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 The hydraulic properties of the rock masses are of great importance in analyzing the 
behavior and stability of the structures constructed on or in rock mass. Permeability is 
key parameter among other rock mass features due to its important role in rock mass 
overall behavior. According to aforementioned reason, numerous efforts have been made 
by researchers in the field of rock mechanics for its obtaining. To access the rock masses’ 
permeability, in-situ test methods and simulation techniques could be used. In-situ tests 
like Lugeon Test are time-consuming and costly and they provide local results. 
Simulation base methods calculate the permeability of the model that is generated similar 
to the real region indeed and the developing the results to the real condition always raises 
substantial challenges. According to the aforementioned reason, direct acquiring of 
permeability with optimum cost and time which is easily generalizable to the overall of 
a region would be very important. In this work using crack tensor concept, permeability 
tensor of Lorestan’s Rudbar dam cavern is calculated efficiently by considering rock 
mass structural features. Resulted permeability of the power plant’s cavern was obtained 
equal to 11.220 × 10ି଻  ௠

௦
 that seems to be acceptable compared to the measured values 

which is obtained9.87 × 10ି଻  ௠
௦

. 
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1. Introduction 
The stability of the structures constructed in or on 

the rock masses predominantly depends on the 
presence of the fractures in the structure of the rock 
mass [1]. Fractures presence in structure of rock 
change behavior of it in a way that it seems rock 
mass and intact rock are different materials. The 
exact determination of the mechanical properties of 
the rock mass is a vital issue for reaching a safe and 
economic design for the spaces created in or on the 
rock mass [2–5]. The complex fracture patterns, 
and their statistical nature and uncertainties in 
describing geo-mechanically and geometrically 
characteristics of the fractured rock masses have 
transformed them into the complex and hard 
constructional materials. It is clearly evident that 
the geometry of the fractures should play an 
important role in the study of the rock mass’s 

anisotropy [6]. The studies are reflective of the 
high importance of fractures in the permeability of 
the fluids into the rock mass and it is for the same 
reason that permeability has been taken into 
account in solving the problems related to 
geothermal energy, seismology, dumping of the 
hazardous radioactive waste [7–10]. 

The determination of the hydraulic specifications 
of rock mass has drawn the attentions of many 
researchers due to being of a great importance. The 
equivalent permeability of the rock mass is 
considered among the most important entries in the 
discussions on the calculation of water leakage and 
discharge into the underground spaces. It has to be 
explicitly mentioned that the fluid flow into the 
rock mass occurs in the majority of the cases 
through the joints, stratification and foliation. 
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Liakopoulos calculated the anisotropic 
homogeneous soil’s permeability in the form of a 
positive, symmetrical and second order tensor [11]. 
Greenkorn et al. and Asadi et al. studied the 
anisotropic permeability based on a laboratory 
method and offered methods for calculating the 
main indicators of permeability but they have not 
mentioned anything about the calculation of 
permeability tensor [12, 13]. Long et al., Min et al., 
and Zhang et al. have used the discrete 
discontinuity network for calculating and 
simulating the flows inside the discontinuities[14–
16]. Based on the certainty of the geometrical 
properties of the discontinuities and their joint 
patterns, they performed the simulation process. 
Hestir and Lang, De Dreuzy et al. applied a 
combination of percolation and discrete 
discontinuity network theories for obtaining 
permeability [17, 18]. Zimmerman and Bodvarsson 
simulated each fracture as a conductive element 
that conductivity of which depended on the 
hydraulic opening of the discontinuity and 
subsequently used the simulation results for 
computing the 2D permeability of the fractured 
rocks [19]. To determine the equivalent 
permeability tensor of the rock mass, Snow and 
Zhou et al. offered completely analytical methods 
based on the geometrical properties of the joint 
network. Oda applied statistical methods to come 
up with a method for determining permeability 
tensor. The first effort for calculating permeability 
tensor was made by Snow who assumed an 
unlimited number of joints in doing so. Firstly, he 
calculated the equivalent rock mass permeability 
tensor for a single-point discontinuity and 
subsequently applied Principle of superposition to 
obtain the permeability tensor for the joint network 
[19]. It was Snow who for the first time considered 
a simple but understandable model for evaluating 
the permeability rate based on the concept of the 
flow between parallel plates and offered fractures’ 
pattern through taking some statistical 
considerations into account [20]. In comparison to 
the Snow’s model, Bear performed simplifications 
and considered soft surfaces for the fractures’ walls 
to offer a better model for fluid flow that was 
confirmed by Witherspoon et al. in laboratory [20].  

