Hydrogeophysical Survey for Assessment of Groundwater Budget and Aquifer Protection in Hilly Terrain

Sonu Singh1*, Vijay Shankar1, and Joseph Tripura2

1. Department of Civil Engineering, National Institute of Technology Hamirpur, India
2. Department of Civil Engineering, National Institute of Technology Patna, India

Abstract

Assessing the groundwater potential (GWP) and protective capacity of aquifers is essential to provide solutions to challenges in aquifer exploration and conditions in hilly terrain regions. The study was conducted in the hilly terrain region of Hamirpur, Himachal Pradesh, India, to obtain one-dimensional vertical electrical sounding (VES) data for groundwater exploration and evaluate the vulnerability of sublayers. Forty VES sites were used in the Schlumberger electrode configuration. The analysis of data resulted in stratified 2-5 different curves. According to the geoelectric sections, there are two to five layers of soil beneath the region i.e. Shale/clay (10-650 Ohm-m), fractured sandstone/gravel/sand (10.3-436 Ohm-m), clay mix gravel/clay mix sand/coarse-grained sandstones (1.06-355 Ohm-m), conglomerate/clay/hard sandstone (60.5-658.7 Ohm-m), sandstone/shale (90.8-125 Ohm-m) with aquifer resistivity (AR) in parenthesis. Aquifer resistivity (AR), longitudinal conductance (S), layer thickness (LT), and transverse resistivity (TR) distribution maps were generated using interpreted VES data for various sub-layers using ArcGIS 10.1. The geologic second and third sub-surface layers are generally porous and permeable. S values for underlying layers are generally less than unity, which indicates vulnerable zones with a significant risk of contamination. Based on the S values, the strata are divided into five categories as Poor (5.55%), weak (19.43%), moderate (19.45%), good (38.89%), and very good (16.68%). Areas with moderate to very good protection capacity are planned as zones with high GWP. The study results are useful in preliminary pollution control and assessment for sustainable groundwater management.

Keywords
VES
Hydraulic parameters
Geoelectrical data
Aquifer protective capacity
Hilly terrain

1. Introduction

Groundwater is the primary source of drinking water for almost 2.5 billion people globally [1]. In many farming locations, groundwater withdrawal has significantly aided social and economic development, improved food security, and reduced the effect of drought [2-4]. Groundwater abstraction can mitigate the short-term effects of drought on agriculture and domestic water supplies [5]. The rapid decrease of water levels can be an unintended consequence of humanity's reliance on groundwater [6-8], and leads to water quality degradation [9-12]. The indiscriminate sinking of boreholes does not consider the site's prior geophysical, hydrogeological, and geological investigations. This attributes to the temporary functioning of boreholes and results in a very low success rate of the boreholes [13]. Knowledge of the fundamental characteristics of the aquifer is required for groundwater exploration including the determination of natural flow, bedrock depth, and groundwater availability in terms of quality and quantity [14]. Some traditional methods such as test hole drilling and log analysis are employed to characterize the protective layer thickness and lateral extent but have limitations of cost and input effort [15]. Hence, the deep study of groundwater exploration techniques is essential to overcome these limitations.

Electrical resistivity has been used in a variety of geophysical investigations including mineral
exploration [16-26], engineering investigations [27-29], geothermal studies [30-32], archaeological surveys [33-36], geological mapping [37-40], and groundwater monitoring [41]. It is critical to define groundwater potential zones in order to assess a region's groundwater potential [42]. Furthermore, appropriately managing groundwater resources is enhanced by properly describing suitable groundwater potential zones [43-46], which requires a detailed examination of sites selection for groundwater abstraction. Among several geo-physical techniques used to study sub-surface properties, the commonest is VES to delineate the most suitable area for groundwater exploration [47, 48]. It is inferred, on the basis of numerous case studies, that the application of VES is successful in groundwater exploration.

