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In this paper, we discuss the concepts behind dispersion patterns of geochemical
anomalies when applied for prospecting mineral deposits in different exploration
scales. The patterns vary from regional to local scale geochemical surveys, which is
due to the differences in the corresponding underlying processes. Thus the ways for
modelling the dispersion patterns and driving significant geochemical signatures
should consider the variety when the area under study are delimited from regional to
deposit scales exploration. Subsequently, this paper faces with two questions, namely
(2) should various geochemical indicators be integrated in different exploration scales
aiming at introducing stronger signatures of mineral deposits? and (2) how does the
exploration scale affect dispersion patterns of geochemical indicator elements? We
demonstrate that the exploration scale plays an important role on the reliability and
usefulness of geochemical anomaly models. In this regard, although fusion may
achieve reputable outcomes at regional scale exploration, we demonstrate that
integration doesn’t gain accurate results for exploration at local scale, which is due to
the diversities of the elemental distributions in the two different scales. This
achievement is approved by comparing two geochemical signatures, one obtained by
integration of two different indicator factors and the other one that used a single factor.
The former produces almost the whole studied area as prospective, while the later
recognizes ~10% of the area for further exploration, which is closely related to the
porphyry Cu mineralization and is verified by drilling results.

1. Introduction

Geochemical anomaly detection and mapping
techniques are traditional and modern approaches
aiding exploration geologists to prospect
potentially economic mineral deposits [1-13]. The
outcome of geochemical data analysis are
commonly models of uni- and multi-variate
dispersion patterns of indicator elements [14-22]
representing the operation of syn-mineralization
sub-systems of ore-forming processes [9, 23, 24] or
exhumation post-mineralization sub-systems that
distribute  mineralized  materials in  the
environments, various media [23, 24]. The two
aforementioned geochemical processes, syn- and
post-mineralization subsystems, differ in terms of
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the diversity of the processes operating during and
after mineralization. The pre- and syn-
mineralization processes operate as how as to make
elemental enrichments in the trap sites, whilst post-
mineralization exhuming processes, mainly
weathering and erosion factors, act to distribute
diluted amounts of the elements in the
environments around mineral deposit sites. This
means that the concepts behind dispersion patterns
in regional/district scale and local/deposit scale are
different due to the differences in the
corresponding underlying processes. Thus, the
ways for modelling the ensuing dispersion patterns
and driving significant geochemical signatures
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should consider the variety when the area under
study are delimited from regional to deposit scales
exploration. Subsequently, two questions are
flagged, that are (1) should various geochemical
indicators be integrated in different exploration
scales aiming at introducing stronger signatures of
mineral deposits? and (2) how does the exploration
scale affect dispersion patterns of geochemical
indicator elements?

Intergradation ~ of  different  geochemical
indicators of a targeted mineral deposit is a
common practice in geochemical anomaly
modeling to produce stronger geochemical
signatures, which reported mainly in regional scale
geochemical surveys. This paper aims to face with
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the questions above through analysis of a deposit
scale dataset of porphyry-cu mineralization in
Isfahan province, Iran.

2. Studied Area and Dataset

The studied area is a small part of the Urumieh-
Dokhtar magmatic arc (UDMA) of Iran.
Geological setting of the area is investigated by the
1:1000 scale geological map prepared by the
National Iranian Copper Industries Company
(NICICO). Rock units in the area consist of
sediment, intrusive and sub-volcanic units and
dikes (Figure 1). Further information about the
studied area could be found in [7, 8, 21, 25, 26].
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Figure 1. Geological map of the studied area [26].

Through an exploration program of Cu-Mo
porphyry deposit, 945 residual soil samples were
taken from the studied area by stratified
randomized sampling method. Each of the samples
involves 300 g of soil material taken form sampling
cell with a 40 to 60 dimensions, which were
analyzed for 43 elements including Ag, Al, As, Au,
Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La,
Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc,
Sn, Sr, Te, Th, Ti, TI, U, V, W, Y, Yb, Zn, and Zr.
The employed analyzing technique for Au
elements was flame atomic absorption, and for the
rest of the elements was inductively
coupled plasma. The detection limits for the
elements were measured below the background
value.
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3. Methods and Results
3.1. Staged factor analysis

Recognizing significant multi-element
geochemical signatures is an efficient practice one
step forward undiscovered ore deposits [27, 28, 29,
30]. In this study, a staged factor analysis was
performed for the enhanced recognition of multi-
element anomalous signatures of the porphyry-Cu
deposit. For this purpose, a fourth-stage factor
analysis was used (Table 1). The general procedure
of staged factor analysis includes two main phases,
and both phases may consist of some sub-phases
(hereafter referred to as stage), depending on the
geochemical data and mineral deposit-type sought.
The details of staged factor analysis are found in
[15, 17].
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Table 1. Rotated factor matrix for a fourth-stage of staged factor analysis. Loadings in bold represent the
selected elements based on threshold of 0.4 (the absolute threshold value) for each stage.