Kiraly et al. offered a similar relation which in 
case of using limited plates for discontinuities, take 
into account the number of discontinuities that be 
exactly the same as the number of the joints inside 
the rock mass so that the equivalent permeability 
tensor could be calculated with an acceptable 
accuracy [21]. Rocha et al. conducted field studies 
to improve the tensor calculated based on Snow’s 

theory. They considered a well and measured the 
flow therein and subsequently offered a revised 
coefficient by dividing it by the flow calculated by 
Snow [22]. Zoorabadi et al. offered a new method 
for calculating the permeability tensor for the non-
ductile discrete discontinuity network [23]. Pan et 
al. constructed the fracture network and calculated 
the fractures tensor followed by calculation of the 
permeability to take an important step in using 
fracture tensor concept in analyzing the hydraulic 
behavior of the rock mass [24]. Rutqvist et al. 
offered the concept of interconnected continuous 
environments thereby to come up with a novel 
method of estimating the hydraulic characteristics 
of the rock mass that uses fracture tensor [25].  

Oda introduced the crack tensor concept. The 
studies are reflective of the importance of fractures 
geometry effect on the rock mass permeability. 
Permeability tensor is an injective function of 
fracture tensor and also the main directions of 
permeability are in fact aligned with the main 
directions of crack tensor. Fracture tensor is most 
frequently applied in such areas as geotechnics, 
environment, and civil engineering, especially in 
estimating the rock mass permeability or hydraulic 
conductivity [4]. 

The notable issue that shows the importance of 
using fracture tensor in calculating the 
permeability tensor is that the rock masses 
hydraulic characteristics have been calculated in all 
of the abovementioned studies based on parameters 
that do not incorporate the geometrical properties 
of the fractures and, in other words, the hydraulic 
computations and, more explicitly, the 
permeability tensor calculations have been carried 
out without direct interference of the fractures 
geometrical specifications [26]. On the other hand, 
there is a need for reproduction of a fracture 
network in the above-cited methods that can be 
used for taking the later stages for the reproduced 
network’s calculations so as to figure out how 
much it is matching with the real conditions and 
this is a vague question. In fact, the hydraulic 
conditions of the model which is simulated the real 
region are calculated in the majority of the cases 
instead of computing the permeability tensor of the 
region. On the other hand, in most of the proposed 
methods that calculate permeability tensor without 
using the fracture tensor, a simulation of region is 
firstly generated and hydraulic parameters is 
computed for the model. It is notable that 
regeneration of the region's fracture model is time-
consuming, costly, and prone to errors process 
[26].  
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Using the process of fracture tensor calculation 
and, subsequently, calculation of the permeability 
tensor using it, make enables the consideration of 
direct role of fractures geometrical properties in 
calculation process and the calculated permeability 
tensor is obtained for the studied region itself and 
not for the simulated model and thus there would 
be no need for the difficult and time-consuming 
and, of course, error-prone process of creating a 
fracture network model for the studied region, as 
well. In this work, the data collected from the site 
of Rudbar Lorestan pumped storage power plant 
cavern will be used to calculate region’s fracture 
tensor and then permeability tensor will be 
calculated using fracture tensor. 

2. Site Investigation 

The data obtained from the cavern of pumped-
storage power plant of Rudbar Lorestan dam. 
Rudbar, Lorestan pumped storage plant located in 
high Zagros zone has very complicated tectonic 
conditions and numerous over thrust faults. The 
active faults of Saravan Baznavid and Chaleh 
Hatam are the most important faults in the site. The 
carven of the power plant is located almost in the 
center of an anticline. The cavern has a length of 
130 meters, a width of 26 meters and a height of 50 

meters (Figure 1), located in the Dalan Formation 
(end of the first geology period), with calcareous 
rock masses and dolomitic limestone of average 
thickness (Figure 2). This project is under 
construction at the Rudbar Lorestan Dam 
upstream, located 150 km west of Isfahan and 100 
km south of Aligudarz city. The area of the project 
is located under the sedimentary zone (internal 
Zagros) (Figure 3). 