However, in addition to the challenges in identifying potential groundwater bodies, many researchers have also investigated the nature of aquifer protection. Shailaja et al. [49] examined aquifer protection in Maharashtra, India, a higher drought region, using vertical electrical sounding in the Schlumberger electrode configuration. The study region has few aquifers in the horizontal, vertical extent, and are available at greater depth pertaining to the hilly terrain. Water demand there is high necessitating the need for groundwater exploration. The data from drilling reflects substantial variation in water table depth in the aquifers of the study area [50]. Table 1 gives the water table data of the studied area.

Although the hydro-geophysical surveys have been done in many parts of the world to evaluate groundwater reserves and aquifer protection, most of the studies are primarily focused on the general aspects of the aquifer system or the investigations on the most protective layer for aquifer protection.

Literature indicates that very few studies have been conducted to assess groundwater budget and aquifer protection with a comprehensive assessment of all the subsurface layers. The present study investigates the characteristics of all the subsurface layers (including resistivity parameters) through the hydro-geophysical survey, thus comprehensively assessing all subsurface layers to identify groundwater reserves and protection. The specific objectives of the current study are (i) Evaluating aquifer protective capacity and providing adequate recommendations for the groundwater abstraction and (ii) Assessing the groundwater budget, aquifer protection, and vulnerability of the sub-surface layers through a hydro-geophysical survey.

2. Materials and Methods

2.1. Location and geology of studied area

The studied area, i.e. Hamirpur, is in the Indian state of Himachal Pradesh, and is bounded by latitudes 31°24'48" to 31°53'35" and longitudes 76°17'50" to 76°43'42" (Figure 1). It is covered by the far northern high-altitude Dhauladhar ranges and is characterized as hilly terrain. The proposed studied area is primarily based on a homogenized soil-water interaction. Knowledge of soil-water interaction is a key essential in solving several real-world problems encountered in different engineering projects such as soil erosions, soil stabilization, leaching of pollutants, potential groundwater zone delineation, aquifer characteristics identification, etc. The studied area covers only 1118 square kilometres (2.01% of the state's total area). The study region has the highest population density with 406 people per square kilometer in the state of Himachal Pradesh [51]. Hamirpur, Badsar, Bhoranj, Nadaun, and Sujanpur are the administrative units of studied area [52].

Seasonal conditions are differentiated into three broad categories, i.e. October to March as winters, April to June as summers, and monsoon from July to September. Hamirpur experiences moderate rainfall, with maximum precipitation in July and August. According to Central Groundwater Board CGWB [52], Hamirpur receives 1340.72 mm as average annual rainfall, of which June to September record about 82%. The River Beas drains the area, with the tributaries Maan Khad and Kunah Khad running on each side. Minimum and maximum temperatures typically vary from 3°C to 35°C.

The studied area is classified into different regions based on Siwalik groups i.e. upper Siwalik, middle Siwalik, and lower Siwalik, for the development of groundwater. The lower, middle and upper Shiwalik group makes up the region's geology (Figure 2). Dark gray sandstone and purple shales in lower Shiwaliks, and are overlain by grey clay and micaceous sandstone. The upper Siwaliks are composed of conglomerates, coarse-grained sandstones, and beds of sandstone or pebbles interbedded with grey and pink clays and silts. The northern part of the district is underlain by hard and compact conglomerates, whereas weathered and fractured conglomerate found in the southern region.
Figure 1. Studied area map.

