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 The quarry operators and managers are having a running battle in determining with 
precision the rate of deterioration of the button of the drill bit as well as its 
consumption. Therefore, this study is set to find the best-performing model for 
predicting the drill bit button's wear rate during rock drilling. Also, the rate at which 
drill bit buttons wear out during rock drilling in Ile-Ife, Osogbo, Osun State, and 
Ibadan, Oyo State, Southwest, Nigeria was investigated. Artificial Neural Network 
(ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and adaptive moment 
Estimation-based Long Short-Term Memory (LSTM) machine learning approaches 
were used to create models for estimating the bit wear rate based on circularity factor, 
rock grain size, equivalent quartz content, uniaxial compressive strength, porosity, 
and abrasive properties of the rock. The performance of the models was measured 
using a new error estimation index and four other convectional performance 
estimators. The analysis of performance shows that the adaptive moment estimation 
algorithm-based LSTM model did better and more accurately than the other models. 
Thus, the LSTM models presented can be used to improve drilling operations in real-
life situations. 
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1. Introduction 
The use explosives for fragmentation of rock 

mass helps all other operations coming after 
drilling and blasting for improved productivity. It 
is also an important factor in determining mine 
productivity because it has a clear effect on how 
well mining equipment works and, on the mine’s, 
overall profit. Drilling action is the process of 
making holes in rocks so that they break apart 
easier when they are blasted. The cost and output 
of blasting operations are directly tied to how well 
drilling operations are carried out [1]. Eshun et al. 
were of the opinion that drilling and blasting 
operations are two of the most important unit 
activities in any hard rock mine [2]. Different ways 
have been found around the world to make mining 
operations work at the optimum. These include 
drilling and blasting, using noiseless removal 

agents, and cutting, all of which require drilling [3, 
4]. Drilling and blasting of rocks had been noted as 
an important part of Civil and Mining Engineering. 
The output of drilling and blasting depends on the 
person doing it, the rock, and the machine [5, 6]. 
The physical and mechanical properties of rocks 
change from one place to another. This is because 
the geology of the place where the rock mass is 
located and the makeup of the parent rocks [7, 8] 
affect how the rock behaves. Even when rocks are 
taken from the same place, their qualities can vary 
by a small or large amount due to the variety of the 
rock mass in place. The way a drilling machine 
works relies on the strength, grain size, pore 
spaces, and shape of the grains of the rock, all of 
these varied from place to place. These rock 
qualities can make a big difference in how well the 
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drilling bit works, which determine how fast it 
wears [9, 10]. Abdulmalek et al. observed that the 
speed of bit penetration depends on the structure of 
the rock's minerals, the drilling machine, the rock's 
geo-mechanics, the driller, and the choice of 
drilling tools that are best for the rock [11–14]. 
Thus figuring out how fast the bit will wear is a 
very important part of mine planning, especially 
when the size of the grains, the strength of the rock, 
and the hardness of the rock are taken into account 
as separate factors [15]. Still, the rate of advance 
depends on how the drill bit and rock grains 
combine as the drill bit moves forward. When 
cutting into rock, the rate at which the drill bit 
wears out is an important factor that has a big effect 
on how much it costs and how far it will penetrate 
into the rock [16].  

In the meantime, bit penetration rate mostly 
depends on rock characteristics (strength, abrasion, 
mineralogy, brittleness, and porosity), which 
cannot be controlled but can be found out through 
lab studies, and operational variables (drill bit 
diameter, rotational speed, thrust, air pressure, and 
drilling fluid pressure), which can be controlled 
and found out by drilling machine variables [17]. 
The research by Hoseinie et al. showed that the size 
of rock grains affects their mass and strength, 
which in turn affects how fast a drilling bit works 
[18]. The amount of material worn away from the 
drill bit per unit of time as the drill rod moves into 
the rock is called the "wear rate." Adebayo and 
Akande went on to explain that the rate of 
penetration is the length of rock that is cut through 
per unit of time, while the wear rate is the rate at 
which material is worn away from the bit's surface. 
This is used to predict how long the bit will last 
[19]. Duru's research showed that the shape of drill 
bit cones as the source of force penetration is also 
affected by the material's micro (texture, grain 
geometry, matrix material) and macro (strength, 
elasticity) qualities [20]. Luyckx and Love's work 
revealed that the abrasion resistance ability of the 
drill bit material and these properties of the rock 
control how fast the bit cone wears [21]. A good 
estimate of the rate at which the drill bit wears out 
helps plan rock mining projects and helps optimize 
drilling costs [22]. Drilling is the most expensive 
process, and knowing how fast drill bit wear is very 
important for improving the performance of 
drilling machines and the efficiency of blasting. 
Even though bit wear rate (WR) is the main factor 
that affects drilling penetration rate, operating 
economically and efficiently, it was noted that 
several theoretical models [23, 24] based on 
different parameters have been described in the 

