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 The rate of penetration plays a key role in maximizing drilling efficiency, so it is 
essential for the drilling process optimization and management. Traditional 
mathematical models have been used with some success to predict the rate of 
penetration in drilling. Due to the high complexity and non-linear behavior of drilling 
parameters with the rate of penetration, these mathematical models cannot accurately 
and comprehensively predict the rate of penetration. Machine learning (ML) seems to 
be an attractive alternative to model this complicated physical process. This research 
paper introduces new data-driven models used to predict ROP using different 
parameters such as (depth, weight on bit (WOB), revolution per minute (RPM), Torque 
(T), standpipe pressure (SPP), flow in pump (pumping flow rate(Q), mud weight, 
hours on bit (HOB), revolutions on bit, bit diameter, total flow area (TFA), pore 
pressure, overburden pressure, and pit volume). Data-driven models are built using 
two different machine learning techniques, using 1771 raw real field data. The coding 
is built using the python programming language. The k-nearest neighbors (KNN) 
model predicting ROP for the training dataset show a correlation coefficient (R2) of 
0.94. The multi-layer perceptron (MLP) model predicting ROP for the training dataset 
show a correlation coefficient (R2) of 0.98. We can conclude that MLP has a better 
accuracy, and removing outliers enhances model performance. 
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1. Introduction 
The drilling process is the foundation of the oil 

and gas business. Drilling performance needs to be 
regularly tracked to save drilling costs and enhance 
oilfield operations. There has been a lot of work 
done to optimize the drilling process and prevent 
drilling problems. Drilling speed and expense are 
typically connected. To successfully conduct a 
drilling operation, and as a result, reduce drilling 
expenses; a suitable rate of penetration (ROP) must 
be established [1]. The minimum cost per foot of 
drilled well does not always follow from the 
highest on-bottom drilling rate. Costs could be 
increased by additional factors such as rapid bit 
wear and equipment breakdown [2]. 

1.1. Problem statement 

In the past, various drilling models were 
presented to describe the impact of drilling 

variables, environment, and geology on the ROP. 
Figure 1 shows some of the traditional 
mathematical models used to predict the rate of 
penetration in drilling and the factors included in 
each model. These models predicted ROP with 
some effectiveness such as Speer's model [3], 
cunningham's model [4], Bingham's model [5], 
Bourgoyne and Young's model (BYM) [6], and 
Harreland and Rampersad's model [7].   

These mathematical methods above cannot 
completely and precisely anticipate the rate of 
penetration due to the high complexity and non-
linear behavior of drilling variables regarding the 
rate of penetration. Given the development of both 
software and hardware tools along with the 
appearance of the issues and limitations of earlier 
mathematical models, machine learning seems to 
be a compelling option to represent this complex 
physical process. 

mailto:Yahia.Khamis@pme.suezuni.edu.eg
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This study aims to use machine learning different 
techniques to develop a model that predicts the rate 
of penetration using field data from mud logs and 
petro-physical data. In addition, comparing the 
output data of these models with the actual data to 

show the power of computational programs over 
traditional methods in solving problems and 
predicting variables that are hard to be modeled 
mathematically. 

 
Figure 1. Some of the traditional mathematical models used to predict ROP. 

2. Literature Review 
2.1. Rate of penetration 

The depth of penetration obtained per unit of time 
is known as the penetration rate or drilling speed 
[8]. ROP is usually reported in ft/h (field units) or 
m/h (SI units). In any engineering study of rotary 
drilling, it is convenient to divide the factors that 
affect the rate of penetration into the following list 

(rig and personal efficiency, mechanical factors, 
hydraulic factors, formation characteristics, mud 
properties, and bit type), as shown in Figure 2. 
Because of the complex and non-linear 
relationships between each of these characteristics 
and the ROP as well as the innate inaccuracies in 
data interpretation, it has been difficult to 
demonstrate a comprehensive relation [9]. 
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Figure 2. Factors affecting rate of penetration. 

2.1.1. Mechanical factors 
2.1.1.1. Weight on bit 

The desired weight on bit is achieved by using a 
number of drill collars. Due to the frictional drag 
of the drill string on the borehole wall, actual 
downhole weight on bit values are usually 
lower than surface WOB values, according to field 
evidence. This is particularly true in the case of 
directional wells [10]. 