Figure 2. Geological map of the studied area.
2.2. Designing geo-physical surveying

The signal stacking-based signal enhancement resistivity meter (Model: SSR-MP-AT) has been used for VES measurement for field survey in the studied area. The instrument is a reliable geophysical tool that provides high-quality measurements since it includes many novel features and cutting-edge digital circuit technology. The ration for the signal and noise of the device can be enhanced for non-coherent earth noises by increasing the number of stacks. The device is an innovative geophysical tool with digital circuitry techniques that ensure precise readings. The instrument in action during a field survey is shown in Figure 3. The apparent resistivity is measured directly. The distance between potential electrodes and current electrodes were entered using the resistivity meter's built-in keypad to calculate apparent resistivity. The arrangement of Schlumberger is shown in Figure 4. The current electrodes are represented by M and N, whereas the potential electrodes are represented by A and B. The space between the current electrodes is kept as wide as possible to better analyze the subsurface properties at greater depths. To examine the geo-physical survey, the vertical electrical sounding (VES) test at 40 sites used a maximum half current electrode spacing (MN/2) of 350 m. All stations' apparent resistivity has been measured by Schlumberger profiling, and the data transmitted to a PC for interpretation. Various layers' apparent resistivity was converted to their absolute resistivity. Using the IP2Win software, the resistivity with thickness and depth of each stratum was also determined.

VES method (also known as resistivity depth probing) is used whenever the depth section of a particular place is required. VES offers information about change in the lithology with depth by means of measured resistivity at surface. Two pairs of electrodes are needed for VES measurements: electrodes M and N are used for current injections, while electrodes A and B are for potential difference measurements (Figure 4). The current electrodes are shifted for each measurement, leaving the potential electrodes in place. The potential electrodes are moved only when the signal becomes too weak to be measured [29]. VES method quantifies the potential field generated by current flowing into the subsurface where contiguous contrast of electrical resistivity is measured [16]. This approach measures the depth of influence below the sub-surface in direct proportion to the distance between the current electrodes at a fixed center. The greater distance between current electrodes permits greater current penetration beneath the subsurface, allowing for the extraction of properties such as depth, thickness, and resistivities. In general, for subsurface formations, four electrodes are used for measuring the resistivities. Depending on the purpose of sub-surface exploration, different electrode arrangements can be made to measure the potential difference. Although VES method works with both Wenner and Schlumberger configurations, Schlumberger has a little advantage. The Schlumberger approach is simple to use but challenging to understand [53].

Present study considers one dimensional geo-electrical survey, i.e. VES for groundwater exploration. VES method of geophysics prospecting that widely used to image the shallow subsurface for groundwater exploration [54]. At the investigation point, the variations in the subsurface electrical resistivity in vertical direction are measured. Modelling the sub-surface as a series of horizontally stacked layers with only depth-dependent changes in resistivity. Thus the model of interpretation of VES is one dimensional (1D) and inherently insensitive to lateral variations in subsurface resistivity, which can result in substantial changes in apparent resistivity values [55]. According to the layout of the Schlumberger arrays, the distance between the current electrodes (M and N) is at least five times greater than that between the potential electrodes (A and B) (Figure 4). The most common arrays are Schlumberger, Wenner. The arrays differ each other in terms of depth of investigation, vertical and horizontal resolution, and signal strength [56]. In the vertical electrical sounding (VES) method of groundwater research, the Schlumberger array is frequently employed. The Schlumberger array has the benefits of having a small cable require for the potential electrodes and requiring fewer electrodes to be moved for each sounding. Schlumberger soundings generally have better resolution, greater probing depth, and less time-consuming field deployment than the Wenner array [57]. Hence, each array has its own distinct benefits and draw backs. The selection of an appropriate array is stated to be influenced by the material's depth, the type of heterogeneity to be mapped, the presence or absence of vertical and horizontal shifts in the subsurface, and the strength of the signal. However, the primary thing to examine is the survey's purpose. The study of Samouëlian et al. [58] emphasizes that in certain instances, the employment of diverse configurations might
improve the varied reading properties of the subsoil, leading to a more accurate interpretation. From the previous discussion, it is concluded that the Schlumberger configuration is characterized with best vertical resolution, greater probing depth, more sensitivity to the vertical variation of resistivity and is less time-consuming than other arrays [56]. Therefore, the Schlumberger array (Figure 4) has been employed in the present study.

