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 Most machine learning-monitored algorithms used to create mineral potential 
prediction maps require noise-free data to achieve high performance and reliable 
results. Unsupervised clustering methods are highly effective for uncovering a 
dataset’s hidden structures. Therefore, this study attempts a combination of 
supervised and unsupervised methods employing training and testing data to 
generate a highly accurate potential map of the Sonajil copper-gold deposit located 
in the NW of Iran. Here, a semi-supervised Bayesian algorithm is used to map the 
mineral landscape. Initially, ten raster layers of exploratory features are prepared. 
Then based on the copper concentration, 27 exploratory drilled boreholes are 
divided into four classes, C1 to C4, and from each class, two boreholes are selected, 
and 100-meter buffering is performed around these boreholes to extract 1113 
training data based on the behavioral pattern of boreholes and surface samples. 
Subsequently, the existing data is clustered using the FCM method, and the total 
dataset and the clustering data are entered into the Bayesian algorithm to evaluate 
the accuracy of the Bayesian classifier method across five distinct clusters. The 
results show increased average accuracy when using clustered data instead of whole 
data for MPM mapping. Notably, the Bayesian semi-supervised algorithm achieved 
an impressive accuracy rate of 96% when cluster five data is excluded. To validate 
the Bayesian semi-supervised method, boreholes data that is not used in training 
were employed, which confirm the credibility of generated MPM. Overall results 
highlight the value of the Bayesian semi-supervised algorithm in improving the 
accuracy and reliability of mineral prospectivity mapping via the application of the 
FCM clustering method that efficiently organize the data, enabling the Bayesian 
algorithm to evaluate the accuracy of the Bayesian classifier method across different 
clusters and providing a successful optimal result in detecting blind ores in areas 
without exploratory boreholes and delineating more mineralization targets in the 
Sonajil and adjoining areas. 
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1. Introduction 

Exploration for mineral deposits with the aim of 
delimiting the area for promising zones involves 
contemporaneous consideration of various 
parameters such as lithological, geochemical, 
geophysical, structural, alterations, and remote 
sensing datasets [1, 2]. Combining these datasets as 
a basis for establishing an appropriate mineral 

prospecting map (MPM) is the optimal task for the 
recent exploration programs [3-6]. MPM is a 
crucial procedure in mineral exploration programs, 
aiming to identify areas with high potential for 
undiscovered mineral deposits. In the recent years, 
there has been a growing interest in applying 
machine learning (ML) techniques to enhance the 
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accuracy and efficiency of mineral prospectivity 
mapping [56-61]. In order to prepare the potential 
map, the ML techniques have been developed into 
four main groups: supervised, unsupervised, semi-
supervised, and reinforcement [7]. Common 
methods of preparing the mineral potential map 
that belongs to supervised models include weights 
of evidence [8], fuzzy weights of evidence[9], 
boosted weights of evidence[10], support vector 
machine [11, 12], random forest [13-15], logistic 
regression and its variants [16, 17], neural 
networks [18-20], Bayesian networks [21], 
evidence belief functions [22], to name a few. The 
main techniques of unsupervised approach include 
Boolean logic [23], index overlay [24], Dempster-
Shafer evidence theory [25], fuzzy logic [26], data 
envelopment analysis [27], self-organizing map 
(SOM), and K-means clustering [28]. In supervised 
learning, which is one of the most successful types 
of ML for detecting geochemical anomalies, the 
algorithm is built based on the desired input 
(training) data [29-31]. One example in mineral 
prospectivity mapping is the use of supervised 
mineral exploration targeting and the challenges 
with the selection of deposit and non-deposit sites 
presented by Rahimi et al. (2021) [32]. The paper 
revealed that the selection of non-deposit sites is a 
challenging issue affecting the application of 
supervised algorithms for modeling mineral 
exploration targets. The study found that 
exploration targeting models are affected by the 
ratio of non-deposit and deposit sites. Therefore, 
balancing between the number of deposit and non-
deposit sites is an efficient way to produce more-
reliable exploration targets when supervised 
algorithms are applied for modeling. The proposed 
procedure for selecting non-deposit sites can be 
used to improve the effectiveness of exploration 
targeting models. The study used an exploration 
dataset of porphyry Cu mineralization in the 
Chahargonbad area, SE Iran, and applied a 
sequence application of a self-organizing map and 
multi-layer perceptron neural network algorithm to 
better illustrate the changing effects of the number 
of non-deposit sites on the ensuing exploration 
targeting models [32]. Another study presented by 
Yusefi and Hornsky (2023) [33] is about the 
translation of the function of hydrothermal 
mineralization-related focused fluid flux into a 
mappable exploration criterion for mineral 
exploration targeting [33]. The paper proposes a 
simplified approach for mineral exploration 
targeting by focusing on a geological point feature 
that represents strongly concentrated ore fluid flux, 
which can be derived as a mappable criterion. The 