 
Figure 1. Layout of cavern of pumped-storage 
power plant project of Rudbar, Lorestan dam. 

 
Figure 2. Geology cross-section of pumped-storage power plant project of Rudbar, Lorestan dam. 
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Figure 3. Location of the studied area. 

The data is obtained from the cavern by scanline 
and scan window surveying method, and its 
number reaches 627 fractures. 

3. Methodology 

Use of the fractures geometrical characteristics in 
calculating the permeability tensor is a very 
important aspect of the hydraulic calculations but 
it has been neglected in the majority of the 
calculation methods. Besides performing the 
calculations using the directly collected field data, 
calculation of the permeability tensor using the 
crack tensor method takes the fractures geometrical 
characteristics into account. The permeability 
tensor calculation process using crack tensor has 
been explained in following. 

A volume of the rock mass equal to V is 
considered as the flow region. Flow region has 
been homogeneously intersected by m(v) number of 
discontinuities which their centers have been 
distributed randomly in volume V. The 
discontinuities are elliptical in shape with its large 
diameter being of the size α and the diameters ratio 
of k and an opening of t. Therefore, the void 
volume corresponding to each crack equals 
ߨ) 4⁄ )(ܽଶ ݇⁄  The crack orientation is shown by .ݐ(

two normal vectors of ݊(ି) and ݊(ା) that are 
perpendicular to the crack plate (Figure 4). 

 
Figure 4. Illustration of normal unit vectors of 

elliptical joint. 

It is worth to mention that ݊(ା) is along ݊(ି) but 
in an opposite direction. Here, n denotes ݊(ା) and 
݊(ି) and it is considered as part of the spatial angle 
of Ω that is defined on a sphere with a unit radius. 
The rock mass is assumed with an impermeable 
matrix. Thus, the fluid can only pass through the 
cracks. Under the abovementioned conditions, the 
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apparent velocity of the fluid current, ݒపഥ , is defined 
in the form of the relation: 

పഥݒ =
1
ܸ
න ௜ܸ݀ݒ =

1
ܸ
න ௜ݒ

(௖)ܸ݀(௖)

௏(೎)௏
 (1) 

௜ݒ
(௖): Local velocity in cracks 

ܸ(௖): Void volume in crack canal 

It is assumed that the normal unit vector of the 
cracks is situated in the area of dΩ spatial angle 
about n and the large diameter of the crack is oval 
and in the extent of α to α+dα and the cracks’ 
openings are in the extent of t to t+dt. Now, the 
probability density function, E(n,α,t), is defined in 
such a way that 2ܧ(݊,ܽ,  gives a ݐΩ݀ܽ݀݀(ݐ
probability value of (݊,ܽ,  for the cracks. In other (ݐ
words, it can be written that as Equation (2): 

 

න න න ,ܽ,݊)ܧ2 ݐΩ݀ܽ݀݀(ݐ = න න න ,ܽ,݊)ܧ ݐΩ݀ܽ݀݀(ݐ
ஐ

ஶ

଴

ஶ

଴ஐ ଶ⁄

ஶ

଴

ஶ

଴
= 1 (2) 

 
In the above relation Ω 2⁄  is half the spatial angle 

Ω. It is worth mentioning that the maximum size of 
the main diameter of the ovals and opening, 
situated in the volume range V, is replaced in the 
above equation for the infinite expressions. Each 
crack also creates two-unit vectors, ݊(ା) and ݊(ି) 
that are in opposite directions to one another. Thus 
(݊,ܽ,  in fact, gives the normal crack ,ݐ݀ݎΩ݀݀(ݐ
vector’s probability and not the normal crack 
vector itself. In this state, the function ܧ(݊,ܽ,  is (ݐ
defined on the spatial angle Ω. Assuming that the 
discontinuity centers have been randomly 
distributed in the flow region, it can be stated that 
the crack geometry is completely determined via 

specifying the density function and the number of 
cracks. It can be also stated that ܧ(݊,ܽ, (ݐ =
,ܽ,݊−)ܧ  It is assumed that dN is the number of .(ݐ
cracks the centers of which fall inside the flow 
region V. To estimate the likely number of the 
aforementioned cracks, dN is multiplied by the 
total number of ݉(௏) as shown in Relation (3):  

