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The hydraulic properties of the rock masses are of great importance in analyzing the
behavior and stability of the structures constructed on or in rock mass. Permeability is
key parameter among other rock mass features due to its important role in rock mass
overall behavior. According to aforementioned reason, numerous efforts have been made
by researchers in the field of rock mechanics for its obtaining. To access the rock masses’
permeability, in-situ test methods and simulation techniques could be used. In-situ tests
like Lugeon Test are time-consuming and costly and they provide local results.
Simulation base methods calculate the permeability of the model that is generated similar
to the real region indeed and the developing the results to the real condition always raises
substantial challenges. According to the aforementioned reason, direct acquiring of
permeability with optimum cost and time which is easily generalizable to the overall of
a region would be very important. In this work using crack tensor concept, permeability
tensor of Lorestan’s Rudbar dam cavern is calculated efficiently by considering rock
mass structural features. Resulted permeability of the power plant’s cavern was obtained

equal t0 11.220 x 107 ?that seems to be acceptable compared to the measured values
which is obtained9.87 x 1077 ?

1. Introduction

The stability of the structures constructed in or on
the rock masses predominantly depends on the
presence of the fractures in the structure of the rock
mass [1]. Fractures presence in structure of rock
change behavior of it in a way that it seems rock
mass and intact rock are different materials. The
exact determination of the mechanical properties of
the rock mass is a vital issue for reaching a safe and
economic design for the spaces created in or on the
rock mass [2-5]. The complex fracture patterns,
and their statistical nature and uncertainties in
describing geo-mechanically and geometrically
characteristics of the fractured rock masses have
transformed them into the complex and hard
constructional materials. It is clearly evident that
the geometry of the fractures should play an
important role in the study of the rock mass’s
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anisotropy [6]. The studies are reflective of the
high importance of fractures in the permeability of
the fluids into the rock mass and it is for the same
reason that permeability has been taken into
account in solving the problems related to
geothermal energy, seismology, dumping of the
hazardous radioactive waste [7-10].

The determination of the hydraulic specifications
of rock mass has drawn the attentions of many
researchers due to being of a great importance. The
equivalent permeability of the rock mass is
considered among the most important entries in the
discussions on the calculation of water leakage and
discharge into the underground spaces. It has to be
explicitly mentioned that the fluid flow into the
rock mass occurs in the majority of the cases
through the joints, stratification and foliation.
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Liakopoulos calculated the anisotropic
homogeneous soil’s permeability in the form of a
positive, symmetrical and second order tensor [11].
Greenkorn et al. and Asadi et al. studied the
anisotropic permeability based on a laboratory
method and offered methods for calculating the
main indicators of permeability but they have not
mentioned anything about the calculation of
permeability tensor [12, 13]. Long et al., Min et al.,
and Zhang et al. have used the discrete
discontinuity network for calculating and
simulating the flows inside the discontinuities[14—
16]. Based on the certainty of the geometrical
properties of the discontinuities and their joint
patterns, they performed the simulation process.
Hestir and Lang, De Dreuzy et al. applied a
combination of percolation and discrete
discontinuity network theories for obtaining
permeability [17, 18]. Zimmerman and Bodvarsson
simulated each fracture as a conductive element
that conductivity of which depended on the
hydraulic opening of the discontinuity and
subsequently used the simulation results for
computing the 2D permeability of the fractured
rocks [19]. To determine the equivalent
permeability tensor of the rock mass, Snow and
Zhou et al. offered completely analytical methods
based on the geometrical properties of the joint
network. Oda applied statistical methods to come
up with a method for determining permeability
tensor. The first effort for calculating permeability
tensor was made by Snow who assumed an
unlimited number of joints in doing so. Firstly, he
calculated the equivalent rock mass permeability
tensor for a single-point discontinuity and
subsequently applied Principle of superposition to
obtain the permeability tensor for the joint network
[19]. It was Snow who for the first time considered
a simple but understandable model for evaluating
the permeability rate based on the concept of the
flow between parallel plates and offered fractures’
pattern  through  taking some  statistical
considerations into account [20]. In comparison to
the Snow’s model, Bear performed simplifications
and considered soft surfaces for the fractures’ walls
to offer a better model for fluid flow that was
confirmed by Witherspoon et al. in laboratory [20].