authors demonstrate that this point feature can be 
used as a more effective criterion for mineral 
exploration targeting than existing point and line 
features, such as intrusive contacts, fault density, 
fault intersections, and proximity to faults. The 
proposed approach is illustrated using geochemical 
and geological datasets of porphyry Cu deposits of 
Iran. The paper concludes that the proposed 
approach can help mineral exploration companies 
to identify areas with a higher potential for 
hydrothermal mineral deposits, which can lead to 
more efficient and cost-effective exploration 
programs. A study about the data analysis methods 
for prospectivity modeling as applied to mineral 
exploration targeting: State-of-the-Art and Outlook 
was proposed by Yusefi et al. (2021) [34]. The 
paper discusses the use of Geographic Information 
Systems (GIS) for mineral exploration targeting 
through mineral potential modeling or mineral 
prospectivity mapping (MPM). The authors review 
the fundamental aspects of MPM, identify 
significant deficiencies of MPM, and propose the 
use of an intelligence amplification system such as 
the exploration information system (EIS), for 
improving decision-making in mineral exploration 
targeting [34]. Considering that in mineral deposits 
we are dealing with the development of complex 
lithology and multiple stages of mineralization, 
therefore, it is better to homogenize the data first so 
that the training data can be optimally entered into 
the classification algorithm. In the recent years, 
unsupervised learning models have been utilized to 
map potential mineral areas in situations where 
exploratory data is dispersed. These models (e.g. 
C-means) aim to determine the underlying 
distribution of predictor variables and then use this 
information to guide MPM [32, 33]. Therefore, it 
is better to use semi-supervised methods, which are 
a combination of supervised and unsupervised 
methods. This method was successfully used by 
[34] to prepare a mineral potential map using semi-
supervised random forest [35] and to identify 
anomalous areas related to copper-gold porphyry 
mineralization from the semi-supervised TSVM 
algorithm [36], as well also from the hybrid 
machine learning method (HML) based on the 
combination of nearest neighbour regression 
(KNNR) and random forest regression (RFR) for 
Pb and Zn prediction. In addition, K-nearest 
neighbors semi-supervised method has been 
employed by [37] to detect and reveal regional 
anomalies. Also, Du et al. (2021) [56] developed a 
hybrid genetic algorithm-support vector machine 
model for mapping prospective areas for gold 
deposits in Karamay, northwest China. The genetic 
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algorithm was used to optimize the parameters of 
the support vector machine model, resulting in 
improved performance in identifying prospective 
areas for gold deposits [56]. Despite the success of 
machine learning approaches in mineral 
prospectivity mapping, there are still challenges to 
overcome. One challenge is the limited availability 
of training data, as the formation of mineral 
resources involves multiple factors and rare labeled 
deposits [58]. Another challenge is the 
interpretability of machine learning models, as they 
often lack a proper combination with geoscience 
knowledge [58]. The researchers are actively 
working on addressing these challenges and 
developing new approaches to improve the 
accuracy and interpretability of mineral 
prospectivity mapping models [58]. Each of the 
methods has its advantages and drawbacks. This 
study demonstrates that the deficiencies can be 
remedied by implementing a robust method using 
a Bayesian semi-supervised algorithm. This is 
essential when dealing with complex lithological 
evolution involving multiple mineralization 
phases.  

In most of the exploration programs, the 
algorithm is chosen based on ease of 
implementation, and the reliability of the available 
thematic spatial data sets. Therefore, the method 
should be transparent and practical [38-40]. But in 
using classification algorithms, the condition of 
optimal use of training data is raised. This means 
that if training data are used generally and without 
clustering, we will encounter the issue of data noise 
due to sampling or analysis or human error in 
network learning. For this purpose, clustering 
algorithms will be used to break the total space of 
the dataset into several homogeneous subspaces to 
improve the accuracy of the classifier during data 
training. In fact, information extracted in this 
manner without supervision can be used to classify 
samples into mineralized and non-mineralized 
regions. 

Based on the above background, a semi-
supervised Bayesian algorithm was used in the 
present study to generate a potential MPM map for 
the Sonajil region in NW Iran. Specifically, it 
employed the FCM clustering method to cluster 
training data, followed by the Bayesian algorithm 
to classify supervised learning, which can assist in 
improving MPM performance. Ultimately, the goal 
is to develop tools that can augment and assist 
geologists, not replace them. The best outcomes 
will come from combining machine intelligence 
with human intuition, knowledge, and expertise.  

2. Geology and Metallogeny of Area 
The Sonajil Cu-Au deposit is a part of Alp 

Himalayan metallogenic belt, entering to NW of 
Iran. The zone belongs to the Alborz Azerbaijan 
structural trend known as Arasbaran mineralization 
zone (AMZ), located at about 100 km NE of Tabriz 
City (Figure 1). The most significant types of 
mineralization in the (AMZ) are associated with 
Cenozoic intrusions, consisting of porphyry, skarn 
and epithermal deposits of 250 km long trending 
NW-SE direction. This zone is comparable to the 
“And” type porphyry metallogenic belt of South 
America. The distribution of both Cu-Mo and Cu-
Au types of porphyry mineralization are present in 
the (AMZ). The most important Cu-Mo porphyry 
deposits of this zone formed in the northern part of 
the area such as Sungun and Baluja deposits 
whereas the southern part contains Cu-Au deposits 
of MirKuh Ali Mirza, Masjid Daghi and Shalloo. 

The Sonajil area is located in the central part of 
the Ahar province of the AMZ zone, which is 
predominantly covered by semi-deep Eocene-
Oligocene volcanic rocks. Structurally, the 
mineralized faults around the Sonajil intrusive 
mass have been observed trending NW-SE 
direction. Based on field observations, the outcrops 
in the area mainly include Eocene sedimentary 
volcanics, Oligo-Miocene intrusive masses, 
Miocene sedimentary rocks, as well as Quaternary 
basalts. 

Eocene deposits composed of thick sequences of 
andesitic, basaltic, pyroclastic, and sedimentary 
rocks that are mainly distributed in the southern 
parts of the area. These rocks have undergone mild 
metamorphism in the vicinity of the intrusive 
masses and at the periphery of the Sonajil porphyry 
intrusive and subjected to various alterations.  