݀ܰ = 2݉(௏)ܧ(݊,ܽ,  (3) ݐ݀ݎΩ݀݀(ݐ

Since each crack produces a void volume equal 
to (ߨ 4⁄ )(ܽଶ ݇⁄  the total void volume, ܸ݀(௖), of ,ݐ(
the corresponding cracks can be calculated by 
Relation (4): 

 

ܸ݀(௖) =
ଶܽ)(ߨ) ݇⁄ ݐ(

4
݀ܰ =

(௏)݉ߨ

2
ܽଶܧݐ(݊,ܽ,  (4) ݐ݀ݎΩ݀݀(ݐ

 
In the next stage, the velocity of the flow is 

investigated in the cracks. In this state, the flow 
domain falls on two boundaries under two 
hydraulic loads of ߶ଵ and ߶ଶ in such a way that 
߶ଵ > ߶ଶ. The linear hydraulic load ranging from a 
maximum value of  ߶ଵ to a minimum value of ߶ଶ 
is exerted in the other two boundaries. Thus, the 

hydraulic gradient, J, is obtained as shown in 
Relation (5): 

ܬ =
߶ଵ − ߶ଶ

ܮ
 (5) ݌

 Distance between two head sources :ܮ
 Unit vector in flow direction :݌
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Figure 5. Hydraulic head condition in boundary of 

DFN. 

The head distribution inside the flow domain 
depends on the hydraulic behavior of the cracks but 
it is assumed under such conditions that the field 
gradient is uniform in the entire flow domain. This 
assumption has been confirmed by Lang et al. 
(1982) based on the permeability analyses of a 
cracked medium. Of course, it is worth mentioning 
that this assumption is validated by a sufficient 
number of cracks. Now, it is assumed that (ࢉ)ࡶ is 
the hypothetical indicator of J on the crack: 

(௖)ܬ = ܬ − (݊ ∙  (6) ݊(ܬ

and/or: 

௜ܬ
(௖) = ൫ߜ௜௝ − ݊௜ ௝݊൯ܬ௝  (7) 

௜௝ߜ : Kronecker delta 

݊௜: Projected component of ݊ on reference 
coordinate set (ݔ௜) ( ݅ = 1, 2, 3)  

 on reference ܬ ௝: Projected component ofܬ
coordinate set (ݔ௜) ( ݅ = 1, 2, 3) 

 
Figure 6. Analysis of vector field of hydraulic 

gradient on joint plane. 

If the crack is found highly propagated, the water 
would have a layered flow between two parallel 
plates with an opening equal to t. Under such 
conditions, the mean velocity of the flow would be 
equal to Equation (8): 

௜ݒ
(௖) =

1
12

݃
ݒ
௜ܬଶݐ

(௖) (8) 

Now, it can be expected that the cracks would 
have a flow velocity equal to Equation (9): 

௜ݒ
(௖) = ߣ

݃
ݒ
௜ܬଶݐ

(௖) (9) 

λ: Dimensionless constant 0 <  λ ≤  1 12⁄ . 
The above constant value tends towards 1.12 

with the increase in the crack size. Substituting 
Relation (7) in Relation (9) gives the apparent fluid 
velocity in the corresponding cracks as equation 
(10): 

௜ݒ
(௖) = λ

݃
ݒ
௜௝ߜଶ൫ݐ − ݊௜ ௝݊൯ܬ௝  (10) 

Blending the relations (1), (2), and (10), it can be 
written that: 

 

పഥݒ =
1
ܸ
න ௜ݒ

(௖)ܸ݀(௖)

௏(೎)
= ߣ

݃
ݒ
ቈ
ߩߨ
4
න න න ௜௝ߜଷ൫ݐଶݎ − ݊௜ ௝݊൯ × ,࢔)ܧ ܽ, ݐΩ݀ܽ݀݀(ݐ

ஐ

ஶ

଴

ஶ

଴
቉  ௜ (11)ܬ

 
where ρ is the volumetric density of the cracks 

that is equal to: 
ܴelation (11) is integrated on all the cracks 

within flow domain. Comparison of the relation (6-
17) and Darcy relation leads to the permeability 

tensor calculation relation ݇௜௝
(௖). Thus it can be 

written: 

݇௜௝
(௖) = ൫ߣ ௞ܲ௞ߜ௜௝ − ௜ܲ௝൯ (12) 
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where: 