Kiraly et al. offered a similar relation which in
case of using limited plates for discontinuities, take
into account the number of discontinuities that be
exactly the same as the number of the joints inside
the rock mass so that the equivalent permeability
tensor could be calculated with an acceptable
accuracy [21]. Rocha et al. conducted field studies
to improve the tensor calculated based on Snow’s
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theory. They considered a well and measured the
flow therein and subsequently offered a revised
coefficient by dividing it by the flow calculated by
Snow [22]. Zoorabadi et al. offered a new method
for calculating the permeability tensor for the non-
ductile discrete discontinuity network [23]. Pan et
al. constructed the fracture network and calculated
the fractures tensor followed by calculation of the
permeability to take an important step in using
fracture tensor concept in analyzing the hydraulic
behavior of the rock mass [24]. Rutqvist et al.
offered the concept of interconnected continuous
environments thereby to come up with a novel
method of estimating the hydraulic characteristics
of the rock mass that uses fracture tensor [25].
Oda introduced the crack tensor concept. The
studies are reflective of the importance of fractures
geometry effect on the rock mass permeability.
Permeability tensor is an injective function of
fracture tensor and also the main directions of
permeability are in fact aligned with the main
directions of crack tensor. Fracture tensor is most
frequently applied in such areas as geotechnics,
environment, and civil engineering, especially in
estimating the rock mass permeability or hydraulic

conductivity [4].
The notable issue that shows the importance of
using fracture tensor in calculating the

permeability tensor is that the rock masses
hydraulic characteristics have been calculated in all
of the abovementioned studies based on parameters
that do not incorporate the geometrical properties
of the fractures and, in other words, the hydraulic
computations and, more explicitly, the
permeability tensor calculations have been carried
out without direct interference of the fractures
geometrical specifications [26]. On the other hand,
there is a need for reproduction of a fracture
network in the above-cited methods that can be
used for taking the later stages for the reproduced
network’s calculations so as to figure out how
much it is matching with the real conditions and
this is a vague question. In fact, the hydraulic
conditions of the model which is simulated the real
region are calculated in the majority of the cases
instead of computing the permeability tensor of the
region. On the other hand, in most of the proposed
methods that calculate permeability tensor without
using the fracture tensor, a simulation of region is
firstly generated and hydraulic parameters is
computed for the model. It is notable that
regeneration of the region's fracture model is time-
consuming, costly, and prone to errors process
[26].
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Using the process of fracture tensor calculation
and, subsequently, calculation of the permeability
tensor using it, make enables the consideration of
direct role of fractures geometrical properties in
calculation process and the calculated permeability
tensor is obtained for the studied region itself and
not for the simulated model and thus there would
be no need for the difficult and time-consuming
and, of course, error-prone process of creating a
fracture network model for the studied region, as
well. In this work, the data collected from the site
of Rudbar Lorestan pumped storage power plant
cavern will be used to calculate region’s fracture
tensor and then permeability tensor will be
calculated using fracture tensor.

2. Site Investigation

The data obtained from the cavern of pumped-
storage power plant of Rudbar Lorestan dam.
Rudbar, Lorestan pumped storage plant located in
high Zagros zone has very complicated tectonic
conditions and numerous over thrust faults. The
active faults of Saravan Baznavid and Chaleh
Hatam are the most important faults in the site. The
carven of the power plant is located almost in the
center of an anticline. The cavern has a length of
130 meters, a width of 26 meters and a height of 50
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meters (Figure 1), located in the Dalan Formation
(end of the first geology period), with calcareous
rock masses and dolomitic limestone of average
thickness (Figure 2). This project is under
construction at the Rudbar Lorestan Dam

upstream, located 150 km west of Isfahan and 100
km south of Aligudarz city. The area of the project
is located under the sedimentary zone (internal
Zagros) (Figure 3).

Figure 1. Layout of cavern of pumped-storage
power plant project of Rudbar, Lorestan dam.
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Figure 2. Geology cross-section of pumped-storage power plant project of Rudbar, Lorestan dam.
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Figure 3. Location of the studied area.

The data is obtained from the cavern by scanline
and scan window surveying method, and its
number reaches 627 fractures.

3. Methodology

Use of the fractures geometrical characteristics in
calculating the permeability tensor is a very
important aspect of the hydraulic calculations but
it has been neglected in the majority of the
calculation methods. Besides performing the
calculations using the directly collected field data,
calculation of the permeability tensor using the
crack tensor method takes the fractures geometrical
characteristics into account. The permeability
tensor calculation process using crack tensor has
been explained in following.