The oldest intrusive masses in the region are 
porphyry monzo-syenite to micro monzo-syenite 
that are exposed in the center of the exploration 
area. The intrusion of the Sonajil porphyry to these 
rocks especially into micro monzo-syenite has 
caused a vast alteration system as well as the 
emplacement of part of the sulphides 
mineralization within these masses. The Sonajil 
massif with quartz monzodiorite to granodiorite 
composition is the cause of porphyry 
mineralization in the region. Various alteration 
systems in the region include potassic, phyllic, 
argillic, and propylitic zones. No evidence of a 
dominant potassic zone in the field and no K-
feldspars are observed in the hand specimen. This 
may indicate lower level of erosion in the studied 
area and preservation of ore at depth. The argillic 
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alteration is mostly seen at the surface with the 
white kaolinite formation. Remarkably, the sulfide 
mineralization and mineralized quartz zone in the 
form of vein-veinlets are associated with the 
potassic zone at depth and partly with phyllic 

alteration. Later the area was subjected to another 
intrusion known as (incheh) with diorite to quartz-
monzodiorite composition, exposed in the northern 
part of the area without significant alteration and 
mineralization.  

 

 
Figure 1. Geological map of the Sonajil area and the lithogeochemical sampling points. 

From an ore point of view, [41] and [42] have 
reported (< 1-7%) pyrite within the veinlets, 
Chalcopyrite (0-3%) as the major sulfide mineral 
within the Sonajil porphyry intrusion, and have 
stated the depletion of Molybdenite in Sonajil 
compared to similar mineralization in the NW of 
Iran. Molybdenite can rarely be seen in the 
marginal part of the main intrusion in association 
with quartz veinlets in the jungle (forest) valley. 

3. Methods 
3.1. Naïve Bayes 

One of the methods widely used to classify high-
dimensional data is Naïve Bayes (NB). With 
Bayesian networks, features are weighed 
concerning one another [43, 44]. The features’ 
independence in terms of class-condition is usually 
an optimistic condition for many classification jobs 
[45]. When such a condition is met, the NB 
classifier provides more efficient classification 
parameters and requires less training data than 
other classifiers. Nonetheless, this classifier may 
function correctly in practice without assuming 

independence. Regarding the data specifications 
utilized in this study, kernel and Gaussian 
distributions were taken into account to evaluate 
the efficiency of preparing potential maps. The 
Gaussian distribution is superior when the features 
are normally distributed across all classes. In 
contrast, the kernel distribution is superior when 
the feature distribution is skewed because it has 
multiple modes.  

The Naïve Bayes classifier function is explained 
by [46]: assuming an instance, X, the NB classifier 
predicts that X belongs to the class for which is 
maximized. The class ܥ௜ represents the hypothesis 
of maximum posteriori based on Bayes’s theorem 
as: Equation (1).  

(ܺ|௜ܥ)ܲ =
(௜ܥ)ܲ(௜ܥ|ܺ)ܲ

ܲ(ܺ)
 (1) 

To minimize the calculation load in 
estimating ܲ(ܺ|ܥ௜) for high-dimensional datasets, 
class conditional independence (the Naïve 
assumption) is taken into account. Thus: 
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(௜ܥ|ܺ)ܲ = ෑܲ(ݔ௞|ܥ௜)
௡

௞ୀଵ

= (௜ܥ|ଵݔ)ܲ ∗ (௜ܥ|ଶݔ)ܲ ∗ (௜ܥ|ଷݔ)ܲ ∗ … … . .∗  (2) (௜ܥ|௡ݔ)ܲ

 
where ݔ௞  represents the attribute ܣ௞  such as ܺ. 

Training data can yield more than the simple 
probabilities in Equation 2. Typically, the 
continuous variable has a Gaussian distribution 
with a mean of µ and a standard deviation (SD) of 
σ, as represented by Equations 3 and 4 [46]. 

,ݔ)݃ (ߪ,ߤ =
1

ߪߨ2√
e

(௫ିఓ)మ
ଶఙమ  (3) 

(௜ܥ|௞ݔ)ܲ = ݃൫ݔ௞ ,  ௖೔൯ (4)ߪ,௖೔ߤ

where ߤ௖೔ and ߪ௖೔  represent the mean and SD of 
the attribute ܣ௞  for training class ܥ௜. To determine 
the class label of ܺ, ܲ(ܺ|ܥ௜)ܲ(ܥ௜) is obtained for 
every  ܥ௜  class. The classifier indicates that the 
class label of instance ܺ  is  ܥ௜  if and only if 
Equation 5 is satisfied [46]. 

(௜ܥ)ܲ(௜ܥ|ܺ)ܲ > ܲ൫ܺหܥ௝൯ܲ൫ܥ௝൯ 
(5) 

for 1 ≤ ݆ ≤ ݉, ݆ ≠ ݅ 

3.2 Fuzzy C-means (FCM) clustering 
There are many fields such as pattern recognition 

and machine vision that use fuzzy clustering to 
solve problems. Several fuzzy clustering 
algorithms employ distance criteria including 
FCM, which utilizes reverse distance for fuzzy 
membership. In this case, feature vectors are part 
of all clusters with a zero to one  coefficient [47, 
48]. 

In addition, each data point in algorithms (feature 
vector) is labeled according to the data point with 
the highest coefficient in each cluster. The cluster 
centers and fuzzy membership matrix are 
determined through minimizing the formula below 
[48]: 

(݉,ܥ)݂ܬ = ෍෍൫݅ݑ,݇൯
݉݀݅,݇

݊

݇=1

ܿ

݅=1
 (6) 

∑ ௜ݑ ,௞
௖
௜ୀଵ = 1  

 
 

where C represents the number of clusters, d i,k 
refers to the Euclidean distance of the cluster center 
and the data point, n is the number of data, u i,k is 
the fuzzy membership of the kth data point to the 
ith cluster, m ),1(   is a fuzzy weighting factor 
that determined the fuzziness level of the 
outcomes. 

With increasing m, data class degrades in terms 
of discriminating fuzzier. Generally, m = 2 is 
selected and it is notable that this m produces no 
optimal solutions for every problem. The 
constraints in (6) means that every point needs to 
totally distribute the membership between the 
clusters [48]. The centers of cluster represent the 
fuzzy weighted center of gravity of the data X. 