literature. Plinninger et al. [25] said that tool wear 
happens under certain loads and temperatures 
because of a complicated system called tribology. 
They confirmed that removing rock is a 
microscopic and macroscopic process, like 
abrasion, adhesion, material stress or the brittle 
failure of tool materials. Many different things 
from the main fields of geology, tools, and 
transportation affect how quickly these things 
happen. Geologists, material scientists, mining 
engineers, and construction engineers have been 
studying these effects for decades. Major 
geological factors have been identified as rock 
properties, joint features, how rocks weather or 
change, the water situation, the makeup of different 
rock masses, and the underground stress situation. 
Saeidi [26] used image processing techniques in 
monitoring of bit wear, especially, WC/Co 
cemented carbide bits that are commonly used in 
rotary drilling in mining, civil and petroleum 
engineering. They acquired the image of the bits 
using a CCD camera. Their study revealed that bit 
wear in rotary drilling at surface mining operations 
correlate with various geological and operational 
parameters. Capik and Batmunkh [27] also predict 
bit wear during surface mine drilling operations. 
The wearing of bit depends on the button 
composition. Piri et al. [28] investigated the wear 
resistance of drill bits with tungsten carbide (WC) 
coating, DLC-Diamond coating, and titanium-
silica‑aluminum (TiAlSi) coating when drilling in 
three types of hard rocks. The results showed that 
for any fixed drilling conditions, the wear rates of 
the TiAlSi drill bit in the three locations were lower 
than those of the tungsten carbide drill bit. It was 
also revealed that Diamond-DLC drill bit has lower 
wear rates than the WC drill bit. The mechanical 
properties rock also affects drill bit wear resistance 
[28]. Mikaeil et al. [29] also explained that the 
evaluation and prediction of cutting machine such 
diamond wire saw is one of the most important 
factors involved in planning the dimension stone 
quarries. They noted that cutting machine wear rate 
is a major criterion to evaluate its performance. 
Mazen et al. [30] mentioned that prediction of 
drilling performance is based on the interaction of 
cutter and rock. Several authors focused on the 
cutter-rock interface but only a few researchers 
tried to model the wear of the PDC bit cutters. 

Mazen et al. [30] developed a new mathematical 
model to predict the PDC bit performance by 
considering the factors that were already not taken 
into account. There are different ways to figure out 
how fast a drill will go through rock and how fast 
the bit will wear down. Each method has its own 



Adebayo et al. Journal of Mining & Environment, Vol. 14, No. 4, 2023 
 

1123 

limitations, which leads to different prediction 
mistakes.  

Rock strength significantly influences both drill 
bit wearing and penetration rate in drilling 
operations [31]. Harder rocks tend to cause higher 
wear rates on drill bits due to the increased 
resistance they offer, leading to more abrasive 
interactions [32]. This results in quicker 
deterioration of the bit's cutting edges. Moreover, 
higher rock strength often leads to a slower 
penetration rate, as the bit has to exert more force 
to break and remove the rock. Conversely, softer 
rocks result in less wear on the bit but may lead to 
a faster penetration rate due to reduced resistance. 
Optimal drill bit selection and operational 
parameters are crucial to balance these factors and 
enhance drilling efficiency. A lot of different 
testing methods and standards can be used to figure 
out how fast drill tools will wear out [25]. These 
methods cover a wide range of sizes, from real-
world drilling tests done on-site to model tests done 
with simple tools to microscopic and chemical 
studies of rocks and minerals. Depending on their 
size and parameters, they can take some things into 
account and not take others into account. So far, 
more attention has been paid to how machine 
learning can be used to solve hard engineering and 
rock mechanics problems. Many types of 
engineering, including petroleum engineering (see 
Table 1), have recorded the used of neural 
networks and deep learning to build models. 
Furthermore, because of the growth of high-
performance computer systems, predictive models 
are much more accurate and complicated than they 
used to be [33]. Patra et al. used a multilayer neural 
network with a back propagation algorithm 
(BPNN) to predict the average side wear of a high-
speed steel (HSS) drill bit used to drill on a mild 
steel work piece [34]. In a study published in 
Heliyon [35], Phate et al. investigated the 
prediction and optimization of tool wear rate 
during electric discharge machining (EDM) of an 
aluminum-copper-nickel alloy using an adaptive 
neuro-fuzzy inference system (ANFIS). The 
authors aimed to analyze the impact of process 
parameters such as input current, pulse on time, 
and pulse off time on tool wear rate. They 
employed Taguchi's L18 mixed plan for 
experimentation and developed a mathematical 
model to correlate these process parameters. 
ANFIS was then used to predict the tool wear rate 
based on these parameters. The results showed that 
input current had the most significant influence on 
tool wear rate, followed by pulse on time. The 
amount of aluminum in the alloy inversely affected 

