[1]. Plinninger, R.J. and Restner, U. (2008). Abrasiveness testing, quo vadis? - A commented overview of abrasiveness testing methods. Geomechanik und Tunnelbau. 1, 61–70.
[2]. Köhler, M., Maidl, U., and Martak, L. (2011). Abrasiveness and tool wear in shield tunneling in soil. Geomechanik und Tunnelbau, 36–53.
[3]. Zum Gahr K., H. (1987). Microstructure and wear of materials (Vol. 10). Elsevier, Rotterdam.
[4]. Nilsen, B., Dahl, F., Holzhäuser, J., and Raleigh, J. (2006a). Abrasivity of soils in TBM tunneling. Tunnels Tunneling International. (March), 36–38.
[5]. Nilsen, B., Dahl, F., Holzhäuser, J., and Raleigh, J. (2006b). Abrasivity testing for rock and soils. Tunnels Tunneling International. (April), 47–49.
[6]. Thuro, K. and Käsling, H. (2009). Classification of the abrasiveness of soil and rock. Geomech. Tunnel. 2 (2), 179–188.
[7]. