Document Type : Original Research Paper


1 Faculty of Mining Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea.

2 School of Science and Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea.



Scheelite ore with heavy and magnetic minerals can be generally concentrated using shaking table centered gravity-magnetic processing. When magnetic field is formed by fixing magnetic bars on which permanent magnets are arranged at a constant interval, above the table desk, heavy scheelite particles can be concentrated by gravity, whereas heavy magnetic mineral particles can be floated off like light mineral particles by upward magnetic force. In this paper, concentration of scheelite and removal of pyrrhotite floated by magnetic force was simulated using CFD for the sample containing 1% scheelite and 2% pyrrhotite, and compared with the experiment. As a result, WO3 grade and separation efficiency of concentrate were 65.3% and 80.1%, respectively, in the new table equipped with magnetic bars, whereas 28.4% and 76.5%, respectively, in conventional table. The magnetic field formed by fixing magnetic bars above table could be significant in simplifying the sequential tabling-magnetic separation process and reducing the loss of scheelite.


Main Subjects

[1]. Yang , X. (2018). Beneficiation studies of tungsten ores–a review. Minerals Engineering, 125, 111–119.
[2]. Schmidt, S. (2012). From Deposit to Concentrate: The Basics of Tungsten Mining Part 2: Operational Practices and Challenges. Austria: Wolfram Bergbau & Hütten AG, 22.
[3]. Lassner, E., & Schubert, W. D. (1999). Tungsten: properties, chemistry, technology of the elements, alloys, and chemical compounds. Springer Science & Business Media.
[4]. Mohammadnejad, S., Noaparast, M., Hosseini, S., Aghazadeh, S., Mousavinezhad, S. & Hosseini, F. (2018). Physical methods and flotation practice in the beneficiation of a low grade tungsten-bearing scheelite ore. Russ. J. Non-Ferr. Met. 59, 6–15.
[5]. Hamid, S. A., Alfonso, P., Oliva, J., Anticoi, H., Guasch, E., Carlos Homann Sampaio, Garcia-Vallès, M. & Escobet, T. (2019). Modeling the Liberation of Comminuted Scheelite using Mineralogical Properties. Minerals, 9, 536.
[6]. Anticoi, H., Guasch, E., Hamid, S. A., Oliva, J., Alfonso, P., Garcia-Valles, M. & Peña-Pitarch, E. (2018). Breakage function for HPGR: Mineral and mechanical characterization of tantalum and tungsten ores. Minerals8(4), 170.
[7]. Miettinen, T., Ralston, J. & Fornasiero, D. (2010). The limits of fine particle flotation. Minerals Engineering, 23 (5), 420–437.
[8]. Zuo, Z. & Gao, Y. (2016). Research advances of the processing technologies for the wolframite-scheelite mixed ore in China. China Tungsten Industry, 31, 253(03), 41-45 (+54).
[9]. Huang et al., (2016). Recovery Technology of Poly-metallic Sulfide Ore in China's Tungsten Mines. China Tungsten Industry, 31, 251(01), 58-62+73.
[10]. Becker, M. (2010). The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Minerals Engineering, 23, 1045-1052.
[11]. Tarling, D.H. & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. Chapman & Hall, London, pp. 5-217.
[12]. O’Reilly, W. (1984). Rock and Mineral Magnetism. Blackie & Son, Ltd., Glasgow and London.pp.3-25.
[13]. Wills, B. A. (2016). Mineral Processing Technology Eighth Edition. Mc Gill University, Montreal, Canada, pp. 233-235.
[14]. Carvalho, M. T., Agante, E., & Durão, F. (2007). Recovery of PET from packaging plastics mixtures by wet shaking table. Waste Management, 27(12), 1747-1754.
[15]. Sivamohan, R., & Forssberg, E. (1985). Principles of tabling. International Journal of Mineral Processing, 15(4), 281-295.