tool wear rate, while increasing copper content 
increased it. Additionally, tool wear rate initially 
decreased with an increase in pulse on time but 
started to increase after reaching a median value of 
25 micro-seconds [35]. The confirmation 
experiments conducted using optimal process 
parameters validated the obtained results and 
demonstrated ANFIS's capability to predict tool 
wear rate accurately. Although this study focused 
specifically on EDM and not drill bit wearing 
resistance, it demonstrates how artificial 
intelligence approaches like ANFIS can be utilized 
for predicting tool wear rates based on various 
process parameters [35]. This methodology could 
potentially be applied or adapted for predicting 
drill bit wearing resistance in drilling operations. 
While no articles directly addressed the prediction 
of drill bit-button performance using artificial 
intelligence approaches, a study published by 
Capik and Yilmaz used regression to develop 
models for figuring out how long a bit will last base 
on how easy it is to drill and how hard and rough 
the rock is [36]. 

Several researchers have used different databases 
to make predictions about aspects including blast 
production, blast impact, and drilling penetration 
rate in mining operations, as shown by a review of 
the relevant literature. It is widely accepted that 
having a large and high-quality database is crucial 
for successful application of soft computing 
models. Many studies have tried to enhance 
drilling operations by using regression analysis and 
traditional soft computing machine learning 
techniques. It is difficult to determine the best 
performing machine learning model for predicting 
drill tool performance due to the utilization of 
several databases. Additionally, recurrent neural 
networks like the long-short term memory network 
(LSTM) and deep learning approaches like the 
adaptive neuro-fuzzy inference system (ANFIS) 
have not been deployed for estimating drill bit wear 
rate. In addition, research on the accuracy of ANN, 
ANFIS, and Adam solver-based LSTM in 
predicting drill bit wear rate is limited. The 
objective of this study is to evaluate the efficacy of 
artificial neural networks, hybrid algorithms for 
ANFIS, back propagation ANFIS, and the Adam 
optimizer's long short-term memory (Adam-
LSTM) learning algorithm in predicting drill bit 
wear rate, and to fill the gaps identified in the 
literature review. Last but not least, six evaluation 
indices and new performance evaluator indices are 
introduced and used to measure the efficiency of 
the proposed models. The study area includes 
selected quarries in Ife, Oshogbo, Osun State and 
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Ibadan, Oyo State, Southwest, Nigeria, as shown in 
Figure 1. 

Table 1. Literature review of machine learning application toe field. 
References Year Technique Number of datasets R2 

[37] 2011 ANN 220 0.97 
[38] 2007 BNN-ANN 43  

[39] 2022 HP-ANN, ANFIS, MVR 59 
ANN = 0.96 
ANFIS = 0.76 
MVR = 0.68 

[40] 2013 ANN 103 0.85 
[41] 2013 ANFIS 30 0.83 

[42] 2015 FIS, LMR 185 FIS = 0.922 
LMR = 0.738 

[43] 2016 ANN, ANFIS 115 0.95 
[44] 2020 RF, CART, CHAID 102 0.94 
[45] 2020 CSO 75 0.985 
[46] 2022 ANN, SVR 102 ANN = 0.87, SVR = 0.81 
[47] 2022 XGBoost, RF, KNN 152 XGBoost = 0.9125, RF = 0.67, KNN = 0.87 
[48] 2022 GEP 1032 0.981 

[49] 2023 ANN, SVR, MVR, Ri 30 

ANN = 0.94 
MVR = 0.80 
SVM = 0.78 
Ri = 0.74 

FIS: fuzzy inference system, HP: hunter point, ANN: artificial neural network, ANFIS: adaptive neuro-fuzzy inference system, 
LMR: linear multiple regression, CSO: cat search optimization, SVR: support vector regression, XGBoost: eXtreme gradient 
boosting, Ri: Ridge Regression, RF: random forest, KNN: K-Nearest Neighbors, GEP: gene expression programming 

 
Figure 1. Map of Nigeria showing case study area at southwest region. 

2. Data Collection and Model Methodology 
In this paper, the granite quarries in Ile-Ife, 

Osogbo Osun State and Ibadan, Oyo State, all these 
locations fall within the Southwest basement 

complex of Nigeria, served as a case study. In 
addition, the number of outcrops in this region 
varied from isolated boulders to large exfoliated 
domes and inserlberg. Seventy-five drilling 



Adebayo et al. Journal of Mining & Environment, Vol. 14, No. 4, 2023 
 

1125 

instances were monitored in preparation for 
production blasting. During drilling operations at 
the quarries, the drill bit diameter and the length of 
the gauge bit cones and centre buttons were 
periodically monitored. For the monitored drilled 
formations, we also calculated the rock uniaxial 
compressive strength (UCS), porosity (POR), 
equivalent quartz content (EQC), grain size (AGS), 
circularity factor (CF), and rock abrasive index 
(AB-I), as detailed in Section 2.1. 