A volume of the rock mass equal to V is
considered as the flow region. Flow region has
been homogeneously intersected by m" number of
discontinuities which their centers have been
distributed randomly in  volume V. The
discontinuities are elliptical in shape with its large
diameter being of the size o and the diameters ratio
of k and an opening of t. Therefore, the void
volume corresponding to each crack equals
(n/4)(a?/k)t. The crack orientation is shown by
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Figure 4. lllustration of normal unit vectors of
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It is worth to mention that n*) is along n(-) but
in an opposite direction. Here, n denotes n(*) and
n) and it is considered as part of the spatial angle
of Q that is defined on a sphere with a unit radius.
The rock mass is assumed with an impermeable
matrix. Thus, the fluid can only pass through the
cracks. Under the abovementioned conditions, the



Esmaeilzadeh et al.

apparent velocity of the fluid current, 7, is defined
in the form of the relation:

1 1
—f v;dV = —f vi(c)dV(C)
V), Ve

vi(c): Local velocity in cracks

(1)

17L:

V(©): Void volume in crack canal

Journal of Mining & Environment, Vol. 14, No. 4, 2023

It is assumed that the normal unit vector of the
cracks is situated in the area of dQ spatial angle
about n and the large diameter of the crack is oval
and in the extent of o to at+da and the cracks’
openings are in the extent of t to t+dt. Now, the
probability density function, E(n,a.,t), is defined in
such a way that 2E(n,a,t)dQdadt gives a
probability value of (n, a, t) for the cracks. In other
words, it can be written that as Equation (2):

ff 2E(n,a,t)dﬂdadt:f f fE(n,a,t)deadt:l
o Jo Jas2 o Jo Ja

@)

In the above relation /2 is half the spatial angle
Q. It is worth mentioning that the maximum size of
the main diameter of the ovals and opening,
situated in the volume range V, is replaced in the
above equation for the infinite expressions. Each
crack also creates two-unit vectors, n(*) and n(-)
that are in opposite directions to one another. Thus
(n,a,t)dQdrdt, in fact, gives the normal crack
vector’s probability and not the normal crack
vector itself. In this state, the function E(n, a, t) is
defined on the spatial angle Q. Assuming that the
discontinuity centers have been randomly
distributed in the flow region, it can be stated that
the crack geometry is completely determined via

specifying the density function and the number of
cracks. It can be also stated that E(n, a,t) =
E(—n,a,t). Itis assumed that dN is the number of
cracks the centers of which fall inside the flow
region V. To estimate the likely number of the
aforementioned cracks, dN is multiplied by the
total number of m() as shown in Relation (3):

dN = 2mWE(n, a, t)dQdrdt (3)

Since each crack produces a void volume equal
to (t/4)(a?/k)t, the total void volume, dV (), of
the corresponding cracks can be calculated by
Relation (4):

_am®

o (n)(a:/k)t .

= a’tE(n, a, t)dQdrdt

(4)

In the next stage, the velocity of the flow is
investigated in the cracks. In this state, the flow
domain falls on two boundaries under two
hydraulic loads of ¢, and ¢, in such a way that
¢, > ¢,. The linear hydraulic load ranging from a
maximum value of ¢, to a minimum value of ¢,
is exerted in the other two boundaries. Thus, the
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hydraulic gradient, J, is obtained as shown in
Relation (5):
b1 — P

JZTP

L: Distance between two head sources
p: Unit vector in flow direction

®)
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The head distribution inside the flow domain
depends on the hydraulic behavior of the cracks but
it is assumed under such conditions that the field
gradient is uniform in the entire flow domain. This
assumption has been confirmed by Lang et al.
(1982) based on the permeability analyses of a
cracked medium. Of course, it is worth mentioning
that this assumption is validated by a sufficient
number of cracks. Now, it is assumed that J© is
the hypothetical indicator of J on the crack:

JO=]—@m-Nn (6)
and/or:
]i(c) = (6;j — nimy)J; (7

d;;: Kronecker delta

n;: Projected component of n on reference
coordinate set (x;) (i =1,2,3)
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;- Projected component of J on reference
coordinate set (x;) (i =1,2,3)

Figure 6. Analysis of vector field of hydraulic
gradient on joint plane.