௜ܲ௝ =
ߩߨ
4 න න න ଷ݊௜ݐଶݎ ௝݊ × ,ܽ,࢔)ܧ ݐΩ݀ܽ݀݀(ݐ

ஐ

ஶ

଴

ஶ

଴
 (14) 

and 

௞ܲ௞ = ଵܲଵ + ଶܲଶ + ଷܲଷ (13) 

where ௜ܲ௝  is called crack tensor which is a 
symmetrical second order tensor only related to the 
geometrical specifications of the discontinuities, 
including shape, size, opening and orientation. It 
has to be noted that the above relation has been 
obtained considering the perfect partitioning of the 
flow domain by the cracks and there is a large 
number of paths for flow pass. The final relation 
gives non-zero values for permeability even when 
௜ܲ௝  value is trivial while the cracks’ connection has 

reached zero under the above conditions and no 
flow occurs any more. To overcome this problem, 
a correction that will be explained below has been 
made. Crack tensor is multiplied by α that is 
smaller than unity and this reduces the ௜ܲ௝  
coefficient in such a way that it is more matched 
with reality. The threshold limit is observed when 
ߙ =  ଴ below which the inter-crack connectionsߙ
are completely removed and the flow domain 
becomes practically impermeable. Thus the 
corrective expression, ߙ௜௝ , is determined in such a 
way that when ߙ௜௝ , it can be stated: 

݇௜௝
(௖) = ൫ߣ ௞ܲ௞ߜ௜௝ − ௜ܲ௝൯+ ௜௝ߙ  (14) 

and when 0 < α ≤  :଴, thenߙ

݇௜௝
(௖) = 0 (15) 

Since ݇௜௝
(௖) = 0 occurs when ߙ =  ଴, thus it canߙ

be stated that: 

௜௝ߙ = ଴൫ߙߣ− ௞ܲ௞ߜ௜௝ − ௜ܲ௝൯ (16) 

Replacing Relation (16) in the previous final 
relation gives the method of calculating the 
permeability tensor as shown in the following 
relation: 

݇௜௝
(௖) = −1)ߣ ଴)൫ߙ ௞ܲ௞ߜ௜௝ − ௜ܲ௝൯ = ൫ߣ തܲ௞௞ߜ௜௝ − തܲ௜௝൯ (17) 

where: 

തܲ௜௝ = ௜ܲ௝ − ௜ܲ௝
଴ (18) 

௜ܲ௝
଴ = ଴ߙ ௜ܲ௝  (19) 

The value of ௜ܲ௝
଴ would be equal to zero under 

such conditions that the flow domain is completely 
partitioned by the cracks. Thus Relation (13) with 
a value equal to λ = 1.12 can be applied. 
Fortunately, the abovementioned conditions 
predominantly occur in the rock mass as a result of 
which the rock mass is completely destroyed by the 
cracks. In other words, the perfect connection 
conditions are most often available in the nature. 

It is assumed that ݔଵ́, ݔଶ ,́  and ݔଷ́ are the main axes 
corresponding to the main planes of the tensor ௜ܲ௝ . 
Considering the main axes, the main indicators’ 
matrix of ௜ܲ௝  tensor can be diagonally written as 
below: 

௜ܲ௝ = ൥
ଵܲ 0 0

0 ଶܲ 0
0 0 ଷܲ

൩ (20) 

݇௜௝
(௖) = ൦

݇ଵ
(௖) 0 0
0 ݇ଶ

(௖) 0
0 0 ݇ଷ

(௖)

൪ (21) 

Since ݇௜௝
(௖) is a single-point function of ௜ܲ௝  and 

തܲ௜௝ , thus its main axes are coaxially aligned with 
the main axes of crack tensor. Considering i = j, 
Relation (21) takes the following form: 

݇௜௜
(௖) = 2λ തܲ௜௝ = 2λ൫ ௜ܲ௜ − ௜ܲ௜

଴൯ (22) 

For the 2D conditions, equation (22) is re-written 
in the form of Relation (23): 

൥
݇ଵ

(௖)

݇ଶ
(௖)൩ = λ(1− (଴ߙ ൤ ଵܲ

ଶܲ
൨ (23) 

Based thereon, Relation (24) is concluded: 

൥
݇ଵ

(௖)

݇ଶ
(௖)൩ ൤

ଵܲ

ଶܲ
൨ = 1 (24) 

The parameters have been specified before-hand.  

