[1]. Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406–421.
[2]. Highland, L., & Bobrowsky, P. T. (2008). The landslide handbook: A guide to understanding landslides. US Geological Survey Reston.
[3]. Komadja, G. C., Pradhan, S. P., Roul, A. R., Adebayo, B., Habinshuti, J. B., Glodji, L. A., & Onwualu, A. P. (2020). Assessment of stability of a Himalayan road cut slope with varying degrees of weathering: A finite-element-model-based approach. Heliyon, 6(11), e05297.
[4]. Kadri, U. (2017). Tsunami mitigation by resonant triad interaction with acoustic–gravity waves. Heliyon, 3(1), e00234.
[5]. Prasad, N. N. (1995). Landslides-Causes & Mitigation. Centre for Water Resources Development, Kerala, India, 21, 48–54.
[6]. Wieczorek, G. F., Reid, M. E., Jodicke, W., Pearson, C., & Wilcox, G. (2007). Rainfall and Seasonal Movement of the Weeks Creek Landslide, San Mateo County, California. US Geological Survey Data Series 278.
[7]. Ling, S., Sun, C., Li, X., Ren, Y., Xu, J., & Huang, T. (2021). Characterizing the distribution pattern and geologic and geomorphic controls on earthquake-triggered landslide occurrence during the 2017 Ms 7.0 Jiuzhaigou earthquake, Sichuan, China. Landslides, 18, 1275–1291.
[8]. Mahdavifar, M. R., Solaymani, S., & Jafari, M. K. (2006). Landslides triggered by the Avaj, Iran earthquake of June 22, 2002. Engineering Geology, 86(2–3), 166–182.
[9]. Chen, C.-W., Sato, M., Yamada, R., Iida, T., Matsuda, M., & Chen, H. (2022). Modeling of earthquake-induced landslide distributions based on the active fault parameters. Engineering Geology, 303, 106640.
[10]. Seed, H. B. (1969). Landslides during earthquakes due to soil liquefaction. Journal of the Soil Mechanics and Foundations Division, 95(4), 1123–1123.
[11]. Qing-Zhao, Z., Qing, P., Ying, C., Ze-Jun, L., Zhen-Ming, S., & Yuan-Yuan, Z. (2019). Characteristics of landslide-debris flow accumulation in mountainous areas. Heliyon, 5(9), e02463.
[12]. Chowdhury, R., Flentje, P., & Bhattacharya, G. (2009). Geotechnical slope analysis. CRC Press.
[13]. Stöcklin, J. (1974). Northern Iran: Alborz Mountains. Geological Society, London, Special Publications, 4(1), 213–234.
[14]. Hessami, K., Jamali, F., & Tabassi, H. (2003). Map of “Major Active Faults of Iran”, International Institute of Earthquake Engineering (IIEES) [Map]. International Institute of Earthquake Engineering (IIEES).
[15]. Ghayoumian, J. (2002). Seimareh Landslide, western Iran, one of the world’s largest complex landslides. Landslide News, 13, 23–27.
[16]. Shoaei, Z. (2014). Mechanism of the giant Seimareh Landslide, Iran, and the longevity of its landslide dams. Environmental Earth Sciences, 72(7), 2411–2422.
[17]. Evans, S. G., Delaney, K. B., Hermanns, R. L., Strom, A., & Scarascia-Mugnozza, G. (2011). The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. In Natural and artificial rockslide dams (pp. 1–75). Springer.
[18]. Sahbai, M., Chaichi, Z., & Nozari. (1997). Map of “East of Tehran”, Geological Survey and Mineral Exploration of Iran [Map]. Geological Survey and Mineral Exploration of Iran.
[19]. Ehteshami-Moinabadi, M., & Nasiri, S. (2019). Geometrical and structural setting of landslide dams of the Central Alborz: A link between earthquakes and landslide damming. Bulletin of Engineering Geology and the Environment, 78(1), 69–88.
[20]. Chen, Z., Zhang, B., Han, Y., Zuo, Z., & Zhang, X. (2014). Modeling accumulated volume of landslides using remote sensing and DTM data. Remote Sensing, 6(2), 1514–1537.
[21]. Valkaniotis, S., Papathanassiou, G., & Ganas, A. (2018). Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Engineering Geology, 245, 141–152.
[22]. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3–4), 222–229.
[23]. Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J., & Gao, M. (2016). Optimized volume models of earthquake-triggered landslides. Scientific Reports, 6(1), 1–9.
[24]. Martin, Y., Rood, K., Schwab, J. W., & Church, M. (2002). Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Canadian Journal of Earth Sciences, 39(2), 189–205.
[25]. Abele, G. (1974). Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen.
[26]. Whitehouse, I. E. (1983). Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 26(3), 271–279.
[27]. Haflidason, H., Lien, R., Sejrup, H. P., Forsberg, C. F., & Bryn, P. (2005). The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1–2), 123–136.