௜ܸ =
∑ ௞௡ݔ௠(௜,௞ݑ)
௞ୀଵ
∑ ௠௡(௜,௞ݑ)
௞ୀଵ

, ݅ = 1,2, … . ,ܿ (7) 

Because ui,k influences the computation load of 
the cluster center vi, the data that has a higher 
membership affects the location of the prototype 
more than points that have a low membership[48]. 
In the case of fuzzy C-means algorithm, d i,k is: 

(݀௜,௞)ଶ = ௞ݔ‖ −  ௜‖ଶ (8)ݒ
The cluster center vi indicates the usual values 

that a cluster can have; while the ui,k element of the 
membership matrix indicates the extent of data 
point xk is identical to its prototype [48]. Through 
minimizing the partition functional in Equation 6, 
we have:  

௜,௞ݑ =
1

∑ (
݀௜ ,௞
௝݀,௞

)
ଵ

(௠ିଵ)ൗ௖
௝ୀଵ

 (9) 

Equation (9) is determined in an iterative way 
since the distance d i,k depends on membership ui,k..  

Figure 2 shows the flowchart of the applied 
FCM method in the present study. 
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Figure 2. Flowchart of FCM method applied in the studied area. 

3.3. Validation indices of fuzzy clustering 
algorithms  

The process of determining the optimal number 
of clusters should be as interpretable as possible. 
To evaluate clustering results, validation criteria 
are used to determine the compaction or density 
(the members of each cluster should be as close to 
one another as possible) and separation (the 
clusters themselves should be widely separated) of 
clustering results. The first group (compression) 
only utilizes clustering members, whereas the 
second group (separation) uses data-related 
members. Partition coefficient [49] and 
classification entropy are frequently employed in 
the first group. In the second group, the Xie-Beni 
index [50], the partition index [51], and the 
separation index [51] are frequently validated. The 
following are the parameters of the validation 
indicators used in this study:  

PC index  
The PC index measures "overlap" between 

clusters, which is defined in accordance with the 
relationship 10 [49]: 

ܥܲ =
1
ܰ෍෍ߤ௜௞ଶ

ே

௞ୀଵ

௠

௜ୀଵ

 (10) 

where N denotes the number of data and ߤ௜௞ଶ  is 
the membership amount of the ݇ data point in the 
ith cluster.  

CE index 

The CE index measures the fuzzy value of the 
cluster segmentation, which is defined according to 
Equation 11 [49]: 

ܧܥ =
1
ܰ෍෍ߤ௜௞ log௔ ௜௞ߤ

ே

௞ୀଵ

௠

௜ୀଵ

 (11) 

When different clusters are evaluated, the closer 
the PC index to one and the CE index to zero, the 
better the cluster. 

Xie-Beni (XB) index 
The Xie-Beni index is calculated based on 

Equation 12 to determine the ratio between the 
total amount of changes within clusters and the 
separation between clusters: 

ܤܺ =
∑ ∑ ௜௞ߤ

ఉ ‖ܺ௞ − ௜‖ଶேݑ
௞ୀଵ

௠
௜ୀଵ

ܰ. min
௜.௞

‖ ௞ܺ − ௜‖ଶݑ
 (12) 

Xk represents the sample under consideration 
and Ui represents the center of the cluster. The 
Xie-Beni index focuses on compaction and 
separation properties. The more the clusters are 
separated from each other, the lower the value of 
Xie-Beni. 

SC index 
The SC index is the ratio of the total density to 

the separation of clusters from each other and is 
defined according to Equation 13 [49]: 

ܥܵ = ෍
∑ ௜௝ߤ

ఉฮ ௝ܺ − ௜ฮݑ
ଶே

௝ୀଵ

௜ܰ .∑ ௞ݑ‖ − ௜‖ଶ௠ݑ
௞ୀଵ

௠

௜ୀଵ

 (13) 

The lower the SC index, the better the clustering 
output. 

Separation index S 
The separation index S, defined in Equation 14, 

uses a minimum separation distance value for 
segmentation validity [51]. 
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ܵ =
∑ ∑ ௜௞ଶݑ ௞ݔ‖ − ௜‖ଶேݑ

௞ୀଵ
௠
௜ୀଵ

ܰ. min
ூ.௄

௜ݑ‖ − ௞‖ଶݑ
 (14) 

The separation index S indicates a valid optimal 
classification; therefore, validation indicators will 
be useful when predicting the number of clusters is 
unknown. Higher values of the S index indicate 
better separation of clusters from each other.   

4. Materials and Data Processing 
4.1. Datasets and exploratory layers 

Since the evolutionary conditions of copper 
porphyry formation are complex, it is difficult to 
select possible areas with high potential. To 
partially overcome the problem, we developed new 
machine learning methods (combining supervised 
and unsupervised methods) to create a highly 
accurate MPM of the Sonajil. By taking this 
approach, we're able to more effectively analyze 
and interpret complex geological data, which 
ultimately allows us to better identify areas that are 

most likely to contain copper porphyry 
mineralization.  

Note that the initial and most crucial stage of Cu-
Au MPM involves the careful preparation of input 
data, which includes both predictors and targets. 
Essentially, these predictor variables serve as the 
key decision-making criteria for determining 
promising zones. Also for selecting the most 
reliable variables, the unique Cu-Au mineralization 
system in the area was taken into account. 
Accordingly, it was attempted to employ 10 
different evidence maps, each of them provides 
valuable insights into various geological, 
geochemical, and alteration factors and Cu-Au 
pathfinders in the area. By integrating these multi-
source predictor variables, the input data were 
generated through ArcGIS. For this purpose, a set 
of exploratory features (information layers) was 
prepared. These raster layers are in size of 15 x 15 
meters’ pixels, containing 83408 data (pixels) that 
was used in preparing the final potential map. 
Figure 3 depicts the exploratory layers, which 
include 10 layers of information. 