2.1 Rock parameters 

Three different locations with the following 
granite rock types which medium feldspar granite, 
coarse muscovite granite, and biotite hornblende 
granite were considered in this study. Twenty-five 
samples were collected using purposive sampling 
techniques according to Etikan and Bala [50] from 
the three locations. 

2.1.1 Determination of average grain size and 
angular factor  

In order to calculate the mean grain size of the 
samples, an observation window or reference 
region was established, as per ISRM [51]. Samples 
were captured under a microscope and the grain 
size was determined according to standard method 
suggested by ISRM. In order to calculate the 
circularity shape factor, Equation (1) was used 
which was proposed by Erosy and Waller [15]. 

푐푖푐푢푙푎푟푖푡푦푓푎푐푡표푟 =
4(퐴푟푒푎)

(푃푒푟푖푚푒푡푒푟)  (1) 

2.1.2 Determination of porosity of rock samples  
Porosity was determined using saturation and 

calliper technique as suggested by ISRM [45]. The 
pore volume and porosity were obtained using 
Equations 2 and 3. 

Vp =  
( Msat  −  Ms)

ρw  (2) 

where ρw is the density of the saturated fluid 
(water), Ms is the grain mass, and Msats is the 
saturated mass. 

Porosity (n) =  
100 Vp

Vb  (3) 

Vp is the pore volume (cm3) and V bis the bulk 
volume (cm3). 

 

2.1.3 Determination of equivalent quartz 
content of rock samples 

The equivalent quartz content (EQC) of the 
samples were determined in accordance with the 
Thuro [52] method; this was calculated by 
multiplying percentage of the mineral present in 
the rock sample with Rosiwal abrasiveness value 
using Equation (4). 

EQC = ∑ 퐴 푅  (%) (4) 

where A is the mineral amount (%), R is the 
Rosiwal abrasiveness (%), and n is number of 
minerals.  

2.1.4 Determination of uniaxial compressive 
strength of selected rocks  

The uniaxial compressive strength of the rock 
samples was determined using 1100 kN 
compression machine. The test procedure was in 
accordance with ISRM [51]. The uniaxial 
compressive strength was determined using 
Equation (5). 

휎 =
퐹
퐴 =

퐹
푊.퐷 (5) 

where:  
휎 represents the uniaxal compressive strength 

measured in MPa, F is the applied peak load in kN, 
W denotes the sample width in mm, and D 
represents the sample height in mm. 

2.1.5 Rock abrasive index  

The abrasiveness index of the rock samples 
collected from three different locations was 
determined. Rock abrasive index was computed 
using Equation (6) proposed by Thuro [52]. 

RAI =    σ ×  EQC    (6) 

where σ is compressive strength (MPa), and EQC 
is the equivalent quartz content (%). 

Each rock property database has numerous data 
points spread out across many rows and columns. 
Therefore, we use the database to construct the 
descriptive statistics shown in Table 2 and Figure 
2. Mean, standard deviation, skewness, kurtosis, 
minimum and maximum skewness, and kurtosis 
are some of the descriptive statistical measures 
utilized in the current study (Equations 7 and 8).  
The skewness of a distribution is a statistical 
indicator of its disproportionality. It is a statistical 
method for determining the extent to which a 
distribution favors the left or right. 
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Skewness =  × ∑ ( )  (7) 

Kurtosis = × ∑ ( )  (8) 

The distribution has a fat left tail, negative 
skewness, and Kurtosis [53] if the number of 
negative returns is much larger than the number of 
positive returns. The distribution is platykurtic if 
and only if the excess kurtosis is negative [53]. 

Table 2. Descriptive statistics of both training and testing database. 
 AB-I UCS POR CF EQC AGS WR 

Training data 
Mean 5646.820 99.474 1.066 0.713 56.283 0.648 0.024 
StDev 1367.560 12.272 0.229 0.072 9.747 0.387 0.007 
N 60.000 60.000 60.000 60.000 60.000 60.000 60.000 
Variance 1870219.736 150.608 0.053 0.005 95.009 0.149 0.000 
Min 4092.800 90.390 0.770 0.620 45.150 0.100 0.013 
Max 7265.700 119.740 1.430 0.861 67.260 1.040 0.037 
Skewness -0.134 1.029 0.436 0.015 -0.158 -0.413 0.316 
Kurtosis -1.784 -0.893 -1.599 -1.300 -1.823 -1.523 -1.172 

