[1]. Trahar, W. J. (1981). A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8(4), 289-327.
[2]. Ahmed, N. and Jameson, G. J. (1985). The effect of bubble size on the rate of flotation of fine particles. International journal of mineral processing, 14(3), 195-215.
[3]. Yoon, R. H. and Luttrell, G. H. (1986). The effect of bubble size on fine coal flotation. Coal Preparation, 2(3), 179-192.
[4]. Ding, S., Xing, Y., Zheng, X., Zhang, Y., Cao, Y., and Gui, X. (2020). New insights into the role of surface nanobubbles in bubble-particle detachment. Langmuir, 36(16), 4339-4346.
[5]. Lei, W., Zhang, M., Zhang, Z., Zhan, N., and Fan, R. (2020). Effect of bulk nanobubbles on the entrainment of kaolinite particles in flotation. Powder Technology, 362, 84-89.
[6]. Liu, L., Hu, S., Wu, C., Liu, K., Weng, L., and Zhou, W. (2021). Aggregates characterizations of the ultra-fine coal particles induced by nanobubbles. Fuel, 297, 120765.
[7]. Tao, D., Wu, Z., and Sobhy, A. (2021). Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technology, 379, 12-25.
[8]. Zhou, W., Chen, H., Ou, L., and Shi, Q. (2016). Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. International Journal of Mineral Processing, 157, 236-240.
[9]. Zhou, W., Niu, J., Xiao, W., and Ou, L. (2019). Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals. Ultrasonics Sonochemistry, 51, 31-39.
[10]. Matis, K. A., Gallios, G. P., and Kydros, K. A. (1993). Separation of fines by flotation techniques. Separations Technology, 3(2), 76-90.
[11]. Ansari, M. I. (1997). Fine particle processing-A difficult problem for mineral engineers.
[12]. Yalcin, T. and Byers, A. (2006). Dissolved gas flotation in mineral processing. Mineral Processing and Extractive Metallurgy Review, 27(2), 87-97.
[13]. Maoming, F. A. N., Daniel, T. A. O., Honaker, R., and Zhenfu, L. U. O. (2010). Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate. Mining Science and Technology (China), 20(3), 317-338.
[14]. Maoming, F. A. N., Daniel, T. A. O., HONAKER, R., and Zhenfu, L. U. O. (2010). Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal. Mining Science and Technology (China), 20(5), 641-671.
[15]. Jameson, G. J. (2010). Advances in fine and coarse particle flotation. Canadian Metallurgical Quarterly, 49(4), 325-330.
[16]. Ushikubo, F. Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., ... and Oshita, S. (2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1-3), 31-37.
[17]. Miettinen, T., Ralston, J., and Fornasiero, D. (2010). The limits of fine particle flotation. Minerals engineering, 23(5), 420-437.
[18]. Albijanic, B., Amini, E., Wightman, E., Ozdemir, O., Nguyen, A. V., and Bradshaw, D. J. (2011). A relationship between the bubble–particle attachment time and the mineralogy of a copper–sulphide ore. Minerals Engineering, 24(12), 1335-1339.
[19]. Albijanic, B., Bradshaw, D. J., and Nguyen, A. V. (2012). The relationships between the bubble–particle attachment time, collector dosage and the mineralogy of a copper sulfide ore. Minerals Engineering, 36, 309-313.
[20]. Calgaroto, S., Wilberg, K. Q., and Rubio, J. (2014). On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering, 60, 33-40.
[21]. Mazahernasab, R. and Ahmadi, R. (2016). Determination of bubble size distribution in a laboratory mechanical flotation cell by a laser diffraction technique. Physicochemical Problems of Mineral Processing, 52.
[22]. Leistner, T., Peuker, U. A., and Rudolph, M. (2017). How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Minerals Engineering, 109, 1-9.
[23]. Rulyov, N., Nessipbay, Т., Dulatbek, T., Larissa, S., & and Zhamikhan, K. (2018). Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation. Mineral Processing and Extractive Metallurgy, 127(3), 133-139.
[24]. Nazari, S., Shafaei, S. Z., Gharabaghi, M., Ahmadi, R., Shahbazi, B., and Maoming, F. (2019). Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. International Journal of Mining Science and Technology, 29(2), 289-295.
[25]. de Medeiros, A. R. S. and Baltar, C. A. M. (2018). Importance of collector chain length in flotation of fine particles. Minerals Engineering, 122, 179-184.
[26]. Tao, D. and Sobhy, A. (2019). Nanobubble effects on hydrodynamic interactions between particles and bubbles. Powder technology, 346, 385-395.
[27]. Ebrahimi, H., Karamoozian, M., and Saghravani, S. F. (2022). Interaction of applying stable micro-nano bubbles and ultrasonic irradiation in coal flotation. International Journal of Coal Preparation and Utilization, 42(5), 1548-1562.
[28]. Farrokhpay, S., Filippova, I., Filippov, L., Picarra, A., Rulyov, N., and Fornasiero, D. (2020). Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Minerals Engineering, 155, 106439.
[29]. Farrokhpay, S., Filippov, L., and Fornasiero, D. (2021). Flotation of fine particles: A review. Mineral Processing and Extractive Metallurgy Review, 42(7), 473-483.