The effect of weight on bit on penetration rate 
can be graphically represented by a three-part 
curve (Figure 3). The increase in WOB from 0 to 
w1 corresponds to section ab of the curve. The 
contact pressure between the bit operating parts 
and the rock in this region is lower than the rock's 
hardness. As a result, bit operating parts (such as 
the teeth of a roller cone bit) cannot penetrate the 
rock and smash it. Only friction between the bit and 
the bottom causes rock disintegration. Because the 
normal pressure (or load) is exactly proportional to 

the friction force, increasing the weight on the bit 
increases the penetration rate.  

The contact pressure is still lower than rock 
hardness in the region bc of the curve but the rate 
of penetration develops quicker than the weight on 
bit. The effect of fatigue phenomenon is frequently 
used to describe such a relation between two 
elements. When drilling at a weight on bit WOB < 
W2, the impact of a bit tooth is not enough to smash 
the rock but it may be enough to fracture it. When 
a bit tooth hits the same area on the bottom after a 
few revolutions, new fractures may form, and old 
fractures could become deeper. The rock grows 
weaker as a result of many hits, and a future 
collision may produce rock crushing. When the 
weight on bit increases from w1 to w2, fewer and 
fewer impacts are required to cause rock fatigue 
failure. For this reason, the penetration rate grows 
faster than the weight on bit.  Rock mass drillability 
depends on a number of parameters including 
intact rock/rock mass properties, machine 
specifications, and operational parameters [11]. 

 



El-Sayed et al. Journal of Mining & Environment, Vol. 14, No. 3, 2023 
 

758 

 
Figure 3. Effect of weight on bit on penetration rate, modified after [12]. 

The contact pressure is larger than the rock 
hardness in the region cd of the curve, and the rate 
of penetration returns to being a linear relationship 
of the weight on bit. Only if proper bottom cleaning 
is performed, can such a linear relationship exist. If 
bottom cleaning isn't done properly, the 
relationship may depart from the straight line cd 
and go in one of two directions (curves 1, 2, 3 or 
4). The linear relationship will be extended towards 
higher bit loads when the circulation rate is 
increased.  

It is clear from this discussion that the meterage 
per bit will likely reach a peak at a particular weight 
on bit. Field practice has proven the existence of 
such a limit in some cases, and the prospect of 
lowering the meterage per bit at large bit weights 
should not be underestimated [13]. 

2.1.1.2. Rotary speed 
An increase in rotational speed has some impacts 

on bit performance. When the rotational speed is 
raised, it causes an increase in the number of tooth 
impacts, an increase in the speed of impacts, and a 
decrease in the time the teeth are in contact with the 
drilled rock.  

Every tooth hit causes a small amount of rock to 
disintegrate. The amount of rock disintegrated 
increases as the frequency of strikes increases, 
resulting in a commensurate increase in the 
penetration rate. Increased impact speed adds a 
bigger volume of rock with each hit, resulting in a 
higher penetration rate.  

Numerous parameters such as the origin of rocks 
formation, Mohs hardness, texture of rock (shape 
and size of rock grains), porosity, density, 
abrasiveness, rigidity, P-wave velocity, elasticity 
and plasticity, UCS, tensile strength, affect the 
drilling rate and drillability of rocks [14]. 

The energy of the hit is used for rock breakup and 
shattering while a bit tooth is in contact with the 
rock. Rock deformation is a gradual process that 
takes time to complete. The duration of contact 
between a bit teeth and the rock should be long 
enough for the deformation to develop to its fullest 
extent for optimal impact efficiency. When the 
rotational speed increases, the time of contact 
reduces, and the effectiveness of each hit 
diminishes. With increasing rotary speed, the 
overall impact of the components involved 
increases the penetration rate. Figure 4 shows the 
response of rate of penetration with changes in 
rotation speed. 
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Figure 4. Typical responses of ROP for changing rotation speeds, modified after [15]. 

2.2. Machine learning 
Machine learning is the study of computer 

algorithms that provide systems the ability to 
automatically learn from experience [16]. It's 
generally regarded as an artificial intelligence 
subfield. Computers are now capable of 
autonomous decision-making thanks to machine 
learning algorithms. Such decisions are achieved 
by locating significant underlying patterns in vast, 
intricate data sets [17]. 