Testing data 
Mean 6894.095 109.469 0.879 0.669 63.351 0.458 0.024 
StDev 467.838 12.848 0.044 0.039 3.273 0.279 0.010 
N 60.000 60.000 60.000 60.000 60.000 60.000 60.000 
Variance 218872.623 165.069 0.002 0.002 10.712 0.078 0.000 
Min 6336.600 93.790 0.770 0.621 60.670 0.110 0.013 
Max 7263.170 119.740 0.940 0.702 67.280 0.690 0.040 
Skewness -0.455 -0.456 -0.885 -0.456 0.454 -0.454 0.134 
Kurtosis -2.094 -2.091 1.791 -2.084 -2.093 -2.086 -1.479 

 
Table 1 presents the training and testing database 

including the result of various abrasive index, 
uniaxial compressive strength (UCS in MPa), 
Porosity (POR in %), circuarity factor (CF), 
equivalent quartz content (EQC in %), average 
grain size (AGS in mm), and wear rate (WR in 
mm/m) in the range of 4092.8-7265.7, 119.74-
90.39, 1.43-0.77, 0.86-0.62, 67.26-45.15, 1.04-0.1, 
0.037-0.013, respectively. In Table 1, skewness and 
kurtosis results revealed that the data distribution is 
Platykurtic with high negative returns (see Figure 
2). 

2.2. Model development 

Figure 3 presents the pair wise plot for the dataset 
used in this work. The aim of building a pair wise 

plot was to determine the influential attributes of 
the proposed model input variables on LSF. The 
input and output variables (Table 1) were 
standardized between -1 and 1 using Equation (9) 
[38] to achieve the dimensional consistency of the 
parameters and also eliminate model over-fitting. 

푌푖 =
2(푋푖 − 푋푚푖푛)

(푋푚푎푥 − 푋푚푖푛) − 1 (9) 

where Xmin is the minimum input value in the 
input dataset, Xmax is the maximum input value in 
the input dataset, Di is the input value to be 
normalized, and Yi is the normalized input value 
result [9].  The data preparation process for the 
model development is present in Figure 4.  
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(a) (b) (C) 

   
(d) (e) (f) 

 
Figure 2. Illustration of the frequency distribution of parameters: a. CF, b. AGS, c. AB-I, d. EQC, e. POR, f. 

UCS, g. WR. 
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Figure 3. Pairwise plot of the dataset used in this study. 

 
Figure 4. Shows the proposed model development flow sheet. 

2.2.1. Artificial Neural Nework (ANN) 
In order to attempt to represent the relationship 

between the historical set of model inputs and their 
corresponding outputs, artificial neural network 
(ANN) algorithms learn from the data samples 
supplied to the system and adopt this data to alter 
their weights. The hidden layer, input layer, and 
output layer make up the neural system. Weighted 
joints link each of the three levels. Using Equation 
(10), we can determine the output of each neuron 
layer. Every neuron communicates with its 

neighbours in the layer above it. In contrast, 
interlayer connections do not exist [54]. 

푄 = 푋 × 푤 + 푏 (10) 

The activation of the neuron layer output was 
done using activation functions expressed in 
Equation (11). 

푓(푄) = 푓( 푋 × 푤 + 푏 (11) 
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There have been multiple successful 
implementations of ANN as a modelling tool over 
the years. The artificial neural network (ANN) 
approach-based model was created by 
Bhatawdekar et al. [55] to predict blast-induced 
fly-rock distance based on eight input factors. In 
estimating the number of boulders produced by 
blasts in limestone quarries, Dhekne et al. [56] 
used 300 recorded blasting data points to create an 
ANN model. The mean size of blasts was estimated 
by Amoako et al. using ANN and support vector 
machines [37].  In order to predict the rate at which 
a drill bit will wear out, this research utilized an 
ANN approach with four different neuron 
possibilities. The suggested model made use of 

seventy-five datasets, with eighty percent of the 
data utilized for training and twenty percent used 
for testing. Table 3 displays the results of this 
study's use of two different methods to create eight 
ANN-based models. Both the correlation 
coefficient and the mean square error index were 
used to assess the quality of the models. Figure 5 
depicts the optimal model architecture and training 
performance. With an R-value of 0.76 and an MSE 
of 0.000025 for the training dataset and an R-value 
of 0.74 and an MSE of 0.000026 for the testing 
dataset, respectively, Table 3 demonstrates that the 
Levenberg-Marquardt model with 12 hidden layers 
yielded the best prediction result in the error 
assessment. 

 
Figure 5. Model training parameters and architecture. 

Table 3. Different model ANN structure and performance with wear rate database. 