A total of 40 VES measurements were obtained within the studied area using the Schlumberger electrode design. The conventional partial curve technique and auxiliary point diagrams combined with two-layer master curves accomplish the preliminary VES data [59]. The software IPI2WIN is utilized for computer-aided interpretation in which initial parameters such as the layer resistivity and thickness are determined [60]. The longitudinal conductance \(S \) is considered the significant geophysical parameter for \(n \) layers and given by Equation (1) (Zohdy et al. [61]):

\[
S = \sum_{i=1}^{n} \left(\frac{h_i}{\rho_i} \right)
\]

Figure 3. Resistivity meter (Model: SSR–MP–AT).

Figure 4. Schlumberger array configuration.

2.3. Preparation of spatial distribution maps

The ArcGIS 10.1 software has performed the spatial pattern analysis for the various sub-surface layer parameters including aquifer resistivity (AR), layer thickness (LT), longitudinal conductance (S), and transverse resistivity (TR). Figures 5-8 show the maps of these subsurface layer parameters i.e. AR, LT, S, and TR, respectively. These sub-surface layer parameters are presented for 2nd, 3rd, 4th, and 5th sub-surface stratum. The water table is certainly below the first layer, which always unsaturated. The inverse distance weighted (IDW) interpolation tool and the spatial analyst tool in ArcGIS were used to determine the spatial distribution of aquifer characteristics such as aquifer thickness, aquifer resistivity (AR), transverse resistance (TR), and longitudinal conductance (S) [62]. Such an approach has been utilized by many researchers [63-66]. The IDW data was classified into five
categories for the second, third, and forth layers and three categories for the fifth layer using defined interval. The interval size and the largest sample size using a set interval determine the number of categories. The interval size must be as narrow as possible to accommodate the three categories that are the minimum allowed. Therefore, three categories of IDW data are found appropriate for fifth layer and five categories for the second, third, and fourth layers.

Another analysis for aquifer thickness was calculated using the ArcGIS spline interpolation method. The spline tool uses an interpolation technique that establishes value using a mathematical function that reduces surface curvature overall. Splines’ use is simpler and more natural because of its physical interpretation.

3. Results and Discussion

The following indices were used to measure the groundwater potential of the region: aquifer resistivity (AR), longitudinal conductance (S), layer thickness (LT), and transverse resistivity (TR). Table 2 shows the interpreted geo-electric parameters, i.e. the studied area’s AR, LT, and mean S. A second sub-surface layer was observed, with 66.63% of its area attributable to this layer. On the other hand, the maximum layer thickness of the third subsurface geo-electric layer is observed as 180.00 m. The average thickness of 46.65 m, 25.05 m, 8.74 m, and 11.62 m were recorded for layers 2, 3, 4, and 5, respectively. It was also observed that the second layer has a higher aquifer protection capacity (APC) against aquifer pollution due to its higher average longitudinal conductivity (S) compared to the other three layers [67, 69]. From layers 2 to 5, a declining trend in TR values was observed, indicating reduced aquifer potential in deeper strata. The transverse resistance maps for different sublayers (Figure 8) and the value vary for most protective layer from 143.75 Ω·m² to 29443.68 Ω·m² (Figure 8p). The eastern zone of the study region contains the highest TR value. The zone where the protective layer’s thickness and resistivity are highest corresponds to the maximum value of TR.

