz)z‘*'yz)fz)
((x+ 2a,)? +y2) (x+2ay)2+y

(x +2a,) 2
T (x+2a, )22+y2 (1-e¢ )”}
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o0 afa _ SG(l + Vu) (x _ Z\) 52) 3—+2a2 (x _ Z\) 52) 3=+2a,
T =) | [ — 97 +y —3)? +y “2a,
_SG(A+w,) B (x - 2a2) (x + 2a,)
TE v “) [ (x —20;)7+y? (x+2a;)% + yz] (B.14)
(x —2ay) (x + 2a,)
[(x —2a,)2+y?  (x+2a,)? + yz]
ara _ _SG(l + Vu) s 3=+2a, " 3=+2a,
Oy ™ = 6r(1—-v,) [[(x —3)2+y? (1-e )] _ [(x —3)2+y? (2-e )] =20,
_ S6(1+w) y y
= o) )[ G2y G E19
y y
N [(X —2a;)? +y? B (x + 2a,)? +y2]
_ A4ASGe(L+vy) |1 (x—3)y L y P [
oPt = - 3n(1—-v,) [7 [((X —3)2 +y2)? ghe™t ] 3=—2a, * 2 [((x —3)2+y?)? et ] 3=—2a,
1 (X - :5))’ g2 Fr2a; 1 y g2 3=+2a,
+_[((x —3)* +y?)? e ] 3=-2a, +§[((x—§)2 +y?2)? s ] 3=-2a, (B.16)
_ 25Gc(1+v,) , y y '
B s MR [ (emprn o i (e e |
+ [ y _ y ]
((x—2a,)2+y2)?2  ((x+2a3)? +y?)?
_ ASGe(1+vy) (x—3)? s (x—3) L
OPyA = =) [ [((x_g)z_,_yz)z Ete ] o +§[—((X—§)2 +y2)? &e 13 ] o
-1 (x — 2)? - 3=+3a, 1 (x—2) o 1=+2a,
N a [((x —3)2+y?)? fe ] 3=-2a, 2 [((x -3 +y?)? & ] z=-2a, (B.17)
_ 25Ge(L+vy,) P (x —2a,) (x +2a,) '
BEEN [((x Z2a)?+y)? (i 2a) + W]
(x —2a,) (x + 2a,)
N [((x Z2a) +yB)E  ((x+ 20,02 + yZ)Z]
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y)
OPf¢

_ SZG(l - V)(l + Vu)z a (X - &)f (—(yz/(x—3)2+y2)$2)
= om—v) = )| [2G=r ) G—p2 +2)¢
3=+2a,
a (X - &)f —(y2/(x—7)2+y2)&2
+[ 2((x_§)2+y2)ferf<(x_§)2+y2>e( ?/(x-2)*+y%)¢?)

3=+2a,

3=-2a4

3=-2a;

Toon(1-v,)(v, —v) 2((x— 2a1)2 +y2) fer f (x —2a;)2+y?

~ forf (x +2a,)¢ (-2 /(x+2a:)2+y?)E?)
2((x + 2a1)2 + y2) (x + 2a,)% + y?
T (x — 2a)é 2 24y 2)z2
(-?/(x—2a;)?+y?)&?)
+ 2((x—2a2)2 +y2) ferf((x—Zaz)z +y2>€ 2
_ T terf (x +2a,)¢ e (-(7?/(x+2a,)*+y*)§?)
2((x+2az)2 +y?) (e +2a,)? +y?

S G(l_v)(l+vu)2 [[ (x_2a1)€ )e(—(yz/(X—2a1)2+y2)$2)

(sB.18)
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