State 
 Mod 1 Mod 2 Mod 3 Mod 4 

Number of Neurons 4 6 8 12 
Levenberg-Marquardt-ANN 

Training R-value 0.2 0.75 0.66 0.76 
 MSE 0.000057 0.000025 0.000035 0.000025 

Test R-value 0.25 0.69 0.64 0.74 
 MSE 0.0000343 0.0000299 0.000035 0.000026 

BR-ANN 
  Mod 5 Mod 6 Mod 7 Mod 8 

State Number of Neurons 4 6 8 12 
Training R-value 0.22 0.39 0.44 0.65 

 MSE 0.000054 0.000053 0.000055 0.000057 
Test R-value 0.106 0.108 0.105 0.11 

 MSE 0.0000657 0.000057 0.000057 0.000057 
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2.2.2. ANFIS modelling technique 

According to [57], the modelling techniques of 
an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) use fuzzy logic (FL) and artificial neural 
network (ANN) techniques to determine the 
optimal distribution of membership function 
parameters extracted from a data set according to 
given error criterion, thereby mapping the possible 
connections between the input and output data.  
The ANFIS method is distinguished by its hybrid 
nature, adopting the Tagaki-Sugeno-Kang (TSK) 
fuzzy interference system to estimate the optimal 
relationship between membership functions [58], 
and by its use of fuzzy "if-then" rules from the 
Tagakagi and Sugeno fuzzy systems. Hadi and 
Wang [59] point out that there are two different 

fuzzy interference systems strategies that may be 
utilized to create models during training. One of 
them, the Mamdani approach, necessitates the 
adoption of fuzzy rules to connect fuzzy sets to the 
target output dataset. The second strategy, of the 
Sugeno type, does not factor in the output 
membership function or distribution at any point in 
the learning process; rather, it obtains the output 
function by multiplying the input membership 
function by a constant and summing the resulting 
results. Typical ANFIS design is depicted in Figure 
6; it takes in two inputs (N and M) and produces a 
single output (f) using two fuzzy If-then rules. 
Circles and squares stand for the static node and an 
adaptive node, respectively. Symbolized by (12) 
and (13) [26], this is an inference system of the first 
order of the Sugeno type. 

 

Rule 1: If n is A1 and m is B1, then f1 = p1n + q1m + r1 (12) 

Rule 2: If n is A2 and m is B2, then f2 = p2n + q2m + r2 (13) 

 
where n and m are the inputs, f is the output, and 

A1, B1, A2, and B2 are fuzzy sets, 
p1, p2, q1, q2, r1, and r2 are the coefficients of 

the output function that are determined during the 
training. 

 
Figure 6. Adaptive Neuro-fuzzy inference system (ANFIS) working structure. 

Combining hybrid and backward propagation 
optimization techniques, the Adaptive Neuro-
Fuzzy Inference System (ANFIS) was used to 
generate a model of a 6:1 structure. First, we 
utilized the MATLAB-based ANFIS tool to design 
the ANFIS network by specifying all of the model 

parameters. The two optimizations' experimental 
results were then evaluated and compared to those 
generated by ANN and LSTM models. The 
training interface during model creation is depicted 
in Figure 7. Parameters and guidelines for ANFIS 
training are shown in Table 4. 
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Figure 7. ANFIS training structure and learning rue interface. 

Table 4. ANFIS Training parameters and node 
structure. 

Number of nodes 1503 
Number of linear parameters 729 
Number of nonlinear parameters 54 
Total number of parameters 783 
Number of training data pairs 75 
Number of checking data pairs 6 
Number of fuzzy rules 729 

 

2.2.3. Long Short–Term Memory (LSTM) for 
prediction of bit wear rate 

The use of recurrent neural networks (RNNs) has 
become commonplace in studies that focus on 
sequential data types [60]. According to Ghatak 
and Ghatak explanation, RNNs are made up of 
sigma cells or “tanh” cells that are unable to learn 
the pertinent information of input data when the 
input gap is significant [61]. To complement the 
problem of long-term dependencies in RNN, the 
long short-term memory (LSTM) accompanied 
with gate functions, as shown in Figure 8, were 
introduced into the cell structure. Since its 
inception, the LSTM has been responsible for 
nearly all of the impressive achievements based on 
RNNs. Recently, the used of deep learning as tool 
for solving engineering has shifted its attention to 
the LSTM. Wang developed an earthquake 
prediction model based on spatio-temporal data 

mining using LSTM with two-dimensional input 
approach [62]. In the process of developing LSTM 
model for learning bit wear relation with rock 
properties, an input gate was built using Equation 
(14) for decision-making regarding the position of 
each data parameters “푥 ” and the storage decision 
in the cell state. 

푃 = 휎(푊ℎ +  푊ℎ + 푏 ) (14) 

where 푃  is the input gate, and 푊  and 푏  
represent the input weight and bias of the input 
gate, respectively.  

The model output memory block ℎ  (see Figure 
8) was constructed using the output gate 표 , with 
an interlinked tanh layer, as expressed in Equations 
(15) and (16). 

표 = 휎(푊 ℎ + 푊 푥 + 푏 )  (15) 

ℎ = 표 ∗ tanh (푐 ) (16) 

where ℎ and ℎ  indicates the input weight and 
bias of the output gate. 