Machine learning systems can be categorized 
into:- 
 Supervised learning  

 Unsupervised learning  

 Semi-supervised learning  

 Reinforcement learning 

2.2.1. K-nearest neighbors 

Machine learning models can be divided into 
parametric and nonparametric models. Parametric 

models, in general, have some parameters that are 
directly learned from data. Non-parametric models, 
in contrast, do not contain any parameters that may 
be learned from data [18].         

K-nearest neighbors (KNN) is a non-parametric 
algorithm based on the similarity measure (e.g. 
distance functions such as Euclidian distance 
between two samples or hamming distance 
between the binary vectors). This non-parametric 
pattern categorization method was first introduced 
by Fix and Hodges in 1951, and is currently known 
as the k-nearest neighbors method [19]. 

 KNN retains all training samples in memory, in 
contrast to other learning methods that permit 
dumping the training data once the model is 
constructed [20]. The algorithm finds the k nearest 
neighboring points in the dataset using the 
similarity measure and then forecasts the output 
category based on the most frequent class within 
these k neighbors or the average label in case of 
regression [21]. Figure 5 shows an example of a 
regression problem using KNN. 

 
Figure 5. Regression and missing value imputation using the KNN method with a fixed k value, that is k = 4. 
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2.2.2. Multi-layer perceptron (MLP) 
The operation of biological neurons inside the 

human brain serves as inspiration for artificial 
neural networks (ANN). An ANN's key benefits 
include its capacity to investigate exceedingly 
intricate nonlinear correlations between the 
variables [22]. The most fundamental type of deep 
learning algorithm is a multi-layer perceptron 
(MLP). Deep neural networks' fundamental 
building components are neurons. To carry out 
non-linear transformations, the neurons may 
employ a variety of activation functions. Among 
the commonly utilized activation functions are the 
sigmoid function and the hyperbolic tangent 

function. The rectified linear unit is one of the most 
advanced activation functions (ReLU) used [21]. 

A multi-layer perceptron (MLP) has an input 
layer, one to several hidden layers and an output 
layer, as shown in Figure 6. MLP is a common 
feedforward ANN architecture. The quantity of 
input and output variables, respectively, 
determines the quantity of input and output neurons 
[23]. The number of hidden layers and also the 
number of neurons in each hidden layer can be 
chosen optimally. Each neuron multiplies inputs by 
a weight and adds them with a value termed bias. 
Then, a function known as the transfer function is 
used to transform their summation (activation 
function) [24]. 

 
Figure 6. Schematic view of the MLP model. 

Engineering in general, and petroleum 
engineering in particular, can use machine learning 
in a variety of ways. In order to create models for 
use in reservoir, production, and drilling 
engineering, machine learning techniques have 
been applied. The following table (Table 1) lists 
some of the models created to forecast rate of 
penetration, summarising the methods employed, 
the features that each model covered, and its level 
of accuracy. 

3. Methods and Materials 
Figure 7 shows the flow chart of steps that would 

be followed until the models are built. 

3.1. Collecting data 
In this study, real field data from an offshore 

vertical gas well (Well-X) in the Middle East's 

Offshore Nile Delta were used to improve machine 
learning models for the ROP using inputs of depth, 
WOB, RPM, T, SPP, Q, mud weight, HOB, 
revolutions on bit, bit diameter (Dbit), TFA, pore 
pressure (PP), overburden pressure (OVB), and pit 
volume. 

 The pressure data were used from offset wells 
having the same stratigraphic column. The data 
was recorded by the surface real-time data 
transmitter sensor. Through 17½ "Hole and 12¼" 
Hole sections, 1771 data points between depths of 
1207 m and 2092 m were gathered. Identical two 
bits having the same  IADC code were used to drill 
both parts but the two bits have different diameters 
and nozzle sizes. Table 2 shows the summary of 
the statistical parameters of the data. 
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Table 1. Summary of some of the data-driven models used to predict ROP. 