First main phase

Second main phase

First stage Second stage Third stage Fourth stage

Element F1 F2 Element F1 F2 Element F Element F
Zn 0.875 0.028 Zn 0.879 0.063 Zn 0.872 Cu 0.901
As 0.815 -0.276 As 0.827 -0.242 Pb 0.814 Mo 0.743
Pb 0.811 0.127 Pb 0.810 0.150 As 0.811 Au 0.593
Sh 0.500 0.021 Sh 0.499 0.037 Sh 0.495 Eigenvalue 1.716
Ag 0.202 0.052 Cu 0.122 0.8657 Eigenvalue 2.326 Var. 57.198
Cu 0.150 0.856 Mo -0.263 0.772 Var. 58.155 Cum. var. 57.198
Mo -0.226 0.783 Au 0.415 0.504 Cum. var. 58.155
Au 0.425 0.485 Eigenvalue 2.619 1.685

Eigenvalue 2.634 1.677 Var. 37.410  24.074
Var. 32,925  20.965 Cum. var. 37410 61.484

Cum. var. 32.925  53.890

Regarding Table 1, the results of staged factor
analysis disclose that there are two indicator factors
reflecting the existence of a porphyry-cu deposit.
These factors are Zn-As-Pb-Sb and Cu-Mo-Au
associations in the third- and forth-stage factor
analysis, respectively. Accordingly, the samples
with high factor scores (FSs) values of these two
factors could be utilized as indicator factors with
affiliation to geochemical criteria to recognize
interested area in the studied region.

Nevertheless, as depicted in Table 1, the factors
in the third stage can be used as indicator factors
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[17] who demonstrated due to the mathematical
basis of factor analysis, elements on a factor could
have a negative influence on calculating FSs of
other factors. Hence, to compute the reliable FSs
for an optimal definition of exploration targets, the
FSs should be computed for each factor
individually [17, 28]. Figure 2 shows the spatial
distributions of FSs (Zn-As-Pb-Sh association) and
FSs (Cu-Mo-Au association), derived from the
staged factor analysis.
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Figure 2. Spatial distributions of two main factors derived from the staged factor analysis: Factor 1 (Zn-As-Pb-
Sb association) (left) and Factor 2 (Cu-Mo-Au association) (right).

3.2. Integration of multi-element geochemical
signatures

The existence of different evidential data types
would be more indicative for occurring of a
mineral deposit in the vicinity [14]. As a result,
when several different spatial evidence values are
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combined, a stronger multi-element signature is
generated to prospect the deposit-type sought [14,
15, 16, 31, 32, 33, 34]. Thus, although each of the
derived FSs, FSzn-as-pb-sp and FScy-mo-au in Figure 3
could be an effective multi-element signature for
porphyry-Cu mineralization, a stronger multi-
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element signature can be generated to prospect this
type of mineralization via combination of values of
the two indicator factors.

For this purpose, a logistic function [15, 17] was
used to transform the unbounded FS values
(resulted from staged factor analysis) into the 0-1
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range. As a result, a weighted geochemical
evidence layer known as the geochemical
mineralization prospectivity index (GMPI) [15, 17]
was generated for each of the two factors. Then, a
fuzzy OR operator [14, 31] were used (Figure 4).
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Figure 3. Geochemical mineralization prospectivity index (GMPI) map of the factor Fi(zn-as-po-sb) (Ieft) and factor
F2 (cu-Mo-au) (right).
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As it can be seen in the Figure 4, the whole
studied area shows anomalous content of the
derived signature that is correct and reasonable
because the study is carried out on a deposit scale
in an area that shows abnormal element
concentrations. However, the main issue here is the

0.4
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delimitation of the anomalies to define first-round
drilling sites. Thus at this local scale exploration,
the integration does not gain the purpose of
delimitation because the whole studied area is
anomaly. In contrast, a model of zoning patterns of
geochemical anomalies here outlines of F1 and F2
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anomalies demonstrates zones where show higher
potential of mineralization (Figure 5). According to
Figure 5, anomaly areas of F2 show a high
conformity with promising drilled boreholes.
Comparison of the two geochemical signatures,
one obtained by integration of two different
indicator factors and the other one that used a
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single factor, demonstrated that the former
produces almost the whole study area as
prospective, while the later recognises only 10% of
the area for further exploration, which is closely
related to the porphyry Cu mineralization and is
verified by drilling results.
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4. Discussion

The presence of different types of evidence
would be more indicative for of the presence of a
mineral deposit [35]. Thus, dispersion patterns of
different indicator elements could be analysed for
vectoring into mineralized zones [9]. Due to the
scale dependency of geochemical patterns, it seems
that the effects of this dependency should be
considered and translated into mappable criteria at
all scales of the targeting process.

This is because signatures of syn-mineralization
processes are within and close to trap sites, i.e., in
rock and in situ soils, but evidence relevant to post-
mineralization processes appear in transported
materials like stream sediments. That means
anomalous contents of different indicator elements
of a certain mineral deposit are simply mixed at

1015

regional to district scale exploration where the
mineralized materials are released from the sources
and move to downstream of the deposit sites.
However, at deposit scale exploration program, the
elemental dispersion patterns in rocks and in situ
soils are the same as that they formed. Thus, it is
better that different signatures, which show
different dispersion patterns around trap sites, are
not combined at local scale exploration.

5. Conclusions

In any attempt at geochemistry for mineral
exploration, the exploration scale and the
corresponding  sub-systems  of  ore-forming
processes must be contributed. For this, the
categorisation of ore-forming processes into pre-,
syn-, and  post-mineralisation  sub-systems
facilitates a better understanding of how they
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operate in different scales. This study demonstrated
that the exploration scale plays an important role
on the reliability and usefulness of geochemical
anomaly models. The results revealed that because
the geochemical dispersion patterns of indicator
elements in pre-, and post-mineralisation sub-
systems is not the same; therefore, more accurate
and reliable results will be obtained if we choose
appropriate data processing procedure and
approaches with regard to the exploration scale.
Therefore, although integration may gain reliable
results at the regional scale, due to the differences
in the distribution of elements, there is no
guarantee at the local.
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