 
Figure 3. Exploration features in the Sonajil area for providing a potential map. 

4.1.1. Multi-element geochemical layer   

In order to achieve optimal results, 1248 well-
organized lithogeochemical samples were 
collected in a grid pattern at Sonajil (Figure 1). 
They were analyzed by ICP(MS) for Au, Ag, As, 
Sb, Cu, Pb, Zn, Cr, Ni, Co, Cd, S, Sr, Hg, Ba, Be, 
Bi, Li, Mo, Re, Sn, W, B, Zr, Rb, Nb, U, La, Th, 
Te, Sc Y, Cs, and V to prepare geochemical map 
along with related pathfinders. Additionally, the 
major elements were also analyzed to detect 
alterations-related layers. Factor Analysis was 

utilized to reduce the data dimensions to the main 
non-dependent components using the correlation 
matrix to overcome the abundance of analytical 
data. Then the noisy elements were eliminated and 
purified from different factors to get clean 
mineralization-related pathfinders. By each step of 
the iteration, more cleaned mineralization FAs 
were obtained and non-significant FAs were 
eliminated (Table 1). At first, 12 components were 
justified wıth the most variability of the area where 
FA1 and FA2 components had higher variability 
and the others with low variability were negligible. 
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Ultimately, based on the obtained values from the 
rotational correlation matrix, 12 pertinent elements 
were extracted including Au, As, Sb, Ag, Bi, Cu, 
Mo, Pb, S, Zn, Hg, and Cd. Among them, the FA1 
shows geochemical factors characterizing the 
positive spatial relationship of the paragenetic 
elements such as sulphides associated Au (Table1). 
Therefore, FA1 is ultimately selected as the most 
effective FA in preparation of the final multi-

element geochemical map, illustrated in (Figure 6-
a) and regarded as the final geochemical layer. 
Here we implemented another complementary 
method as a cluster analysis program to the Factor 
Analysis results in order to detect paragenetic 
indicators more precisely and fulfill the demands 
of geochemical mapping aspects. Fig-4 illustrates 
the discrimination of Cu-Au mineralization-related 
clusters. 

Table 1. Shows the FA and Eigen values of the 12 extracted elements, the variance and the cumulative variance 
corresponding to each of the FAs. Here the FA1 considered as significant geochemical layer in the final MPM. 

Elements As Sb Au Ag Bi Cu Mo Pb S Zn Hg Cd Eigen 
value Variance Cum.Var 

FA1 0.319 0.82 0.81 0.51 0.027 0.65 0.05 0.034 -0.03 0.079 -0.12 0.52 2.38 23.6 23.6 

FA2 0.59 0.177 -0.1 -0.14 0.51 0.058 0.75 0.77 0.197 0.097 0.126 0.242 1.93 16.1 39.7 

FA3 -0.44 -0.05 -0.09 0.062 -0.28 0.149 0.07 0.121 -0.62 0.782 -0.06 0.46 1.53 12.8 52.5 

FA4 -0.07 -0.05 0.055 0.668 -0.13 0.051 0.134 0.016 0.026 -0.02 0.85 0.175 1.24 10.5 63 

 
Figure 4. Clustering diagram showing four distinct sub-related paragenetic associations (Ore-related elements 

are in accordance with the factor analysis trend.) 

Cluster-1 is a confirmation of Cu-Au 
mineralization along with important indicators 
such as Sb, Ag, Zn, and Cd. This shows that at least 
two phases of mineralization occurred in the area. 
Cluster-2 includes Be, K, Rb, U, Th, Sn, and W, 
which indicate the intrusion of acidic solutions 
along with relevant elements. 

Cluster-3 shows the entry of sulphides solution to 
the area, along with some volatile elements such as 
As and related paragenesis such as Pb and Bi. Two 
other isomorphic elements, Mo and Re, are also 
accompanying the 3rd cluster, but their effects are 
less due to their depletion in the Sonajil compared 
with the Sungun deposit. The 4th cluster includes 

syngenetic elements of rock forming minerals such 
as Fe, Mn, Ti, Na, Ca, and Co.      

Combining the results of factor analysis and 
clustering diagrams (Table 2 and Figure 4), the Cu-
Au paragenesis were identified as (Au, Sb, Cu, Ag, 
and Cd), which were used as the exploratory 
layer to improve MPM results. Figure 6 (f-g-h-k-
m) shows the raster layers prepared for the 
mentioned elements. 

4.1.2. Hydrothermal alteration layer  
Hydrothermal alteration as a wall rock 

metasomatism is a well-known epigenetic process 
that encompasses the deposit, formed due to the 
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reactions between highly heated aqueous fluids and 
the country rocks as it flows through the 
suitable conduits expanding in the form of 
aconcentric cone from ore roots at depth, and 
responsible for the formation of ore shoots in a 
structurally controlled susceptible area. It is 
characterized by geochemical signatures, and 
pronounced anomalous zones are consistently 
associated with enhanced alteration halos.  