Model ML algorithms Parameters Number of data points 
used to build the model 

Accuracy 

MAPE RMSE R2 

(Hazbeh et al., 2021) [25] MLP WOB, RPM, SPP, T, Q, 
ECD, BPL 1878 -- -- 0.99 

(Anemangely et al., 2020) [26] MLP 

D, WOB, RPM, mud weight, 
Q, SPP, porosity log, density 
log, gamma log, 
compressional and shear 
wave slowness 

-- -- 0.064 0.921 

(Sabah et al., 2019) [27] MLP 

Neutron porosity density, 
shear wave velocity, 
compressional wave velocity, 
gamma ray, WOB, bit 
rotational speed (BRS), pump 
pressure, bit flow rate (BFR), 
mud weight, pore pressure 
gradient 

1000 -- 1.15 0.928 

(Moran et al., 2010) [28] ANN 
Rock strength, rock type, 
abrasion, WOB, RPM, mud 
weight 

-- -- -- 0.8 

(Elkatatny, 2018)  [29] ANN WOB, SPP, RPM, Q, T, 
M.wt, FV, PV 3333 -- -- 0.99 

 

 
Figure 7. Steps until developing the model. 

Table 2. Statistical summary of the data. 

Statistical 
parameter 

ROP 
(m/hr)  

WOB 
(klb)  

RPM 
(rpm)  

T  
(ft-lb)  

SPP 
psig  

Q  
(gpm)  

Mwt 
(ppg)  

HOB 
(hr)  

Rev 
On Bit 
(krev)  

 
BIT

D

(in)  
TFA 

2in  

pit 
volume 

(bbl)  

PP 
(ppg)  

OVB  
(ppg)  

Maximum  25.3  32.8  121  4948.7  3429  1079  10.72  43.85  304  17.50  1.17  785.26  10.32  16.04  

Minimum  3.7  0.6  49  1749.7  1645  508  10.20  0.05  0.1  12.25  0.99  396.82  8.85  12.51  

Range  21.6  32.2  72  3199  1784  571  0.52  43.80  303.9  5.25  0.17  388.44  1.47  3.53  

Mean  12.35  8.45  115.28  2666.47  2908.09  960.78  10.50  19.47  128.27  14.91  1.08  698.69  9.73  14.5  

Median  11.60  7.6  119  2623  2952  940  10.50  18.65  122.1  17.50  1.17  695.85  9.81  14.59  

Standard 
Deviation  3.61  4.88  14.51  484.33  291.67  60.73  0.13  11.61  82.94  2.63  0.09  38.50  0.36  1.04  
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3.2. Data preparation 
There are no duplicates in the data, and no values 

were missing. An observation that differs so 
significantly from previous observations that it 
raises the possibility that it was produced by a 
distinct mechanism is referred to as an outlier [30]. 

There are several methods for finding and 
removing outliers but isolation forest was the one 
employed in this study. Outliers in 14.7% of the 
data were found and eliminated. Figure 8 and 
Figure 9 show SPP before and after outliers were 
removed, using a box-whisker plot to show 
outliers. 

Figure 8. SPP after removing outliers. Figure 9. SPP before removing outliers. 

The data quality is improved by eliminating 
outliers. It improved the coefficients of correlation 
between the features and the target. Figure 10 
displays the correlation coefficients that were 
calculated from the correlation matrix before the 
outliers were removed. Figure 11 shows a 

comparison between correlation coefficients 
before and after removing outliers. Figure 12 
shows the data points of pumping rate before 
removing outliers and after removing outliers and 
points that have been removed. 

Figure 8. Correlation matrix before removing outliers. 
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Figure 9. Correlation coefficients for features against the target before and after removing outliers. 

 
Figure 10. Comparison of average flow in (Q) data points at different preprocessing stages for the dataset. 

A training set, a test set, and a validation set are 
created from the data. The model is trained with 
1091 points, tested with 227 points, and validated 
with 193 points using percentages of 72%, 15%, 

and 13%, of total data, respectively. The features 
and the target, as shown in Figure 13, are identified 
in the model, then the model is built. 
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Figure 11. Features included that affect ROP. 

3.3. Building model 
Two different models were built using two 

different machine-learning algorithms (KNN and 
MLP). The models were developed using 
PYTHON. 

3.3.1. KNN model 

There are a lot of parameters in KNN the most 
important two are the number of nearest neighbors 
(n_neighnors) and weights n_neighbors  is set 
equal to 3 and the weights parameter is used as 
'uniform', which means that all points in each 
neighborhood are weighted equally. 