[16]. Manser, R. J., Barley, R. W. & Wills, B. A. (1991). The Shaking Table Concentrator - the influence of operating conditions and table parameters on mineral separation-the development of a mathematical model for normal operating conditions. Minerals Engineering, 4, 369-381.
[17]. Tucker, P., Lewis, K. A., & Wood, P. (1991). Computer optimisation of a shaking table. Minerals Engineering4(3-4), 355-367.
[18]. Razali, R., & Veasey, T. J. (1990). Statistical modelling of a shaking table separator part one. Minerals Engineering3(3-4), 287-294.
[19]. Svoboda, J. (2004). Magnetic techniques for the treatment of materials. Springer Science & Business Media.
[20]. Martinez, E. (1986). The gravity-magnetic separator: A new development for recovery of weakly magnetic minerals. In: Advances in Mineral Processing: A half-century of progress in application of theory to practice. March, New Orleans, La., USA, Chapter 32, pp. 545.
[21]. Lin, I. J., Knish-Bram, M., & Rosenhouse, G. (1997). The benefication of minerals by magnetic jigging, Part 1. Theoretical aspects. International journal of mineral processing50(3), 143-159.
[22]. Lin, I. J., Krush-Bram, M., & Rosenhouse, G. (1998). The benefication of minerals by magnetic jigging-Part 1: Theoretical aspects. International Journal of Mineral Processing54(1), 29-44.
[23]. Lin, I. J., Krush-Bram, M., & Rosenhouse, G. (1998). The benefication of minerals by magnetic jigging, Part 3. The bed effects and the multifrequency magnetic jig. International journal of mineral processing55(1), 61-72.
[24]. Torno, S., Toraño, J., Gent, M., & Menéndez, M. (2011). A study of hydrocyclone classification of coal fines by CFD modeling and laboratory tests. Mining, Metallurgy & Exploration28, 102-109.
[25]. Wan, G., Sun, G., Xue, X., & Shi, M. (2008). Solids concentration simulation of different size particles in a cyclone separator. Powder Technology183(1), 94-104.
[26]. Viduka, S., Feng, Y., Hapgood, K., & Schwarz, P. (2013). CFD–DEM investigation of particle separations using a sinusoidal jigging profile. Advanced Powder Technology24(2), 473-481.
[27]. Xia,Y., Peng, F. F., and Wolfe, E.(2007). CFD simulation of fine coal segregation and stratification in jigs. J. Miner. Process. 82, 164–176.
[28]. Rudman, M., Paterson, D. A., & Simic, K. (2010). Efficiency of raking in gravity thickeners. International Journal of Mineral Processing95(1-4), 30-39.
[29]. Fatahi,M.R. and Farzanegan, A.(2018). An analysis of multiphase flow and solids separation inside Knelson Concentrator based on four-way coupling of CFD and DEM simulation method. Minerals Engineering. 126, 130–144.
[30]. Kannan, A. S., Jareteg, K., Krieger Lassen,N.C., Carstensen, J. M., Edberg Hansen,M.A., Dam, F. and Sasic, S.(2017). Design and performance optimization of gravity tables using a combined CFD-DEM framework. Powder Technology. 318, 423-440.
[31]. Gülsoy, Ö. Y., & Gülcan, E. (2019). A new method for gravity separation: Vibrating table gravity concentrator. Separation and Purification Technology211, 124-134.
[32]. Pavanello, P., Carrubba, P., & Moraci, N. (2018). The determination of interface friction by means of vibrating table tests. Geotextiles and Geomembranes46(6), 830-835.
[33]. Mohanty,S., Das, B. and Mishra, B.K.(2011). A preliminary investigation into magnetic separation process using CFD. Minerals Engineering. 24. 1651–1657.
[34]. Derkach, V. G. (1966). Special methods for the beneficiation of minerals. Nedra, Moscow (in Russian).
[35]. Walmer, M. S., Chen, C. H., & Walmer, M. H. (2000). A new class of Sm-TM magnets for operating temperatures up to 550/spl deg/C. IEEE Transactions on Magnetics36(5), 3376-3381.
[36]. Schulz, N. F. (1970). Separation Efficiency, Society of Mining Engineer. In AIME (Vol. 247, pp. 81-87).