[28]. Ten Brink, U. S., Geist, E. L., & Andrews, B. D. (2006). Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33(11).
[29]. Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., & Rossi, M. (2008). Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology, 96(1–2), 105–122.
[30]. Fan, J., Li, X., Guo, F., & Guo, X. (2011). Empirical-statistical models based on remote sensing for estimating the volume of landslides induced by the Wenchuan earthquake. Journal of Mountain Science, 8(5), 711–717.
[31]. Omidvar, E., & Kavian, A. (2011). Landslide Volume Estimation Based on Landslide Area in a Regional Scale (Case Study: Mazandaran Province). Journal of Natural Environmental, Iranian Journal of Natural Resources, 63(4), 439–455. (In Persian)
[32]. Hadian-Amri, M., Solaimani, K., Kavian, A., Afzal, P., & Glade, T. (2014). Curve estimation modeling between area and volume of landslides in Tajan River basin, North of Iran. Ecopersia, 2(3), 651–665.
[33]. Amirahmadi, A., Pourhashemi, S., Karami, M., & Akbari, E. (2016). Modeling of landslide volume estimation. Open Geosciences, 8(1), 360–370.
[34]. Keefer, D. K., & Wilson, R. V. (1989). Prediction earthquakes-induce landslides, with emphasis on arid and semiarid environments (1989) Landslides in a semiarid environment, 2. Riverside, California Inland Geological Society, 118–149.
[35]. Keefer, D. K. (1994). The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. In Geomorphology and natural hazards (pp. 265–284). Elsevier.
[36]. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350.
[37]. Hancox, G. T., Perrin, N. D., & Dellow, G. D. (2002). Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 35(2), 59–95.
[38]. Hancox, G. T., Dellow, G. D., & Perrin, N. D. (1997). Earthquake-induced landsliding in New Zealand and implications for MM intensity and seismic hazard assessment. Institute of Geological & Nuclear Sciences.
[39]. Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslides, earthquakes, and erosion. Earth and Planetary Science Letters, 229(1–2), 45–59.
[40]. Nepop, R. K., & Agatova, A. R. (2008). Estimating magnitudes of prehistoric earthquakes from landslide data: First experience in southeastern Altai. Russian Geology and Geophysics, 49(2), 144–151.
[41]. Agatova, A. R., & Nepop, R. K. (2011). Assessing the rate of seismogravitational denudation of the relief of southeastern Altai: The Chagan-Uzun R. Basin. Journal of Volcanology and Seismology, 5(6), 421–430.
[42]. Xu, C., Xu, X., & Shyu, J. B. H. (2015). Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology, 248, 77–92.
[43]. Nepop, R., & Agatova, A. (2016). Quantitative estimations of the Holocene erosion due to seismically induced landslides in the SE Altai (Russia) applying detailed profiling and statistical approaches. International Journal of Georesources and Environment-IJGE (Formerly Int’l J of Geohazards and Environment), 2(3), 104–118.
[44]. Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge University Press.
[45]. Berberian, M. (1994). Natural hazards and the first earthquake catalogue of Iran. International Institute of Earthquake Engineers and Seismology.
[46]. Berberian, M. (2014). Earthquakes and coseismic surface faulting on the Iranian Plateau (Vol. 17). Elsevier.
[47]. Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letters, 84(2), 233–249.
[48]. Ghafory-Ashtiani, M., & Mousavi, M. (2014). Guideline for Seismic Hazard Analysis (No. 626) (p. 43). Office of Deputy for Strategic Supervision, Department of Technical Affairs. (In Persian)
[49]. Zare, M., Ghafory-Ashtiany, M., & Bard, P.-Y. (1999). Attenuation law for the strong-motions in Iran. Proceedings of the Third International Conference on Seismology and Earthquake Engineering, 1, 345–354.
[50]. Ambraseys, N. N., Douglas, J., Sarma, S. K., & Smit, P. M. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bulletin of Earthquake Engineering, 3(1), 1–53.
[51]. Talebian, M., Copley, A. C., Fattahi, M., Ghorashi, M., Jackson, J. A., Nazari, H., Sloan, R. A., & Walker, R. T. (2016). Active faulting within a megacity: The geometry and slip rate of the Pardisan thrust in central Tehran, Iran. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3), 1688–1699.
[52]. Ritz, J.-F., Nazari, H., Balescu, S., Lamothe, M., Salamati, R., Ghassemi, A., Shafei, A., Ghorashi, M., & Saidi, A. (2012). Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran). Journal of Geophysical Research: Solid Earth, 117(B6).
[53]. Solaymani Azad, S., Ritz, J.-F., & Abbassi, M. R. (2011). Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): Morphotectonics and paleoseismological investigations. Tectonophysics, 497(1–4), 1–14.
[54]. Nazari, H., Ritz, J.-F., Salamati, R., Shafei, A., Ghassemi, A., Michelot, J.-L., Massault, M., & Ghorashi, M. (2009). Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2), 1028–1041.