This paper reviews the general aspects of 
hydrothermal alteration processes and their 
detection in intrusion-related porphyry of the 
Sonajil, using the objectives of remote sensing 
methods since they contain high concentrations of 
base metals. The method is useful for identifying 
hydrothermal channels, which in turn may lead to 
the identification of similar mineralized zones in 
continuation of the same path [52, 53]. In this 
regard, Aster images were successfully employed 
to detect hydrothermal alteration. Accordingly, a 
set of Aster data in the ENVI software environment 
was utilized to prepare phyllic, argillic and 
propylitic alternation maps based on the band ratio 
method. Initially, geometric and radiometric 
corrections were performed and the vegetation 
canopy of the area was removed. Using the 
standard reflection spectrum, the index minerals of 
three alterations were detected by band ratio of 7/5 
[54]  for argillic, (7+5)/6 [54]  for phyllic alteration, 
and (9 + 7)/8 for propylitic alteration. Finally, three 
relevant continuous maps of argillic, phyllic and 
propylitic alterations were prepared (Figures 6-c, d, 
and e). The alteration assemblages of these zones 

are dominated mainly by kaolinite corresponding 
to relatively weakly altered parts of the 
hydrothermal alteration system denoting argillic 
zone near the surface as a blanket overlying Cu–Au 
mineralization in the area, whereas sericite and 
quartz signify phyllic zones preferentially toward 
the core and the most widespread altered parts of 
the mineralization. Propylitic alteration as a 
peripheral zone exists with prevalent chloritization 
on the surface. Therefore, this map was potentially 
used as an important layer of vector to Cu–Au 
mineralization in the process. 

4.1.3. Geological layer 

Many porphyry copper deposits are genetically 
associated with intermediate calc-alkaline to felsic 
rocks above active subduction zones of the 
volcanic arc in the northwest of Iran. Their 
lithological units consist of porphyritic andesite, 
mega porphyritic andesite, granitoid, andesite to 
Hornblende andesite [55]. Similar lithologies 
prevail in the Sonajil where porphyritic andesite is 
pronounced with phyllic alteration. In this study, 
using the geological map of the area, the 
integration of several lithologies was performed 
and the importance of each lithology was 
determined and scored based on the development 
trend of Cu mineralization as well as expert 
opinions about the geological units of the region. 
As a result, 6 classes were defined for the 
geological layers and given in Figure 5 with their 
relevant scores in (Figure 6-b). 

 
Figure 5. Sonajil lithologies and their relevant scores. 
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Figure 6. Continuous raster maps for exploratory evidence layers: a) geochemistry, b) geological raster map, c) 
argillic alteration, d) phyllic alteration, e) propylitic alteration, f) Au raster map, g) Sb raster map, h) Cu raster 

map, k) Cd raster map, m) Ag raster map. 

4.2. Selection of training data  

After obtaining general data from 10 components 
(exploratory feature), the information of boreholes 
drilled in the area (Figure 7) was used to select 

training data. The number of boreholes drilled in 
the area is a total of 27 boreholes that have been 
drilled in three stages, listed in Table 2, along with 
their acronyms. In order to select training data for 
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the Bayesian classifier, the boreholes were divided 
into mineralized and non- mineralized categories 
(Table 3). Subsequent to classifying eight 
boreholes into the four classes C1 to C4, two from 
each class were selected, and a 100-meter buffer 
was performed around them to determine the 
training data.  Considering that intelligent methods 
have the ability to identify behavioral patterns 
among the elements of the deposit under study, 
therefore, the simultaneous study of behavioral 

patterns of borehole and surface samples can help 
to identify behavioral patterns between elements. 
By identifying the pattern that governs the area 
using surface data, it helps to identify the presence 
or absence of blind mineralization in areas that lack 
exploratory boreholes.  

Figure 8 depicts the concentration diagrams for 
selected boreholes from classes C1 to C4 and 
Figure 9 illustrates the location of these boreholes 
on the geological map. 

Table 2. Number of boreholes and their abbreviations, drilled in the area. 
Number Boreholes 

11 Old boreholes (SOL) 
13 Porphyry-oxide boreholes (PH-OX) 
3 Epithermal boreholes (EP) 

Table 3. Borehole classification based on variation in copper concentration graph. 
Borehole class Assay (ppm) Number of boreholes Abbreviation of boreholes for each class 

C1 C < 1000 6 SOL6 -SOL9-SOL10 -SOL15-SOL16-SOL17 
C2 1000 < C < 2000 5 SOL12 -OX6-OX7-SOL8-OX5 
C3 2000 < C < 5000 9 SOL7-SOL14-OX1-OX8-Ph2-EP1-EP4-OX4-Ph1 
C4 5000 < C 7 OX3 -Ph5-Ph6-SOL11-EP5-OX2-Ph3 

 
Figure 7. Location of all boreholes in 3D view with respect to surface sampling data. 
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Figure 8. Concentration diagrams of SOL6 and SOL17 boreholes selected from class C1 boreholes - Concentration 

diagrams of SOL12 and OX7 boreholes selected from class C2 boreholes - Concentration diagrams of OX1 and EP4 
boreholes selected from class C3 boreholes - Concentration diagrams of OX3 and PH5 boreholes selected from class 

C4 boreholes. 
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Figure 9. a) SOL12 and OX7 borehole position with a 

100 m radius bore among C2 boreholes 
Figure 9. b) Position of SOL6 and SOL17 boreholes 

with a 100 m radius buffering among class C1 
boreholes. 

  
Figure 9. c) Position of PH5 and OX3 boreholes with 

a buffering radius of 100 meters among Class C4 
boreholes. 

Figure 9. d) EP4 and OX1 borehole position with a 
radius borehole of 100 meters among Class C3 

boreholes. 