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Water table (m) (Bgl)</th>
<th>Well depth (m)</th>
<th>Source type</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.707</td>
<td>76.523</td>
<td>18.00</td>
<td>60</td>
<td>Borehole</td>
</tr>
<tr>
<td>31.709</td>
<td>76.526</td>
<td>12.00</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>31.702</td>
<td>76.524</td>
<td>39.00</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>31.704</td>
<td>76.524</td>
<td>25.00</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>31.704</td>
<td>76.525</td>
<td>60.00</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>31.704</td>
<td>76.525</td>
<td>72.00</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>31.707</td>
<td>76.529</td>
<td>81.00</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>31.706</td>
<td>76.527</td>
<td>90.00</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>31.675</td>
<td>76.533</td>
<td>98.00</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>31.676</td>
<td>76.534</td>
<td>102.00</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>31.884</td>
<td>76.584</td>
<td>2.73</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>31.872</td>
<td>76.641</td>
<td>1.67</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>31.494</td>
<td>76.497</td>
<td>4.13</td>
<td>82</td>
<td>-</td>
</tr>
<tr>
<td>31.624</td>
<td>76.707</td>
<td>9.60</td>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>31.759</td>
<td>76.367</td>
<td>5.32</td>
<td>82</td>
<td>-</td>
</tr>
<tr>
<td>31.735</td>
<td>76.352</td>
<td>5.16</td>
<td>61</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Bgl refers to measurement of water table is below the ground level at the concerned site.
The thickness map of the subsurface layers is shown in Figure 6. Layer 2 thickness ranges from 2 to 164.66 m (Figure 6p). Layer 3 from 2.5 to 18.0 m (Figure 6q). Layer 4 from 5 to 15.5 m (Figure 6r), and Layer 5 from 10 to 13.5 m (Figure 6s). The second sub-surface geo-electric layer indicates the greater part of the area (66.63%). The maximum thickness for the second layer can be seen in the western region of the studied area (Figure 6p). The largest area of thick overburden is expected to produce an economically usable amount of groundwater [69]. The extremely thin protective sublayer may not be prevalent, so the siting of boreholes in such areas is discouraged [70]. In the
research area, the aquifer is considered to be the most productive stratum. Figure 12 displays a map of the research area's aquifer thickness. Using the ArcGIS software, spline interpolation was used to display the aquifer thickness map for the current investigation. Spline tool employs an interpolation methodology that determines value with a mathematical function which minimizes overall surface curvature. The physical interpretation of splines makes their application easier and more intuitive. Sujanpur, Bhoranj, and Barsar are the three administrative units in the studied area with aquifer thickness values that are substantially lower than the average value, while Nadaun and Hamirpur have aquifer thickness value that is particularly higher than the average value. Barsar has the thickest aquifer (180.08 m), followed by Nadaun (164.66 m), Hamirpur (109.72 m), Bhoranj (97.53 m), and Sujanpur (91.43 m).

Values of resistivity contrast can reveal information about a location's potential for groundwater. Figure 5 shows the spatial distribution of AR value for different layers. VES 4-8, VES 20, and VES 26 represent the minimal layer types. Simultaneously, VES 15, VES 16, VES 23, and VES 31 contain the maximum number of layer types. The lowest resistivity value is 1.06 ohm-m for the third layer of VES 19 (Fig 5r). The fourth layer of VES 3 indicates a maximal resistivity value of 658.7 ohm-m (Figure 5s). Figure 11 depicts the interpretation of resistivity values for the earth materials and lithologies of the borehole record. The lithology of VES 22 is described as sandstone, conglomerate, and clay based on interpretations of the sounding curve. Sandstone is the predominant aquifer stratum in this region. In this type of layer high resistivity value i.e. 436 Ohm-m are recorded.

3.2. Transverse resistance

Transverse resistance (TR) called as geoelectrical parameter and plays important role for qualitative analysis of the aquifer system. Transverse resistance (TR), also known as the Dar-Zarrouk parameter, is a secondary geoelectrical parameter that is crucial for developing a qualitative assessment of the aquifer system[61]. It is directly related to transmissivity; the zone of the aquifers with high transmissivity is affected by the greatest TR values, and vice versa [71, 72]. According to Nwachukwu et al. [73], one of the geoelectric characteristics used to define the area of groundwater potential is called TR.

