Document Type : Original Research Paper

Authors

1 Department of Mining, Omran Moomun Chabahar Co., Tehran, Iran

2 Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this research work, the fractal modeling of Au anomalies in the Chaapaan 1:100,000 sheet (NW Iran) is conducted through an investigation of the concentration-distance to lineament (C-DL) relationship. The classification of Au anomalies is based on their proximity to major lineaments. Stream sediment data is utilized to identify Au anomalies, and the C-DL model demonstrates a strong correlation between the main gold anomalies and their distance from remote sensing lineaments. The findings indicate that gold anomaly values exceeding 12 ppb are found within a distance of less than 1 km from the remote sensing lineaments, establishing a significant association between fault structures and mineralization. Moreover, the average distances to remote sensing lineaments are found to be less than 1.3 km, underscoring the suitability of the C-DL fractal modeling for identifying hydrothermal gold deposits.

Keywords

[1]. Hobbs, B., Zhang, Y., Ord, A. and Zhao, C, (2000). Application of coupled deformation, fluid flow, thermal, and chemical modelling to predictive mineral exploration. Journal of Geochemical Exploration 69-70,505-509.
[2]. Ord, A., Hobbs B., Zhang, Y., Broadbent, G., Brown, M., Willetts, G., Sorjonen-Ward, P., Walshe, J., and Zhao, C. (2002). Geodynamic modeling of the century deposit, Mt Isa Province, Queensland. Australian Journal of Earth Sciences 49, 1011-1039.
[3]. Zhang, Y., Robinson, J., and Schaubs, P. (2011). Numerical modelling of structural controls on fluid flow and mineralization, Geoscience Frontiers 2 (3): 449-461.
[4]. Zhang, Y., Schaubs, P., Zhao, C., Ord, A., Hobbs, B., and Barnicoat, A. (2008). Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: Wibberley, C.A., Kurz, W., Imber, J., Holdsworth, R.E., and Collettini, C. (Eds.), The Internal Structure of Fault Zons: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publications, vol. 299, pp. 239-255.
[5]. Xu, Y. and Cheng, Q. (2001). A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochemistry: Exploration, Environment, Analysis 1, 147–156.
[6]. Wang, W., Zhao, J., Cheng, Q. and Liu, J. (2012). Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, ChinaJournal of Geochemical Exploration 122: 71-80.
[7]. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314–324.
[8]. Mandelbrot, B. (1983). The fractal geometry of nature. Freeman, San Fransisco, pp 1– 468.
[9]. Sadeghi, B., Moarefvand. P., Afzal, P., Yasrebi, A., and Daneshvar Saein, L. (2012). Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9–19.
[10]. Nouri, R., Jafari, M., Arian, M., Feizi, F. and Afzal, P. (2013). Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran), Geologica Carpathica 64, 5, 409-416.
[11]. Arian, M. (2012). Clustering of Diapiric Provinces in the Central Iran Basin. Carbonates and Evaporites, 27, 9-18.
[12]. Nouri, R., Jafari, M.R., Arian, M., Feizi, F. and Afzal, P. (2013). Prospection for Copper Mineralization with Contribution of Remote Sensing, Geochemical and Mineralographical Data in Abhar 1:100,000 Sheet, NW Iran. Archives of Mining Sciences, 58, 1071-1084.
[13]. Nouri, R. and Arian, M. (2017). Multifractal modeling of the gold mineralization in the Takab area (NW Iran). Arabian Journal of Geosciences, 10 (5): 105.
[14]. Mansouri, E., Feizi, F., Jafari Rad, A., and Arian, M. (2017). A comparative analysis of index overlay and topsis (based on ahp weight) for Iron Skarn Mineral prospectivity mapping, a case study in Sarvian Area, Markazi Province, Iran, Bulletin of the Mineral Research and Exploration, (155), pp. 147-160.
[15]. Mansouri, E., Feizi, F., Jafari Rad, A. and Arian, M. (2018). Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran. Solid Earth, 9 (2): 373-384.
[16]. Nabilou, M., Arian, M., Afzal, P., Adib, A. and Kazemi, A. (2018). Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, central Iran. Episodes Journal of International Geoscience. 41 (3): 143-159.