If the crack is found highly propagated, the water
would have a layered flow between two parallel
plates with an opening equal to t. Under such
conditions, the mean velocity of the flow would be
equal to Equation (8):

1

©— 29,20 )

vi 12 v t ]i ( )

Now, it can be expected that the cracks would
have a flow velocity equal to Equation (9):

v =222 ©)
A: Dimensionless constant0 < A < 1/12.

The above constant value tends towards 1.12
with the increase in the crack size. Substituting
Relation (7) in Relation (9) gives the apparent fluid
velocity in the corresponding cracks as equation
(10):

g

vi(C) = }\; tz ((SU — ninj)]j (10)

Blending the relations (1), (2), and (10), it can be
written that:

l (oo} (oo}
7 = —f yi(c)dV(f-‘) = Ag[¥f f f r2e3 (60' — ninj) x E(n, a, t)dQdadt | J;
v v o Jo Ja

%4

(11)

where p is the volumetric density of the cracks
that is equal to:

Relation (11) is integrated on all the cracks
within flow domain. Comparison of the relation (6-
17) and Darcy relation leads to the permeability
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tensor calculation relation ki(jc). Thus it can be
written:
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where:

T[ [ee] [ee]
P;= Tpf f f r?t’nn; x E(n, a,t)dQdadt  (14)
0 0 Q
and

Py = Pyq + Pyy + P33 (13)

where P;; is called crack tensor which is a
symmetrical second order tensor only related to the
geometrical specifications of the discontinuities,
including shape, size, opening and orientation. It
has to be noted that the above relation has been
obtained considering the perfect partitioning of the
flow domain by the cracks and there is a large
number of paths for flow pass. The final relation
gives non-zero values for permeability even when
P;; value is trivial while the cracks’ connection has
reached zero under the above conditions and no
flow occurs any more. To overcome this problem,
a correction that will be explained below has been
made. Crack tensor is multiplied by o that is
smaller than unity and this reduces the P;;
coefficient in such a way that it is more matched
with reality. The threshold limit is observed when
a = a, below which the inter-crack connections
are completely removed and the flow domain
becomes practically impermeable. Thus the
corrective expression, a;;, is determined in such a
way that when a;;, it can be stated:

kY = A(Pucbiy — Piy) + ayj (14)
and when 0 < a < a,, then:
k9 =0 (15)

Since ki(jc) = 0 occurs when a = a, thus it can
be stated that:

- P;) (16)

Replacing Relation (16) in the previous final
relation gives the method of calculating the
permeability tensor as shown in the following
relation:

a;; = —Aag (Pkk5ij

where:
ﬁij :Pi' _Pi]_O (18)
Pijo = aOPij (19)
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The value of Pijo would be equal to zero under
such conditions that the flow domain is completely
partitioned by the cracks. Thus Relation (13) with
a value equal to A =112 can be applied.
Fortunately, the abovementioned conditions
predominantly occur in the rock mass as a result of
which the rock mass is completely destroyed by the
cracks. In other words, the perfect connection
conditions are most often available in the nature.

It is assumed that x;, x5, and x5 are the main axes
corresponding to the main planes of the tensor P;;.
Considering the main axes, the main indicators’
matrix of P;; tensor can be diagonally written as
below:

P, 0 O
0 0 P
K9 0 0
K2=10 k9 o (21)
0o 0 k¥

_Since ki(jc) is a single-point function of P;; and
P;j, thus its main axes are coaxially aligned with

the main axes of crack tensor. Considering i = j,

Relation (21) takes the following form:
ki(iC) = 2\P; = 20(Pi; — Piio) (22)

For the 2D conditions, equation (22) is re-written
in the form of Relation (23):

)
kl P1

=AMl-«a [ ] 23
_kgc)_ ( O) Pz ( )
Based thereon, Relation (24) is concluded:
O
k; P1]
—||=|=1 (24)
7] 1P

The parameters have been specified before-hand.

4, Results

To calculate the fracture tensor, the first step is
clustering and determining the set of the joints in
the studied region. In this stage, the statistical
analysis of the collected data based on their
orientation indicators enables clustering of the
collected data in certain sets. Table 1 summarizes
the results of the statistical analysis and
classification of the collected data.
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Table 1. Results of statistical analysis of surveyed data from the cavern.