5. Results and Discussion 
5.1. Model prediction and mineral mapping 

In porphyry copper deposits, due to the nature of 
the hydrothermal fluid and the physicochemical 
conditions governing the region, varıous zones 
wıth dıfferent concentratıons are created where 
each zone is related to a specific part of the deposit. 
Therefore, by clustering the samples, data that have 
common characteristics are collected in a cluster 
(zone). This leads to a better interpretation and 
more accurate modeling of the potential map. In 
exploratory feature datasets, there is likely to be a 
series of data that confuses the performance of the 
entire set in exploratory analyzes. By dividing the 
data into separate clusters, the best clusters can be 
identified and used in the analysis. Before 
clustering, the number of optimal clusters for 
which validation indicators were used should be 
determined. Then the FCM clustering algorithm 
was applied and the members of each cluster were 

identified. Thereupon the data of each cluster was 
divided into 70% of training and 30% of the testing, 
and then the Bayesian classifier was designed for 
preparing a potential map based on the accuracy 
and error of the  

Classifier. Figure 10 shows the validation 
indicators for training consisting of 1113 data, 
depicted in Table 4 along with the data of each 
cluster. According to the determinant indices for 
the number of optimal clusters, in all indices after 
5th one, the values of the indices tend to be 
relatively constant. Therefore, the optimal number 
of clusters for the FCM algorithm was considered 
to be five clusters. At this stage, all the training and 
then the clustered data are considered as the input 
of the Bayesian classifier to generate the potential 
map. Figure 11 depicts the stepwise performance 
of a single Bayesian and hybrid FCM-NB 
classifiers to prepare an optimal MPM using all 
geo-data sets of the Sonajil area. 
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Figure 10. Validation indicators for selecting optimal number of clusters for FCM algorithm. 

Table 4. Data clustering results using the FCM clustering algorithm. 

Clustering 
algorithm Total data Data number in 

the first cluster 
Data number in 

the second cluster 
Data number 
in the third 

cluster 

Data number 
in the fourth 

cluster 

Data number 
in the fifth 

cluster 
FCM 1113 386 298 122 37 270 

 
Figure 11. Stepwise preparation of optimal MPM based on FCM-NB in the Sonajil area. 

In order to produce a robust prediction method 
for the exploration of porphyry copper in the 
region, we used a combination of clustering and 
Bayesian methods. Thus, first, the information 
layers including 10 exploratory features were 
obtained. In preparing the exploration features, the 
pixel size was 15 × 15 m therefore; the number of 
pixels for preparing the decision matrix and 
continuing the work was 83,408 pixels. To enhance 
the performance of the NB classifier method, 
training data were clustered with the FCM 

clustering algorithm and compared to the results 
obtained with the entire data set. Since the 
clustering algorithm can divide the data into more 
internally correlated clusters thereby the results are 
expected to be more accurate than in the case of 
using the whole dataset. 

The classifier results were evaluated in different 
clustering modes, in the first case cluster 1 was 
excluded and the results were evaluated with four 
clusters of 2, 3, 4, and 5. In the second instance, 
cluster 2 was excluded and the results were 
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evaluated with four clusters 1, 3, 4, and 5. In the 
third case, cluster 3 was eliminated and the results 
were evaluated with four clusters 1, 2, 4, and 5. In 
the fourth case, cluster 4 was discarded and the 
results were evaluated using clusters 1, 2, 3, and 5. 
Finally, in the fifth case, cluster 5 was omitted and 
the results were evaluated with 4 clusters 1, 2, 3, 
and 4. In fact the confusion matrix shows the 
lowest error of (3.9) in the mode of eliminating the 
fifth cluster and using the other four with an 
increase in accuracy to 96.1, indeed about 96% of 
all samples are correctly classified into classes. 
Overall results of the clustering indicate the 
accurate and better performance of this model in 
determining the promising zones of mineralization 
compared to the mode of using whole data. Also 
considering that the training data used in the semi-
supervised Bayesian algorithm is obtained based 
on the relationship between surface data and 
boreholes, it is possible to identify the pattern 
governing the region using surface data to 
determine the presence or absence of hidden 
deposits in areas that lack exploratory boreholes.  

5.1. (FCM-NB) model assessments 
Figures 12 to 17 show the potential map of the 

Sonajil in different clustering modes along with 
matrix confusion. In the selection of training data, 
boreholes were classified into four classes, C1 (low 
probability mineralization) and C4 (high 
probability mineralization), which were used 
according to the Cu concentration; therefore, in the 
process of preparing the potential map based on the 
Bayesian algorithm, class C4 represents the high 
probability mineralization class that confirms each 
other in different clusters. This paper presents a 
promising idea for potential mapping in unknown 
regions by addressing the issue of a semi-
supervised approach. Table 3 outlines the 
classification of the boreholes used for cross-
validation, which were not included in the 
algorithm training. As shown in Figure 18, most of 
the C4 class assumptions are located in the high 
probability mineralization class, indicating an 
acceptable accuracy of the hybrid supervised and 
unsupervised FCM method. 

 

  
Figure 12. a) Potential map in the mode of using all data. Figure 12. b) Confusion matrix with 82% accuracy. 

  
Figure 13. a) Potential map in the first cluster deletion mode. Figure 13. b) Confusion matrix with 90% accuracy. 
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Figure 14. a) Potential map in the second cluster deletion 

mode. Figure 14. b) Confusion matrix with 90% accuracy. 

  
Figure 15. a) Potential map in the third cluster deletion mode. Figure 15. b) Confusion matrix with 88% accuracy. 

  
Figure 16. a) Potential map in the fourth cluster deletion 

mode. Figure 16. b) Confusion matrix with 89% accuracy. 
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Figure 17. a) Potential map in the fifth cluster deletion mode. Figure 17. b) Confusion matrix with 96% accuracy. 

 
Figure 18. Cross-validation results based on testing borehole data (confirms Table 4). 

6. Conclusions 

Traditional exploration methods are labor 
intensive and have low success rates. Machine 
learning models can potentially improve the 
discovery process. This research work 
demonstrates that the application of machine 
learning techniques to mineral prospectivity 
mapping holds tremendous promise for resource 
exploration, seeking to identify new ore deposits in 
an efficient and data-driven manner. By analyzing 
and identifying patterns in large geoscientific 
datasets, algorithms can help discover subtle 
indicators that may indicate mineralization 
potential in the study area. The Bayesian semi-
supervised approach presented in this study 
demonstrates how incorporating both labeled and 
unlabeled data can improve the prediction 
performance compared to traditional supervised 
learning models.   