[17]. Khavari, R., Arian, M. and Ghorashi, M. (2009). Neotectonics of the South Central Alborz Drainage Basin, in NW Tehran, N Iran. Journal of Applied Sciences, 9, 4115-4126
[18]. Arian, M., Bagha, N., Khavari, R. and Noroozpour, H. (2012). Seismic Sources and Neo-Tectonics of Tehran Area (North Iran). Indian Journal of Science and Technology, 5, 2379-2383.
[19]. Arian, M. and Aram, Z. (2014). Relative Tectonic Activity Classification in the Kermanshah Area, Western Iran. Solid Earth, 5, 1277-1291.
[20]. Arian, M. (2015). Seismotectonic-Geologic Hazards Zoning of Iran. Earth Sciences Research Journal, 19, 7-13.
[21]. Ehsani, J. and Arian, M. (2015). Quantitative Analysis of Relative Tectonic Activity in the Jarahi-Hendijan Basin Area, Zagros Iran. Geosciences Journal, 19, 1-15.
[22]. Aram, Z. and Arian, M. (2016). Active Tectonics of the Gharasu River Basin in Zagros, Iran, Investigated by Calculation of Geomorphic Indices and Group Decision Using Analytic Hierarchy Process (AHP) Software. Episodes, 39, 39-44.
[23]. Razaghian, G., Beitollahi, A., Pourkermani, M. and Arian, M. (2018). Determining seismotectonic provinces based on seismicity coefficients in Iran. Journal of Geodynamics, 119, 29-46.
[24]. Taesiri, V., Pourkermani, M., Sorbi, A., Almasian, M. and Arian, M. (2020). Morphotectonics of Alborz Province (Iran): A Case Study using GIS Method. Geotectonics, 54(5): 691-704.
[25]. Arian, M. (2011). Basement Tectonics and Geology of Iran. Asar Nafis Press, Tehran, 140– 147 (In Persian).
[26]. Fonoudi, M. (1999). Geological map of Chaapaan, Geological Survey of Iran (GSI).
[27]. Arian, M. (2013). Physiographic-Tectonic Zoning of Iran’s Sedimentary Basins. Open Journal of Geology, 3, 169-177.
[28]. Beus, A.A. and Grigorian, S.V. (1977). Geochemical Exploration Methods for Mineral Deposits. Applied Publishing, Wilmette.
[29]. Aichler, J., Malec, J., Večeřa, J., Hanžl, P., Buriánek, D., Sidorinová, T., Táborský, Z., Bolormaa, K. and Byambasuren, D. (2008). Prospection for gold and new occurrences of gold-bearing mineralization in the eastern Mongolian Altay. Journal of Geosciences, 53 (2): 123–138.
[30]. Fletcher, W.K. (1997). Stream sediment geochemistry in today’s exploration world. In Proceedings of Exploration 97: Forth Decennial International Conference on Mineral exploration editor A.G.Gubbins, pages 249-260.
[31]. Heidari, S.M., Afzal, P. and Sadeghi, B. (2023). Miocene tectono-magmatic events and gold/poly-metal mineralizations in the Takab-Delijan belt, NW Iran. Geochemistry, 125944.
[32]. Hassanpour, Sh. and Afzal, P. (2013). Application of concentration-number (C-N) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences 6: 957–970.
[33]. Ostadhosseini, A., Barati, M., Afzal, P. and Lee, I. (2018). Polymetallic mineralization prospecting using fractal and staged factor analysis in Ardestan area, Central of Iran. Geopersia 8: 279-292.
[34]. Ahmadfaraj, M., Mirmohammadi, M., Afzal, P., Yasrebi, A.B. and Carranza, E.J. (2019). Fractal modeling and fry analysis of the relationship between structures and Cu mineralization in Saveh region, Central Iran. Ore Geology Reviews 107, 172-185.
[35]. Shahbazi, S., Ghaderi, M. and Afzal, P. (2021). Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences 13, 31-40.
[36]. Nabilou, M.,  Afzal, P., Arian, M., Adib, A., Kheyrollahi, H., Foudazi M. and Ansarirad, P. (2022). The relationship between Fe mineralization and the magnetic basement structures using multifractal modeling in the Esfordi and Behabad Areas (BMD), central Iran. Acta Geologica Sinica-English Edition. 96 (2): 591–606.
[37]. Nabilou, M., Afzal, P., Arian, M., Adib, A., Kazemi Mehrnia, A., Jami, M., Kheyrollahi, H., Akhavan Aghdam, M.R., Ameri, A. and Daneshvar Saein, L. (2022). Determination of relationship between Rare Earth Elements (REEs) mineralization and major faults using fractal modeling in Gazestan deposit, central Iran. Bollettino di Geofisica Teorica ed Applicata 63 (3): 495-518.