Joint sets Dip Direction (°) Dip (°) K-Fisher m f}grt]ht';gﬁ?) Sleagfr]: g&r;?)e
First set 123 60 17.3 64.1 53
Second set 280 46 9.5 66.5 53.4
. Parents 33 76 25.6 892 300
Bedding ' ighters 29 73 10.4 22157 107.7

It can be seen from Table 1 that the collected data
can be classified into four sets according to their
conditions. It is worth mentioning that the sampled
strata fall in one set in terms of dip and dip
direction but they are dividable into two separate
sets of parents and daughters in terms of the
collected impact lengths. After statistical analysis
of the collected data and determining the fracture
sets, the orientation tensor of each joint-set is

calculated. In computing the orientation tensor of
each joint set, use will be made of the cumulative
density of the region wherein the fracture is
situated. Table 2 shows the orientation tensor
calculated for each joint set. In computing the
orientation tensor of the joint set, use will be made
of the cumulative density of the region wherein the
fracture is situated plus the normal vector of each
fracture, as well.

Table 2. Orientation matrix which is calculated for each joint set.

Joint sets Orientation tensor

0.163 -0.031 0.062

First set [—0.031 0.173 —0.564]
0.062 -0564 0.364
0.735 0.015 -0.756

Second set [ 0.015 0038 0.711 ]
—0.756 0.711 0.958

0497 0159 -0.017

Parent [ 0.159 0.098 —0.356]
—0.017 -0.356 0.256

0.467 -0.824 -0.005

Daughter [—0.824 0371 0515 ]
—0.005 0.515 0.062

After calculating the orientation tensor for each
joint, the orientation tensor of the entire joint set is
calculated based on the superposition principle.
Thus in this stage, the orientation tensor of each
joint set is calculated for it is considered as one of
the parameters required for the calculation of the
fracture tensor.

After computing the fractures’ orientation tensor,
the turn comes for the estimation of the probability
distribution function of the fractures’ impact
length. To estimate the probability distribution of
the fractures’ impact length, it is necessary after
collecting the fractures’ impact length rates to
make use of various statistical tests like chi square
and/or Kolmogorov test and others so that the
goodness of fit can be estimated for the various
distribution functions over the collected data and
the best function with the highest fit index can be
eventually selected as the probability distribution
function of the impact lengths. The result of
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estimating the various distribution functions’ fit
over the fractures is suggestive of the exponential
function’s match with them.

According to the presented results, it is clear that
the exponential distribution function has the best fit
over the data related to the fracture impact
considering the parameters determined in the table
hence it can be considered as the distribution
function governing the fractures’ impact length.
The reason for searching for and estimating the
distribution function governing the fractures’
impact length is the use of its moments during the
process of calculating fracture tensor. The
moments required by the probability distribution
function of the fractures’ impact lengths for the
calculation of the fracture tensor are the first and
the second moments of the distribution function the
calculated values of which for the fractures have
been given in Table 3.
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Table 3. First and second moments of probability density function of trace length of joints.

Joint set First moment Second moment
First set 64.1 0.2809
Second set 66.5 0.2854
Bedding (parents) 892 9
Bedding (daughters) 221.57 1.1449

In continuation of the fracture tensor calculation
process, the normal vector image of each fracture
should be obtained along each line. In this stage,
after calculating the normal vector image of each
fracture along the collection line, all of the normal
images of the joints should be summed up for
calculating the fracture tensor. After calculating the
fractures’ sum of the normal vector images along
the collection line, the last parameter required for

complementing the fracture tensor calculation
process is the computation of the fractures’ linear
density. To do so, it is enough to divide the total
number of the fractures intersected by the
collection line by the total length of the collection
line. If the aforesaid calculation method is applied
for the fractures’ linear density. Table 4 shows the
linear density as well as the calculate sum of the
normal vector images of the fractures.

Table 4. Linear density and sum of projections of unit normal of joints.

Joint set Sum of projections Linear density
First set 72.67 1.63
Second set 74.36 1.49
Bedding (parents) 91.20 1.86
Bedding (daughters) 66.69 1.97

Based on the calculations and the obtained
required parameters, the fracture tensor can be
computed for the collected data and, in fact, the
fracture tensor can be calculated for the studied
region in Lorestan’s Rudbar pumped-storage
hydroelectric plant and. It is worth mentioning that
using the orientation tensor of each joint set, the

fracture tensor of each fracture set can be obtained.
After calculating the fracture tensor of each joint
set, the superposition principle can be applied to
compute the total fracture tensor of the entire
fractures. The fracture tensors of each joint set as
well as the calculated output fracture tensors of the
studied region have been given in Table 5.

Table 5. Calculated crack tensor for each joint set.