Updating the time series after each state, a new 
data point feed to the network at each time instant 
t; the sequences forget gate response is computed 
using Equation 17. 

푓 = 휎(푊 ℎ + 푊 ℎ + 푏 ) (17) 
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Figure 8. A typical architecture of a long short-term memory (LSTM) cell [63]. 

where 푊  and 푊  represent the input weight and 
bias of the forget gate, respectively, 푓  denotes the 
forget gate, and ℎ  represents the output block 
memory.  

In order to create the LSTM model suggested 
currently, the authors relied on train data to test a 
data ratio of 80:20. According to [64-65], adaptive 
optimization algorithms like Adam and RMSprop 
outperform stochastic gradient descent (SGD) in 
terms of optimal performance in a number of real-
world applications. For the LSTM model training 

procedure, we decided on the Adam optimizer-
solving technique. 

3. Results and Discussion 
3.1. Development of bit wear rate prediction 
model 

In the present research work, ANN, ANFIS-
hybrid, ANFIS-BP, and Adam-LSTM approaches 
have been developed, trained, tested, analyzed, and 
designated by MD1, MD2, MD3, and MD4. The 
performance of these models has been measured 
(R2), as shown in Figures 9 and 10. 
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Figure 9. Relationship between predicted and measured drill bit wear rate (training dataset). 

 
Figure 10. Relationship between predicted and measured drill bit wear rate (test dataset). 

Figures 9 and 10 demonstrate that the prediction 
evaluation for model MD4 has gained higher 
performance (testing = 0.87, training = 0.88) than 
other proposed conventional soft computing 
models that is ANN, hybrid-ANFIS, and BP-
ANFIS. 

 

3.2. Model error analysis result 
The performance of the proposed models was 

evaluated using five prediction error evaluation 
indices errors: root mean square error (RMSE), 
value account for (VAF), performance index (PI), 
average absolute error (AAE), and Evaluation 
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Ratio Index (ERI). The mathematical formulation 
of the performance indicators is as follows: 

RMSE= 
∑ ( )  (18) 

VAF= 1− ( )
( )

×100 (19) 

푃퐼 =  푅 + 푉퐴퐹
100 − 푅푀푆퐸 (20) 

AAE= ∑ / / (21) 

퐸푅퐼 =  푉퐴퐹 + (푅 /100) − 퐴퐴퐸 (22) 

where 훼 푖푠 measured, 휃 is predicted, and G is the 
number of data sample. 

Table 5. Error analysis results. 
Models/Performance R² train R² test AAE train AAE test RSME train RSME test VAF train VAF test 

MD1 0.858 0.77 0.17679 0.13190 0.00073 0.00130 0.743 0.921 
MD2 0.86 0.82 0.12913 0.11171 0.00057 0.00108 0.760 0.946 
MD3 0.85 0.814 0.17242 0.26574 0.00081 0.00159 0.696 0.878 
MD4 0.88 0.871 0.11443 0.09289 0.00046 0.00072 0.827 0.975 

 PI-train PI-Test ER-train ERI-test     

MD1 0.865 0.778 0.575 0.797     
MD2 0.867 0.828 0.640 0.842     
MD3 0.856 0.821 0.532 0.621     
MD4 0.888 0.880 0.721 0.891     

ANN (MD1), ANFIS-Hybrid (MD2), ANFIS-BR (MD3), LSTM-Adam (MD4) 
 

The results of the error study for models MD1, 
MD2, MD3, and MD4 are shown in Table 5. 
During the testing process, it was seen that the 
MD4 model predicted the drill bit wear rate (WR) 
with the least amount of error, with an AAE of 
0.0929 mm/m and an RSME of 0.000719 mm/m. 
Also, a comparison of hybrid-ANFIS and back-
propagation ANFIS models shows that hybrid 
algorithm-based ANFIS model MD2 performs 
better than back-propagation algorithm-based 
ANFIS model MD3, which has the highest testing 
performance (AAE = 0.1117 mm/m, RSME = 
0.00108 mm/m, VAF = 0.95, PI = 0.83, ER = 0.84, 
R2 = 0.82). Also, the performance and accuracy of 
the deep learning-based models, ANN (model 
MD1) and Adam-LSTM (model MD4) were 
compared. Comparing the performance of models 
MD1 and MD4 show that the Adam-LSTM model 
is better at both training (R2 = 0.88) and testing (R2 
= 0.871) at predicting the rate of drill bit wear when 
drilling into the granite rock. Based on a review of 
how well the models work and how accurate they 
are; it has been found that the adaptive moment 
estimation-based LSTM model MD4 is the best 

model for figuring out how quickly drilling bits 
wear out while drilling. 