It is so named because of their dependence on fundamental characteristics like resistivity (ρ) and layer thickness (h), they are given this name. Mathematically, the transverse resistance of any geological formation is correlated with the resistivity (ρ) (Ω-m) and aquifer thickness (h) (m) and defined by the equation (2).

$$TR = \rho_i \times h_i \quad \{i = 1,2,3,...,nth \ layers\} \quad (2)$$

The measurement of transverse resistance aids in identifying prospective groundwater quality.

The spatial distribution maps for different sublayers, i.e. second, third, fourth, and fifth have been prepared. From layer second to fifth, a declining trend in TR values was observed, indicating reduced aquifer potential in deeper strata. The transverse resistance maps of different sublayers are shown in the Figures 8p-8s. The transverse resistance value ranges from $143.75 \Omega\cdot m^2$ to $29443.68 \Omega\cdot m^2$ for most protective layer (Figure 8p). The maximum value of TR is recorded in the eastern zone of the studied area. The region where the protective layer’s thickness and resistivity are highest corresponds to the maximum value of TR.

3.3. Longitudinal conductance (S) and aquifer protective capacity

The thicknesses and layer resistivities were interpreted and utilized to calculate the longitudinal conductance. S-values were determined for the underlying aquifer's ability to protect itself against encroaching contaminants. S-values help assess the protective capacity of an aquifer [68, 74]. To determine the potability of the water and the aquifer's sensitivity to contamination, it is crucial to evaluate the area's aquifer protective capacity. The higher S value of an area is used to interpret the higher protective capacity of an aquifer [75]. Conversely, reduced aquifer transmissivity is a sign of the increase in S value [76]. The longitudinal conductance is determined using Equation 1. Figures 7 and 9 show the spatial distribution of S values for geoelectrical subsurface layers and aquifers in the study area. The aquifer in the studied area has longitudinal conductance values that range from 0.01 to 8.88 mhos. The protective capacity rating based on the S values (in mhos) [68, 71] is as follows; S - < 0.1 (poor), 0.1 to 0.19 (weak), 0.2 to 0.69 (moderate), 0.7 to 4.9 (good), 5 to 10 (very good), and > 10 (excellent). The protective capacity rating as per Oladapo et al. [63]; Oladapo and Akintorinwa [74] is found suitable for the present study which is confirmed with the field data of CGWB [52].
There is variation in the S values for different sublayers, as seen in Figures 7p-7s. Materials possessed a weak and poor protective capacity rating for the fifth layer, where the maximum value is 0.15 (Figure 7s). Table 3 provides an overview of the research area's aquifer protective capacity rating. Figure 8 displays the dispersion of zones for various categories in terms of protective capacity. The weaker and poorer areas are more vulnerable to pollution. The S values indicate that the area can be classified into five categories, i.e., Poor (5.55%), weak (19.43%), moderate (19.45%), good (38.89%), and very good (16.68%). However, it can be seen that most areas are under the good category. It is possible to attribute topography and geological structure to the variance in sub-surface layer thickness in this area (Figure 6).

![Legend](p) Study Area Boundary

<table>
<thead>
<tr>
<th>APR 2 (m)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3-188.93</td>
<td>0.00 - 0.10</td>
</tr>
<tr>
<td>188.94-217.87</td>
<td>0.10 - 0.20</td>
</tr>
<tr>
<td>217.88-320.30</td>
<td>0.20 - 0.30</td>
</tr>
<tr>
<td>320.31-456</td>
<td>0.30 - 0.40</td>
</tr>
</tbody>
</table>

![Legend](q) Study Area Boundary

<table>
<thead>
<tr>
<th>APR 3 (m)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.06 - 71.76</td>
<td>0.00 - 0.10</td>
</tr>
<tr>
<td>71.77 - 142.81</td>
<td>0.10 - 0.20</td>
</tr>
<tr>
<td>142.82 - 213.90</td>
<td>0.20 - 0.30</td>
</tr>
<tr>
<td>213.91 - 283.71</td>
<td>0.30 - 0.40</td>
</tr>
<tr>
<td>283.72 - 559.00</td>
<td>0.40 - 0.50</td>
</tr>
</tbody>
</table>