3.3.2. MLP model 
A three-layer neural network is used. The input 

layer contains 14 neurons which is the number of 
features and the output layer with only one 
neuron. The hidden layer contains 100 neurons 
with the rectified linear unit function (relu) as an 
activation function. lbfgs solver is used as it 
works well for small datasets. 

4. Results and Discussion 
Root-mean-square error (RMSE) and coefficient 

of determination (R2), which are defined with 
Equations 1 and 2, respectively, were used to 
evaluate the statistical analysis of error for each 
model [31,32]. 

 Root-Mean-Square Error (RMSE): 

ܧܵܯܴ = ඨ∑ ൫ܴܱ ௔ܲ௖௧௨௔௟ − ܴܱ ௣ܲ௥௘ௗ௜௖௧൯
ଶ௡

௜ୀଵ
݊  (1) 

 Coefficient of determination (R2): 

ܴଶ = 1 −
∑ ൫ܴܱ ௔ܲ௖௧௨௔௟ −ܴܱ ௣ܲ௥௘ௗ௜௖௧൯

ଶ௡
௜ୀଵ

∑ ቀܴܱ ௔ܲ௖௧௨௔௟ − (1
݊∑ ܴܱ ௣ܲ௥௘ௗ௜௖௧

௡
௜ୀଵ )ቁ

ଶ
௡
௜ୀଵ

 (2) 

In Table 3, the statistical results obtained from 
the two developed models in this paper for 
training, testing, validation, and total datasets are 
presented. 

Table 3. Results of developed models. 
Model Dataset RMSE R2 

KNN 

Train 0.606917 0.94326 
Test 1.837651 0.84054 

Validation 1.654272 0.85156 
Total 0.923941 0.91485 

MLP 

Train 0.265653 0.97502 
Test 2.528778 0.79381 

Validation 1.962094 0.83643 
Total 0.911712 0.92034 

 

For the smaller values of RMSE, it can be 
inferred that the desired model has higher accuracy 
in approximation. Additionally, R2 allows for the 
calculation of the proportion of model outputs that 
can be explained by a fitted line to the data points. 
It is shown that KNN works better for test and 
validation but for total data MLP model has lower 
RMSE and higher R2. 

Figure 14 and Figure 15 show regression plot of 
the actual ROP and predicted ROP for training 
dataset for KNN and MLP models, respectively. 

Figure 16 and Figure 17 show regression plot of 
the actual ROP and predicted ROP for test dataset 
for KNN and MLP models, respectively. 

Figure 18 and Figure 19 show regression plot of 
the actual ROP and predicted ROP for validation 
dataset for KNN and MLP models, respectively. 
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Figure 12. Regression plot of the actual ROP and predicted 

ROP for validation dataset for KNN model. 
Figure 19. Regression plot of the actual ROP and predicted 

ROP for validation dataset for MLP model. 
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Figure 14. Regression plot of the actual ROP and predicted 

ROP for training dataset for KNN model. 
Figure 15. Regression plot of the actual ROP and predicted 

ROP for training dataset for MLP model. 

  
Figure 16. Regression plot of the actual ROP and predicted 

ROP for test dataset for KNN model. 
Figure 17. Regression plot of the actual ROP and predicted 

ROP for test dataset for MLP model. 
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According to the results shown above, the MLP 
model can be considered the best accurate model 
compared to the other developed model. In 
addition, it can be deduced from the regression 
plots that the MLP model has the highest 
correlation between the predicted and real values. 

Figure 20 shows a Comparison between 
predicted and real ROP among the KNN and MLP 
models for the total dataset. Figure 21 and Figure 
22 show a comparison between RMSE and R2 for 
both models respectively using a bar chart. 

  
Figure 13. Comparison of predicted and real ROP among the KNN and MLP models for the total dataset. 
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Figure 14. Comparison between RMSE for the two models. 

 
Figure 15. Comparison between R2 for both models. 

5. Conclusions 
 Drilling process optimization is closely related to 

an improvement in the rate of penetration since it 
can allow faster drilling to a tolerable level while 
also saving money. 

 Process optimization requires knowledge of the 
connections between the various factors 
affecting the drilling processes. 

 After removing outliers with a percentage of 
14.7% of the total data, the correlation 
coefficients were improved for the features 
against the target. 

 Multi-layer perceptron (MLP) is the best 
algorithm among the two studied algorithms with 
accuracy (ܴଶ = 92%). 