4. Model Performance Score Analysis 
For a better understanding and analysis, the data 

have been turned into a picture. In this part, we 
talked about the score analysis and present the 
results. Statistical analysis was used in the score 
analysis to compare how well the soft computing 
models work. In this study, the model for choosing 
the best value for each performance indicator was 
given a score of n, where n is the amount of 
performance indicators that were observed. The 
higher and lower values of the performance 
indicators in the score analysis show which training 
and testing cases for the models were better and 
which ones were worse. The final model score was 
found by adding up the performance indicator 
scores from both the training and testing stages. 
The results of the score analysis for the training and 
testing performances of the soft computing models 
MD1, MD2, MD3, and MD4 are shown in Table 6 
and Figure 11 (a-b). 

Table 6. Score analysis result. 
Models/ 

Performance 
R² 

train 
R² 
test 

AAE 
Train 

AAE 
Test 

RSME 
Train 

RSME 
Test 

VAF 
Train 

VAF 
Test 

PI-
train 

PI-
Test 

ER-
train 

ER-
test 

Train 
Score 

Test 
Score 

MD1 2 1 1 2 2 2 2 2 2 1 2 2 11 10 
MD2 3 3 3 3 3 3 3 3 3 3 3 3 18 18 
MD3 1 2 2 1 1 1 1 1 1 2 1 1 7 8 
MD4 4 4 4 4 4 4 4 4 4 4 4 4 24 24 
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(a) (b) 

Figure 11. Visualization of  score analysis result. a. training, b. testing. 

5. Conclusions 

This research work was conducted for the 
determination of best performing model for 
estimating drill bit wear when boring into the rock 
at quarries. This was achieved by creating four soft 
computing models based on deep and hybrid 
learning techniques. Three different types of 
granite quarries contributed 75 data points used to 
build, train, and evaluate soft computing models. 
The novel error estimation index, together with 
four additional convective performance estimators, 
was used to assess the models' accuracy. The 
results of the performance comparison revealed 
that all three methods—the ANN model (MD1), 
the hybrid algorithm-based ANFIS (MD2), and the 
LSTM (MD4)—are very good at estimating the 
drill bit wear rate during blast hole drilling. The 
Adam-LSTM model MD4 had shown to have 
superior performance and accuracy compared to 
the other models.  Finally, Adam-LSTM, an 
optimal performance model introduced here 
forecast the wear rate of a drill bit. Drilling and 
mining experts can use this work to better predict 
the pace at which drill bits will wear while creating 
blast holes. It is also submitted that the Adam-
LSTM model can be utilized to address a variety of 
deviation problems associated with drilling. 
Potential future work in this area could include 
incorporating gradient-based optimization, black 
hole optimization, and the Hunger games search 
strategy into the RNN framework. Finally, to the 
best of the author's knowledge, this is the first time 
that a unified database has been utilized for 
predicting the rate at which a drill bit will wear out. 
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  چکیده:

مدل را  نیمطالعه قرار است بهتر نیا ن،ی. بنابراهستند درگیر گریکدیمصرف آن با  زانیم نیمته و همچنسر یخراب زانیم قیدق نییمعدن در تع رانیاپراتورها و مد
 فه،یا-لهیسنگ در ا يارحف نیمته در حسر يهادکمه یسرعت فرسودگ ن،یکند. همچن دایسنگ پ يحفار نیمته در حسردکمه  شیسا زانیم ینیبشیپ يبرا

 یقیتطب يفاز یاستنتاج عصب ستمی)، سANN( یمصنوع یقرار گرفت. شبکه عصب یمورد بررس هیجرین ،یجنوب غرب و،یاو التیا بادان،یاوسون، و ا التیاوسوگبو، ا
)ANFISبر حافظه بلند مدت کوتاه مدت ( یمبتن نیماش يریادگی يکردهای) و روLSTMنیتخم يبرا ییهامدل جادیا يبرا یقیتطب يالحظه نیبر تخم ی) مبتن 

 و سنگ یشیتخلخل و خواص سا ،يتک محور يکوارتز معادل، مقاومت فشار ياستفاده شد. اندازه دانه سنگ، محتوا يارهیدا بیبر اساس ضر تیب شینرخ سا
که  دهدیعملکرد نشان م لیو تحل هیشد. تجز يریاندازه گ گرید یو چهار برآوردگر عملکرد همرفت دیجد يخطا نیشاخص تخم کیز ها با استفاده اعملکرد مدل

بهبود  يتوان برایارائه شده را م LSTM يهامدل ن،ی. بنابراکندیعمل م گرید يهااز مدل ترقیبهتر و دق یقیبرآورد گشتاور تطب تمیبر الگور یمبتن LSTMمدل 
  استفاده کرد. یواقع يهاتیدر موقع يحفار اتیعمل

  .حافظه کوتاه مدت بلند مدت ،يارهیشاخص دا ت،یگران ت،یب شینرخ سا ،يحفار کلمات کلیدي:
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