![Legend](r) Study Area Boundary

<table>
<thead>
<tr>
<th>APR 4 (m)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.59 - 180.20</td>
<td>0.00 - 0.10</td>
</tr>
<tr>
<td>180.21 - 299.78</td>
<td>0.10 - 0.20</td>
</tr>
<tr>
<td>299.79 - 419.37</td>
<td>0.20 - 0.30</td>
</tr>
<tr>
<td>419.38 - 538.85</td>
<td>0.30 - 0.40</td>
</tr>
<tr>
<td>538.86 - 658.70</td>
<td>0.40 - 0.50</td>
</tr>
</tbody>
</table>

![Legend](s) Study Area Boundary

<table>
<thead>
<tr>
<th>APR 5 (m)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.00 - 102.59</td>
<td>0.00 - 0.10</td>
</tr>
<tr>
<td>102.60 - 113.59</td>
<td>0.10 - 0.20</td>
</tr>
<tr>
<td>113.60 - 125.00</td>
<td>0.20 - 0.30</td>
</tr>
</tbody>
</table>

Figure 5. p) AR value map for 2nd strata, q) AR value map for 3rd strata, r) AR value map for 4th strata, s) AR value map for 5th strata.
Figure 6. p) LT value map for 2nd strata q) LT value map 3rd strata, r) LT value map for 4th strata, s) LT value map for 5th strata.
Figure 7. p) S value map for 2nd strata, q) S value map for 3rd strata, r) S value map for 4th strata, s) S value map for 5th strata.
Figure 8. p) TR value map for 2nd strata, q) TR value map for 3rd strata, r) TR value map for 4th strata, s) TR value map for 5th strata.

The spatial pattern analysis for the different sub-surface layer parameters such as aquifer resistivity (AR), layer thickness (LT), longitudinal conductance (S), and transverse resistivity (TR) has done in the ArcGIS 10.1 software, and shown in Figures 5-8.

Table 3. Protective capacity rating of aquifers (after Oladapo et al. [68] and Oladapo & Akintorinwa [74])

<table>
<thead>
<tr>
<th>Rating category</th>
<th>VES location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>VES17, VES36</td>
</tr>
<tr>
<td>Good</td>
<td>VES2, VES3, VES4, VES5, VES6, VES7, VES10, VES11, VES12, VES27, VES28, VES30, VES31, VES32, VES37, VES38</td>
</tr>
<tr>
<td>Moderate</td>
<td>VES1, VES9, VES18, VES19, VES20, VES23, VES29, VES35, VES39</td>
</tr>
<tr>
<td>Weak</td>
<td>VES8, VES14, VES15, VES16, VES40</td>
</tr>
<tr>
<td>Poor</td>
<td>VES13, VES21, VES22, VES24, VES25, VES26, VES33, VES34</td>
</tr>
</tbody>
</table>
Figure 9. Longitudinal conductance value map of the aquifer.