4. Results 

To calculate the fracture tensor, the first step is 
clustering and determining the set of the joints in 
the studied region. In this stage, the statistical 
analysis of the collected data based on their 
orientation indicators enables clustering of the 
collected data in certain sets. Table 1 summarizes 
the results of the statistical analysis and 
classification of the collected data. 
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Table 1. Results of statistical analysis of surveyed data from the cavern. 
S.D. of trace 
length (cm) 

Mean trace 
Length (cm) K-Fisher Dip (°) Dip Direction (°) Joint sets 

53 64.1 17.3 60 123 First set 
53.4 66.5 9.5 46 280 Second set 
300 892 25.6 76 33 Parents 

Bedding 107.7 221.57 10.4 73 29 Daughters 
 

It can be seen from Table 1 that the collected data 
can be classified into four sets according to their 
conditions. It is worth mentioning that the sampled 
strata fall in one set in terms of dip and dip 
direction but they are dividable into two separate 
sets of parents and daughters in terms of the 
collected impact lengths. After statistical analysis 
of the collected data and determining the fracture 
sets, the orientation tensor of each joint-set is 

calculated. In computing the orientation tensor of 
each joint set, use will be made of the cumulative 
density of the region wherein the fracture is 
situated. Table 2 shows the orientation tensor 
calculated for each joint set. In computing the 
orientation tensor of the joint set, use will be made 
of the cumulative density of the region wherein the 
fracture is situated plus the normal vector of each 
fracture, as well. 

Table 2. Orientation matrix which is calculated for each joint set. 
Orientation tensor Joint sets 

൥
0.163 −0.031 0.062
−0.031 0.173 −0.564
0.062 −0.564 0.364

൩ First set 

൥
0.735 0.015 −0.756
0.015 0.038 0.711
−0.756 0.711 0.958

൩ Second set 

൥
0.497 0.159 −0.017
0.159 0.098 −0.356
−0.017 −0.356 0.256

൩ Parent 

൥
0.467 −0.824 −0.005
−0.824 0.371 0.515
−0.005 0.515 0.062

൩ Daughter 

 
After calculating the orientation tensor for each 

joint, the orientation tensor of the entire joint set is 
calculated based on the superposition principle. 
Thus in this stage, the orientation tensor of each 
joint set is calculated for it is considered as one of 
the parameters required for the calculation of the 
fracture tensor. 

After computing the fractures’ orientation tensor, 
the turn comes for the estimation of the probability 
distribution function of the fractures’ impact 
length. To estimate the probability distribution of 
the fractures’ impact length, it is necessary after 
collecting the fractures’ impact length rates to 
make use of various statistical tests like chi square 
and/or Kolmogorov test and others so that the 
goodness of fit can be estimated for the various 
distribution functions over the collected data and 
the best function with the highest fit index can be 
eventually selected as the probability distribution 
function of the impact lengths. The result of 

estimating the various distribution functions’ fit 
over the fractures is suggestive of the exponential 
function’s match with them.  

According to the presented results, it is clear that 
the exponential distribution function has the best fit 
over the data related to the fracture impact 
considering the parameters determined in the table 
hence it can be considered as the distribution 
function governing the fractures’ impact length. 
The reason for searching for and estimating the 
distribution function governing the fractures’ 
impact length is the use of its moments during the 
process of calculating fracture tensor. The 
moments required by the probability distribution 
function of the fractures’ impact lengths for the 
calculation of the fracture tensor are the first and 
the second moments of the distribution function the 
calculated values of which for the fractures have 
been given in Table 3. 
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Table 3. First and second moments of probability density function of trace length of joints. 
Second moment First moment Joint set 

0.2809 64.1 First set 
0.2854 66.5 Second set 

9 892 Bedding (parents) 
1.1449 221.57 Bedding (daughters) 

 
In continuation of the fracture tensor calculation 

process, the normal vector image of each fracture 
should be obtained along each line. In this stage, 
after calculating the normal vector image of each 
fracture along the collection line, all of the normal 
images of the joints should be summed up for 
calculating the fracture tensor. After calculating the 
fractures’ sum of the normal vector images along 
the collection line, the last parameter required for 

complementing the fracture tensor calculation 
process is the computation of the fractures’ linear 
density. To do so, it is enough to divide the total 
number of the fractures intersected by the 
collection line by the total length of the collection 
line. If the aforesaid calculation method is applied 
for the fractures’ linear density. Table 4 shows the 
linear density as well as the calculate sum of the 
normal vector images of the fractures. 