 A larger range of data can enable the resulting 
machine-learning models to have wider 
applications in certain situations, even though 
choosing the essential parameters can be 
difficult. 

 Real-time ROP assessment enables the drilling 
engineer to select the ideal drilling and hydraulic 
parameters with ease. 
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 In the case of ROP modeling, machine learning 
has shown to be significantly more efficient than 
mathematical models due to the rate at which it 
can evaluate massive quantities of data across a 
wide range and the higher accuracy. 

 When collecting, organizing, and modeling data, 
caution must be used. The computer can "learn" 
wrongly by making correlations between 

parameters that aren't present because it doesn't 
understand drilling mechanics. 

 The recommended methodology must then be 
evaluated using data from different oil and gas 
fields' formations, where drilling operations 
involve a variety of bit designs, operational 
considerations, and geological characteristics. 

List of abbreviations 
ROP Rate of penetration MAPE Mean absolute percentage error 
ML Machine learning RMSE Root mean squared error 
WOB Weight on bit ECD  Equivalent circulating density 
RPM Revolution per minute BPL Bit pressure loss 
T Torque D Well depth 

SPP Standpipe pressure BRS Bit rotational speed 
Q Pumping rate PP Pump pressure 
HOB Hours on bit BFR Bit flow rate 
TFA Total flow area M.wt Mud weight 
KNN K-nearest neighbors FV Funnel viscosity 
R2 Correlation coefficient PV Plastic viscosity 
MLP Multi-layer perceptron Dbit Bit diameter 

BYM Bourgoyne and Young's model PP Pore pressure 
ANN Artificial neural networks OVB Over-burden pressure 
ReLU Rectified linear unit IADC International association of drilling contractors 
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  چکیده:

با  یسنت یاضیر يهااست. مدل يضرور يحفار ندیفرآ تیریو مد يسازنهیبه يبرا نیدارد، بنابرا يدر به حداکثر رساندن راندمان حفار يدینرخ نفوذ نقش کل
 يهامدل نیذ، انفو زانیبا م يحفار يپارامترها یرخطیو رفتار غ ادیز یدگیچیپ لیاند. به دلفاده قرار گرفتهمورد است ينفوذ در حفار زانیم ینیبشیپ يبرا تیموفق

 یکیزیف ندیفرآ نیا يمدل ساز يبرا یجذاب نیگزیجا )ML( نیماش يریادگی رسدیکنند. به نظر م ینیب شینفوذ را پ زانیو جامع م قیبه طور دق توانندینم یاضیر
 يمختلف مانند (عمق، وزن رو يبا استفاده از پارامترها ROP ینیبشیپ يراکه ب کندیم یبر داده را معرف یمبتن دیجد يهامدل یقاتیمقاله تحق نی. اباشد دهیچیپ
 ي، دور بر رو)HOB( تی، وزن گل، ساعت در ب)Q(پمپاژ  انیدر پمپ ( نرخ جر انی، جر)SPP( ستادهی، فشار ا)T(، گشتاور )RPM( قهی، دور در دق)WOB( تیب
. شوندیبر داده با استفاده از دو ساخته م یمبتن يهاو حجم گودال در نظر گرفته شده است. مدل وباره،، فشار منفذ، فشار ر)TFA(کل  انیسطح جر ت،یقطر ب ت،یب

-kساخته شده است. مدل  تونیپا یسیز زبان برنامه نوبا استفاده ا يخام و کدگذار یواقع دانیداده م 1771با استفاده از  ن،یماش يریادگیمختلف  يهاکیتکن
که  )MLP( هی. مدل پرسپترون لادهدیرا نشان م 94/0 یهمبستگ بیضر کندیم ینیب شیپ یمجموعه داده آموزش يرا برا ROPکه  )KNN( هیهمسا نیکترینزد

ROP که  میریبگ جهینت میتوانی. ما مدهدیمرا نشان  98/0 یهمبستگ بیضر کند،یم ینیبشیپ یمجموعه داده آموزش يرا براMLP دارد و حذف  يدقت بهتر
 .دهدیم شیعملکرد مدل را افزا پرتموارد 

  .هیهمسا نیکترینزد-K ه،یپرسپترون چند لا ،يحفار ن،یماش يریادگینرخ نفوذ،  کلمات کلیدي:
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