[30]. Li, C., Xu, M., Xing, Y., Zhang, H., and Peuker, U. A. (2020). Efficient separation of fine coal assisted by surface nanobubbles. Separation and Purification Technology, 249, 117163.
[31]. Chang, G., Xing, Y., Zhang, F., Yang, Z., Liu, X., and Gui, X. (2020). Effect of nanobubbles on the flotation performance of oxidized coal. ACS omega, 5(32), 20283-20290.
[32]. Nazari, S. and Hassanzadeh, A. (2020). The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technology, 374, 160-171.
[33]. Sobhy, A., Wu, Z., and Tao, D. (2021). Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles. Minerals Engineering, 163, 106799.
[34]. Zhang, Z., Ren, L., and Zhang, Y. (2021). Role of nanobubbles in the flotation of fine rutile particles. Minerals Engineering, 172, 107140.
[35]. Li, C. and Zhang, H. (2022). A review of bulk nanobubbles and their roles in flotation of fine particles. Powder Technology, 395, 618-633.
[36]. Li, C. and Zhang, H. (2022). Surface nanobubbles and their roles in flotation of fine particles–A review. Journal of Industrial and Engineering Chemistry, 106, 37-51.
[37]. Schubert, H. (2005). Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation. International Journal of Mineral Processing, 78(1), 11-21.
[38]. Hampton, M. A. and Nguyen, A. V. (2009). Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive. Journal of colloid and interface science, 333(2), 800-806.
[39]. Montgomery, D. C. (2001). Design and analysis of experiments. John Wiley & Sons. Inc., New York, 1997, 200-1.
[40]. Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
[41]. Hinkelman, K., Kempthorne, O., and Kshivsagar, A. M. (1996). Design and analysis of experiments. Volume I: Introduction to experimental design. Statistical Methods in Medical Research, 5(1), 101-101.
[42]. Kincl, M., Turk, S., and Vrečer, F. (2005). Application of experimental design methodology in development and optimization of drug release method. International journal of pharmaceutics, 291(1-2), 39-49.
[43]. Simate, G. S., Ndlovu, S., and Gericke, M. (2009). Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy, 98(3-4), 241-246.
[44]. Niaki, R., Abazarpoor, A., Halali, M., Maarefvand, M., and Ebrahimi, G. (2015). Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric and nitric leaching of spent catalyst. Russian Journal of Non-Ferrous Metals, 56, 155-164.
[45]. Behera, S. K., Meena, H., Chakraborty, S., and Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4), 621-629.
[46]. Sahu, J. N., Acharya, J., and Meikap, B. C. (2009). Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. Journal of hazardous materials, 172(2-3), 818-825.
[47]. Vazifeh, Y., Jorjani, E., and Bagherian, A. (2010). Optimization of reagent dosages for copper flotation using statistical technique. Transactions of Nonferrous Metals Society of China, 20(12), 2371-2378.
[48]. Rao, G. V. and Mohanty, S. (2002). Optimization of flotation parameters for enhancement of grade and recovery of phosphate from low-grade dolomitic rock phosphate ore from Jhamarkotra, India. Mining, Metallurgy & Exploration, 19, 154-160.
[49]. Aslan, N. E. V. Z. A. T. and Fidan, R. (2008). Optimization of Pb flotation using statistical technique and quadratic programming. Separation and Purification Technology, 62(1), 160-165.
[50]. Mehrabani, J. V., Noaparast, M., Mousavi, S. M., Dehghan, R., and Ghorbani, A. (2010). Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Separation and Purification Technology, 72(3), 242-249.
[51]. Kwak, J. S. (2005). Application of Taguchi and response surface methodologies for geometric error in surface grinding process. International journal of machine tools and manufacture, 45(3), 327-334.
[52]. Awe, S. A., Khoshkhoo, M., Kruger, P., and SANDSTROeM, A. (2012). Modelling and process optimisation of antimony removal from a complex copper concentrate. Transactions of Nonferrous Metals Society of China, 22(3), 675-685.
[53]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
[54]. Rakić, T., Kasagić-Vujanović, I., Jovanović, M., Jančić-Stojanović, B., and Ivanović, D. (2014). Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities. Analytical Letters, 47(8), 1334-1347.
[55]. Box, G. E. and Hunter, J. S. (1957). Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, 195-241.
[56]. Kafshgari, L. A., Ghorbani, M., Azizi, A., Agarwal, S., and Gupta, V. K. (2017). Modeling and optimization of Direct Red 16 adsorption from aqueous solutions using nanocomposite of MnFe2O4/MWCNTs: RSM-CCRD model. Journal of molecular liquids, 233, 370-377.
[57]. Arefi, A. (2015). Application of micro/nanobubbles and nanomaterials in improving the mechanical behavior and insulation of building materials (with emphasis on concrete). Master of Science Thesis in Civil Engineering (Water and Environment), Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.
[58]. Tao, Y., Liu, J., Yu, S., and Tao, D. (2006). Picobubble enhanced fine coal flotation. Separation Science and Technology, 41(16), 3597-3607.
[59]. Zhang, X. Y., Wang, Q. S., Wu, Z. X., and Tao, D. P. (2020). An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. International Journal of Minerals, Metallurgy and Materials, 27, 152-161.