Table 4. Linear density and sum of projections of unit normal of joints. 
Linear density Sum of projections Joint set 

1.63 72.67 First set 
1.49 74.36 Second set 
1.86 91.20 Bedding (parents) 
1.97 66.69 Bedding (daughters) 

 
Based on the calculations and the obtained 

required parameters, the fracture tensor can be 
computed for the collected data and, in fact, the 
fracture tensor can be calculated for the studied 
region in Lorestan’s Rudbar pumped-storage 
hydroelectric plant and. It is worth mentioning that 
using the orientation tensor of each joint set, the 

fracture tensor of each fracture set can be obtained. 
After calculating the fracture tensor of each joint 
set, the superposition principle can be applied to 
compute the total fracture tensor of the entire 
fractures. The fracture tensors of each joint set as 
well as the calculated output fracture tensors of the 
studied region have been given in Table 5. 

Table 5. Calculated crack tensor for each joint set. 
Crack tensor Joint set 

൥
4.7174 1.287 2.957
1.287 3.6968 0.844
2.957 0.844 0.5035

൩ × 10ି଻  First set 

൥
4.195 1.158 2.142
1.158 2.4124 0.9696
2.142 0.9696 0.2679

൩× 10ି଻ Second set 

൥
2.629 0.0294 2.789

0.0294 2.6087 0.5804
2.789 0.5804 0.5118

൩ × 10ି଻  Bedding (parents) 

൥
6.897 0.965 1.421
0.965 2.9563 1.668
1.421 1.668 0.7673

൩× 10ି଻ Bedding (daughters) 

൥
18.439 3.4304 9.3102
3.4304 11.6742 4.0616
9.3102 4.0616 2.0506

൩ × 10ି଻ Resultant crack tensor 

൥
24.4746 0 0

0 10.2404 0
0 0 2.5511

൩× 10ି଻ Principal components of resultant 

 
After calculating the fracture tensor, the turn 

comes for calculating the permeability tensor. To 
compute the permeability tensor using fracture 
tensor, Kronecker’s delta as well as a constant 
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should be used that depends on the fracture surface. 
Considering the calculated fracture tensor, the 
amount of the studied region’s permeability tensor 

is obtained as given in Table 6, along with the 
values of the parameters required for its 
calculation.  

Table 6. Mean calculated permeability tensor based on crack tensor.  
૚
૚૛ ࣅ 

൥
17.215 0 0

0 12.628 0
0 0 3.816

൩× 10ି଻ Mean permeability tensor 

11.220 × 10ି଻  
݉
ݏ

 Mean value of permeability 

 
Besides being computable using fracture tensor, 

the permeability can also be found by other 
methods, as well. In this section of the article, 
validation process is carried out using permeability 
rate obtained based on fracture tensor and 
comparing it with the amount of the region’s 
measured permeability. The measured 
permeability value has been obtained using Lugeon 
test.  The in-situ tests based on Lugeon Method 
constitute one of the most credible methods and 
scales for determining permeability and they can 
also be applied in estimating the subsidence, as 
well. The permeability rate obtained based on in-
situ Lugeon test is equal to 9.23 ∗  10ି଻ m/s. 
Comparison of the calculated and the measured 
permeability is indicative of the acceptability of the 
calculated value. It should be mentioned that 
because of this fact that the only permeability test 
which is conducted in the project site was lugeon 
test, there was no access to other measurements of 
permeability and for more and accurate study, may 
be better to compare the result with data that obtain 
from furthermore measurements. In comparing 
average value of principal components of 
permeability tensor and lugeon test data should be 
noticed that the three value of principal component 
one by one should be in around of data that is 
obtained from lugeon test. In detail it is better to 
compare the value of principal component that 
directionally is near to the direction of borehole 
that lugeon test is conducted in. In this work, third 
component of 3.816 × 10ି଻ is directionally near 
value. 