Figure 10. Protective capacity map of the studied area.
4. Conclusions

A VES survey has been carried out to identify possible groundwater zones and determine the capacity of the protective/covering layers of the underlying aquifer repository. The results of the survey were used to prescribe effective aquifer depth for the Hamirpur district of H.P. (India) groundwater budget. The aquifer present in the study area is confined in nature. The topsoil is efficient based on the S values for protecting the underlying aquifer. The longitudinal conductance (S), which is an important indicator of aquifer health in terms of protective capacity has been estimated based on aquifer thickness and resistivity. The aquifer potential is classified on the basis of S values as poor for less than 0.1 mhos, weak for the range of 0.1-0.19 mhos, moderate for the range of 0.2-0.69 mhos, good for the range of
07-0.49 mhos, very good for the range of 5-10 mhos and excellent for greater than 10 mhos. The obtained values of S indicate that 65% of the study area falls under moderate conditions. This means that the aquifer is protected from contaminant intrusion. S results demonstrate that two VES locations are within the very good category zones, 16 VES under the good category, nine under the moderate category, five under the weak category, and eight under the poor category. Five geoelectric layers were identified, i.e. topsoil, fractured sandstone/gravel/sand, clay mix gravel/clay mix sand/coarse-grained sandstones, conglomerate/clay/hard sandstone, and sandstone/shale. Based on data interpretation and analysis, the study postulates that the second and third sub-layer are characterized to yield more water in the research area, which confirms the study area’s geology. The research work demonstrates the effectiveness of the methods used to quickly gather additional data for the evaluation of aquifer parameters, sub-surface lithology examination, classification of aquifer types, evaluation of a region’s protective capacities, groundwater potential, and potential well locations. The present study may further be supported by using other suitable approaches such as test drilling, borehole sensing, etc. for positioning bore well settings and in prospecting potential groundwater zones especially in hilly terrain regions for better outcomes.

Acknowledgments

The authors would like to thank the Central Ground Water Board (CGWB), North Himalayan Region (NHR), Dharamsala, Himachal Pradesh, for providing the data. We also thank the National Institute of Technology, Hamirpur’s Department of Civil Engineering for providing research facilities.

References

[54] Suriyapor, P. (2020). 1-D Vertical Electrical Sounding (VES) Inversion with a lateral constraint (Doctoral dissertation, Department of Physics Faculty of Science, Mahidol University).

بررسی هیدروژنوفیزیکی برای ارزیابی بودجه آب زیرزمینی و حفاظت از سفره‌های زیرزمینی در مناطق تیهای سون سینگ1 و بجی شانگار1 و جوزف تربرو2

1. گروه مهندسی عمران، مؤسسه ملی فناوری حرم، حرم، هند
2. گروه مهندسی عمران، مؤسسه ملی فناوری پاتنا، هند

ارسال 07/07/2023

som@nith.ac.in

چکیده:

از پتانسیل آب زیرزمینی (GWP) و ظرفیت حفاظتی سفره‌های زیرزمینی برای ارتقاء راه‌حل‌های برای چالش‌های انتشار آب‌های تحت‌زمینی عمودی بکه‌های Hamirpur، هند. برای به دست آوردن داده‌های صدای انکرئوسکوپیک عمودی یک بعدی (VES)، الگو یابی‌های زیرزمینی و ارزیابی آب‌سنجش‌های زیرزمینی با اکتشاف آب‌های زیرزمینی و در عین حال تعیین شناختی و مدت زمانی لازم برای مطمئن‌کردن این گونه اکتشافات. برای انجام اکتشافات مورد نیاز، به درک‌افزایش مایعات و شناسایی مناطق حساس به آب می‌پردازند.

کنکبوترا / رس / مسیر سخت (0.5-658.7 متر)، مسیر سبک (0.8-658.7 متر) با مقاومت‌های درودی (AR) در پاتر. نقشه‌های توزیع مقاومت VES برای لایه‌های فری خشک خشک بار و مداوم (LT) با استفاده از داده‌های اندازه‌گیری شده. مقاومت عرضی (S)، ضخامت لایه (LT) و مقاومت عرضی (AR) به ترتیب. نتایج این مطالعه نشان داد که مناطق آب‌سنجش‌های حساس به آب در این منطقه واقعیتی است. این مناطق ممکن است برای تأمین آب به عنوان منابع تصفیه‌یابی بوده برای استفاده در مناطق حساس به آب مورد نیاز بهترین سیستم اکتشاف آب‌های زیرزمینی باشد.

GWP با پایه برای برگشت روزانه، نتایج مطالعه در کنترل اولیه آب‌سنجش و ارزیابی برای مدیریت پایدار آب‌های زیرزمینی مفید است.