Joint set Crack tensor
47174 1287 2957
First set [ 1.287 3.6968 0.844] x 1077
2957 0.844 0.5035
4195 1158 2142
Second set [1.158 24124 0.9696] x 1077
2142 0.9696 0.2679
2629 0.0294 2789
Bedding (parents) [0.0294 2.6087 0.5804] x 1077
2789 05804 05118
6.897 0965 1421
Bedding (daughters) [0.965 29563 1.668 ] x 1077
1421 1.668 0.7673
18.439 34304 9.3102
Resultant crack tensor [3.4304 11.6742 4.0616] x 1077
9.3102 4.0616 2.0506
24.4746 0 0
Principal components of resultant [ 0 10.2404 0 ] x 1077
0 0 25511

After calculating the fracture tensor, the turn
comes for calculating the permeability tensor. To

compute the permeability tensor using fracture
tensor, Kronecker’s delta as well as a constant
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should be used that depends on the fracture surface.
Considering the calculated fracture tensor, the
amount of the studied region’s permeability tensor

Journal of Mining & Environment, Vol. 14, No. 4, 2023

is obtained as given in Table 6, along with the
values of the parameters required for its
calculation.

Table 6. Mean calculated permeability tensor based on crack tensor.

Yl

1
12

Mean permeability tensor

17.215 0 0

0 12.628 0 |x1077

0 0 3.816

Mean value of permeability

m
11.220 x 1077 "

Besides being computable using fracture tensor,
the permeability can also be found by other
methods, as well. In this section of the article,
validation process is carried out using permeability
rate obtained based on fracture tensor and
comparing it with the amount of the region’s
measured permeability. The measured
permeability value has been obtained using Lugeon
test. The in-situ tests based on Lugeon Method
constitute one of the most credible methods and
scales for determining permeability and they can
also be applied in estimating the subsidence, as
well. The permeability rate obtained based on in-
situ Lugeon test is equal to 9.23« 10~7 mis.
Comparison of the calculated and the measured
permeability is indicative of the acceptability of the
calculated value. It should be mentioned that
because of this fact that the only permeability test
which is conducted in the project site was lugeon
test, there was no access to other measurements of
permeability and for more and accurate study, may
be better to compare the result with data that obtain
from furthermore measurements. In comparing
average value of principal components of
permeability tensor and lugeon test data should be
noticed that the three value of principal component
one by one should be in around of data that is
obtained from lugeon test. In detail it is better to
compare the value of principal component that
directionally is near to the direction of borehole
that lugeon test is conducted in. In this work, third
component of 3.816 x 10~ is directionally near
value.

5. Conclusions

The effect of fractures on the various behaviors
of the rock mass is inevitable. Rock mass
permeability is one of the most important
characteristics of the rock mass that plays an
essential role in designing of various kinds of
structures constructed on a mass of rock and it is
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always taken into consideration in the structures’
modeling in terms of stability analysis. Due to the
rock masses’ anisotropy and inhomogeneity, a
tensor quantity is employed for describing its
permeability. Thus, calculation of the rock mass
permeability tensor is amongst the most important
parts of elaborating the ambiguities existent in the
maximally precise recognition of the rock mass
hence designing of structures featuring high
stability and cost-effectiveness. Considering the
importance of the subject, there are numerous
methods designed for calculating the permeability
tensor. Amongst the various kinds of the proposed
methods for calculating the permeability tensor, the
calculation method using fracture tensor, despite its
mathematical complexities, is the only available
method that directly applied the fractures’
geometrical specifications in calculating the
permeability tensor. Unlike the other suggested
methods, this method directly calculates the
permeability tensor of the rock mass itself and this
is quite opposite to the other methods that calculate
permeability for the reproduced network of
fractures. According to the method’s high
capability, the permeability tensor was obtained for
Rudbar Lorestan pumped-storage hydroelectric
plant and dam through calculation of the fracture
tensor and it was made clear following its
comparison with the measured amount of
permeability that it gives better results. It is worth
mentioning that the field data were collected from
the aforementioned project site for the calculation
of the fracture tensor hence the permeability tensor.
Besides being applicable to the calculation of
permeability tensor, the fracture tensor is also
employed in computing the other various behaviors
of the rock mass. The extensiveness of fracture
tensor’s use in various kinds of rock mechanics is
reflective of the high importance of its calculation
and its availability in various kinds of projects
engaged with rock masses.
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