[1]. Marsden, J. and House, I. (2006). The Chemistry of Gold Extraction: Society for Mining, Metallurgy, and Exploration.
[2]. Zia, Y., Mohammadnejad, S. and Abdollahy, M. (2020). Destabilisation of gold cyanide complex by sulphur species: A computational perspective. Hydrometallurgy, 197, 105459.
[3]. Hilson, G. and Monhemius, A.J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14, 1158-1168.
[4]. Abbruzzese, C., Fornari, P., Massidda, R., Veglio, F., and Ubaldini, S. (1995). Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy, 39, 12.
[5]. Aylmore, M.G. (2005). Alternative lixiviants to cyanide for leaching gold ores. In M. D. Adams (Ed.), Developments in Mineral Processing (Vol. 15, pp. 1076): Elsevier.
[6]. Ghasemi, S., Mohammadnejad, S. and Khalesi, M.R. (2018). A DFT study on the speciation of aqueous gold and copper cyanide complexes. Computational and Theoretical Chemistry, 1124, 23-31.
[7]. Ghasemi, S., Mohammadnejad, S., and Khalesi, M.R. (2022). Role of Functional Groups in Selective Adsorption of Gold over Copper Cyano complexes by Activated Carbon: A DFT Study. Journal of Mining and Environment, 13(3), 891-901.
[8]. Bulatovic, S.M. (1997). Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold-bearing sulphides. Minerals Engineering, 10 (9): 895-908.
[9]. Feng, D., and van Deventer, J.S.J. (2006). Ammoniacal thiosulphate leaching of gold in the presence of pyrite. Hydrometallurgy, 82 (3–4): 126-132.
[10]. Forrest, K., Yan, D., and Dunne, R. (2001). Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Minerals Engineering, 14 (2): 227-241.
[11]. Bas, A.D., Ozdemir, E., Yazici, E.Y., Celep, O., and Deveci, H. (2011). Ammoniacal thiosulphate leaching of a copper-rich gold ore. Paper presented at the 15th International Conference on Environmental and Mineral Processing (EaMP), Ostrava, Czech Republic.
[12]. Kondos, P.D., Deschênes, G., and Morrison, R.M. (1995). Process optimization studies in gold cyanidation. Hydrometallurgy, 39 (1): 235-250.
[13]. Jiang, T., Zhang, Y., Yang, Y., and Huang, Z. (2001). Influence of copper minerals on cyanide leaching of gold. Journal of central south university of technology. 8 (1): 24-28.
[14]. Tao, Y. (1987). A review on treatment of copper-beating gold ores. Huang Jin (in Chinese), 3 (41).
[15]. BAS, A.D., Kucuk, A., Yazici, E.Y., and Deveci, H. (2012). Assessment of ammoniacal ammonium sulphate leaching as a pretreatment process for copper bearing gold ores. XIIIth International Mineral Processing Symposium (IMPS), Bodrum, Turkey.
[16]. Muir, D.M., La Brooy, S.R., and Fenton, K. (1991). Processing copper–gold ores with ammonia or ammonia–cyanide solutions. World Gold ’91, Cairns, Australia.
[17]. Deschênes, G., Gu, H., Xia, C., Pratt, A., Fulton, M., Choi, Y., and Price, J. (2012). A study of the effect of djurliete, bornite and chalcopyrite during the dissolution of gold with a solution of ammonia-cyanide. Minerals and Metallurgical Processing, 2, 459−472.
[18]. Deschênes, G. and Prud'homme, P.J.H. (1997). Cyanidation of a copper-gold ore. International Journal of Mineral Processing, 50 (3): 127-141.
[19]. Dai, X., Simons, A., and Breuer, P. (2012). A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Minerals Engineering, 25 (1): 1-13.
[20]. Eksteen, J. and Oraby, E.A. (2015). The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type. Minerals Engineering, 70, 36-42.
[21]. Oraby, E. and Eksteen, J. (2014). The selective leaching of copper from a gold–copper concentrate in glycine solutions. Hydrometallurgy, 150, 14-19.
[22]. Oraby, E. and Eksteen, J. (2015). The leaching of gold, silver and their alloys in alkaline glycine– peroxide solutions and their adsorption on carbon. Hydrometallurgy, 152, 199- 203.
[23]. Oraby, E. and Eksteen, J. (2015). Gold leaching in cyanide-starved copper solutions in the presence of glycine. Hydrometallurgy, 156, 81-88.
[24]. Oraby, E., Eksteen, J., and Tanda, B. (2017). Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy, 169(Supplement C), 339-345.
[25]. Sarvar, M., Shafaei Tonkaboni, Z., Noaparast, M., Badiei, A.R., and Amiri, A. Application of amino acids for gold leaching: Effective parameters and the role of amino acid structure. Journal of Cleaner Production, 391, 136123.
[26]. Li, H., Deng, Z., Oraby, E., and Eksteen, J. (2023). Amino acids as lixiviants for metals extraction from natural and secondary resources with emphasis on glycine: A literature review. Hydrometallurgy, 216, 106008.
[27]. Li, H., Oraby, E., and Eksteen, J. (2022). Extraction of precious metals from waste printed circuit boards using cyanide-free alkaline glycine solution in the presence of an oxidant. Minerals Engineering, 181, 107501.
[28]. Oraby, E., Eksteen, J., and Tanda, B. (2017) Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy, 169, 339-345.
[29]. Rezaee, M., Saneie, R., Mohammadzadeh, A., Abdollahi. H., Kordloo, M., Rezaee, A., and Vahidi, E. (2023). Eco-friendly recovery of base and precious metals from waste printed circuit boards by step-wise glycine leaching: Process optimization, kinetics modeling, and comparative life cycle assessment. Journal of Cleaner Production, 389, 136016.
[30]. Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of chemical physics, 113 (18): 7756-7764.
[31] Klamt, A. and Schüürmann, G. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2, 799-805.
[32]. Hancock, R. and Bartolotti, L. (2005). Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold (I). Inorganic Chemistry, 44(20), 7175-83.
[33]. Gutten, O. and Rulíšek, L. (2013). Predicting the stability constants of metal-ion complexes from first principles. Inorganic Chemistry, 52 (18): 10347-10355.
[34]. Yin, X., Opara, A., Du, H., and Miller, J. (2011). Molecular dynamics simulations of metal–cyanide complexes: Fundamental considerations in gold hydrometallurgy. Hydrometallurgy, 106 (1-2): 64-70.