5. Conclusions 
The effect of fractures on the various behaviors 

of the rock mass is inevitable. Rock mass 
permeability is one of the most important 
characteristics of the rock mass that plays an 
essential role in designing of various kinds of 
structures constructed on a mass of rock and it is 

always taken into consideration in the structures’ 
modeling in terms of stability analysis. Due to the 
rock masses’ anisotropy and inhomogeneity, a 
tensor quantity is employed for describing its 
permeability. Thus, calculation of the rock mass 
permeability tensor is amongst the most important 
parts of elaborating the ambiguities existent in the 
maximally precise recognition of the rock mass 
hence designing of structures featuring high 
stability and cost-effectiveness. Considering the 
importance of the subject, there are numerous 
methods designed for calculating the permeability 
tensor. Amongst the various kinds of the proposed 
methods for calculating the permeability tensor, the 
calculation method using fracture tensor, despite its 
mathematical complexities, is the only available 
method that directly applied the fractures’ 
geometrical specifications in calculating the 
permeability tensor. Unlike the other suggested 
methods, this method directly calculates the 
permeability tensor of the rock mass itself and this 
is quite opposite to the other methods that calculate 
permeability for the reproduced network of 
fractures. According to the method’s high 
capability, the permeability tensor was obtained for 
Rudbar Lorestan pumped-storage hydroelectric 
plant and dam through calculation of the fracture 
tensor and it was made clear following its 
comparison with the measured amount of 
permeability that it gives better results. It is worth 
mentioning that the field data were collected from 
the aforementioned project site for the calculation 
of the fracture tensor hence the permeability tensor. 
Besides being applicable to the calculation of 
permeability tensor, the fracture tensor is also 
employed in computing the other various behaviors 
of the rock mass. The extensiveness of fracture 
tensor’s use in various kinds of rock mechanics is 
reflective of the high importance of its calculation 
and its availability in various kinds of projects 
engaged with rock masses. 
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  چکیده:

هاي میان مشخصهاي احداث شده در و یا روي توده سنگ هستند. در در تحلیل رفتاري و پایداري سازه هیدرولیکی توده سنگ، از اهمیت بالاییهاي مشخصه
زه پژوهشگران حو هیدرولیکی توده سنگ، نفوذپذیري از مهم ترین پارامترهاي آن محسوب شده که نقش کلیدي در رفتار کلی توده سنگ دارد. بر همین اساس

توان از تکنیکفوذپذیري توده سنگ میاند. براي دسترسی به مقدار نه نفوذپذیري توده سنگ انجام دادههاي زیادي در محاسبه و دسترسی بمکانیک سنگ تلاش
ش بزرگتري از ه و گاهاً تعمیم نتایج آن به بخبر بودهایی هزینه بر و زمانهاي برجا مانند تست لوژن تستهاي شبیه سازي بهره برد. تستهاي برجا و تکنیک

هاي زیاد شود که علارغم شباهتذیري براي یک مدل محاسبه میهاي شبیه سازي نیز در واقع نفوذپست. در تکنیکا روههاي اساسی روبمحدوده تست با چالش
هایی خواهد بود. با در اي محدوده واقعی همراه با احتیاطده از نتایج شبیه سازي برهایی را نیز با محیط واقعی داشته باشد و در این مورد نیز استفاتواند تفاوتمی

ون چالش ینی بدنظر گرفتن دلایل فوق، دسترسی مستقیم به مقدار نفوذپذیري توده سنگ با صرف هزینه و زمان بهینه، که بتوان نتایج آن را براي محدوده مع
بر همین اساس در این کار پژوهشی با استفاده از مفهوم تانسور ترك، تانسور نفوذپذیري مغار نیروگاه سد رودبار لرستان  تواند بسیار ارزشمند باشد.تعمیم داد، می

11.220دست آمده براي نفوذپذیري برابر با ههاي ساختاري توده سنگ، محاسبه شده است. بعد از انجام محاسبات، مقدار باستفاده از مشخصهبطور مستقیم با  ×

10ି଻ 9.87گیري شده توسط تست لوژن که برابر با ده که در مقایسه با مقدار اندازهمتر بر ثانیه ش × 10ି଻ متر بر ثانیه است، مقداري قابل قبول محسوب می
  .شود

  .رودبار لرستان ،يارهیتلمبه ذخ روگاهین ،يریتانسور ترك، تانسور نفوذپذ کلمات کلیدي:
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