The preliminary results derived from similarity 
clustering exhibit 4 distinct sub-related paragenetic 
associations where ore-related elements are in 
accordance with the Factor Analysis trend. As a 
result, the Cu-Au paragenesis were identified as 
(Au, Sb, Cu, Ag, and Cd), which were used as the 
exploratory layer to improve MPM results. 
Depletion of Mo in comparison with the Sungun 
deposit and its non-accompanying with base metals 
in the area is evidenced. In general, the distribution 
of Pb, As and S is affected by the Fe pattern rather 
than by Cu and Zn. The prominent pathfinder for 
gold is Sb followed by Ag, Cu, Zn, and Cd. 

The utilization of the FCM clustering method 
further enhanced the efficiency of the algorithm by 
organizing the data into distinct clusters. This 
clustering approach, coupled with the Bayesian 
classifier method, demonstrated a remarkable 
increase in the average accuracy of the mineral 
prospectivity map. Particularly, the exclusion of 
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cluster 5 data yielded an impressive accuracy rate 
of 96%. The validation of the Bayesian semi-
supervised method using testing boreholes data 
adds credibility to the findings, highlighting its 
robustness and effectiveness in identifying 
potential mineralization targets. 

This research marks an important step forward in 
the quest to harness the power of machine learning 
to boost copper and gold discovery. As datasets 
grow ever larger and computational capabilities 
increase, these techniques will only become more 
refined and capable of providing valuable insights 
to guide future exploration efforts. With better 
prospectivity maps identifying high priority 
targets, experts can focus their on-ground 
exploration where it matters most. The results 
illustrate the value of an interdisciplinary fusion of 
geoscience and machine learning, opening up 
possibilities for further optimization and novel 
applications that push the boundaries of our 
knowledge about mineralization patterns in region.  

Finally, the research work concluded that: 
• The Bayesian semi-supervised approach leverages 

both labeled data (known deposit locations) and 
unlabeled data (the wider geological dataset). 
This helps train the model more comprehensively 
compared to using labeled data alone. The 
utilization of the Bayesian semi-supervised 
method has an optimal outcome in the 
preparation of potential map in the region with its 
simplicity in data handling and accuracy in 
processing, which ultimately enable the 
detection of hidden ores in areas without 
exploratory boreholes. 

• The improved performance shows the value of 
incorporating all available data, not just known 
deposits, to build a more accurate prospectivity 
map. This indicates there is likely useful 
information in the wider dataset that traditional 
approaches miss.   

• As machine learning and computational power 
advance, these techniques will continue to 
improve and allow for more complex models 
that can uncover ever subtler indicators of 
mineralization. 
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  چکیده

با  جیه نتاب یابیدست جهت هاي بدون نویزبه داده میروندبه کار تهیه نقشه پیش بینی پتانسیل معدنی که در  نیماش يریادگتحت نظارت ی يهاتمیالگوربیشتر 
 بندي بدون نظارت کارایی بالایی دارند.هاي خوشههمچنین به منظور کشف ساختارهاي پنهان یک مجموعه داده، روش دارند. ازیبالا ن نانیاطم تیو قابل ییکارا

از کانسار  یقیدق لینقشه پتانستست، و  یآموزش يهاداده بکارگیرينظارت شده و بدون نظارت با  يهاروشمطالعه حاضر سعی دارد با استفاده از ترکیب  نیبنابرا
طلاي  –مس  نهشتهدر  یمعدنثبت بهینه پتانسیل  يبرا بیزیننظارت  مهینالگوریتم  مطالعه نیا در. تولید و ارائه دهد رانیواقع در شمال غرب ا لیسوناجطلا  -مس

بر اساس   C4تا   C1کلاس 4گمانه اکتشافی حفر شده در منطقه به  27فیچر اکتشافی تهیه شد. سپس  10هاي رستري به کار گرفته شد. در ابتدا لایه، سوناجیل
داده آموزشی بر اساس الگوي  1113ها زده شد، تا متري حول این گمانه 100گمانه انتخاب و بافر زنی  2بندي شدند و از هر کلاس تغییرات غلظت مس طبقه

هاي ها و دادهبندي شده و سپس کل دادهخوشه FCMهاي موجود به روش ها استخراج شود. متعاقباً دادههاي سطحی و گمانههاي حاصل از نمونهرفتاري داده
هاي مختلف وارد الگوریتم شدند. نتایج حاکی از افزایش دقت میانگین درحالت استفاده از دقت روش کلاسیفایر بیزین در خوشهبندي به منظور بررسی خوشه

ه ین، در حالت حذف خوشزینظارت ب مهین تمیقابل ذکر است، الگورنسیل را دارد. ها براي تهیه نقشه پتابندي نسبت به حالت استفاده از کل دادههاي خوشهداده
 ،نشده بودنداستفاده کلاسیفایر بیزین  که در آموزش ياگمانه يهااز داده ،این روش نیمه نظارتی یاعتبارسنج يبرادرصد شد.  96پنجم داراي دقت قابل توجه 

ها را که به طور کارآمد داده FCMدهد استفاده از روش خوشه بندي نتایج کلی نشان می .کندیم دییشده را تأ دیتول نقشه پتانسیل معدنی صحتکه شد استفاده 
اکتشافی  هايکند، نقش مهمی در بهبود دقت روش نیمه نظارتی بیزین و تهیه نقشه پتانسیل براي کشف کانی سازي پنهان در مناطق فاقد گمانهسازماندهی می

  دارد. 

  طلا، روش نیمه نظارتی بیزین، سوناجیل، آذربایجان شرقی. -نقشه پتانسیل معدنی مس کلیدي:کلمات 
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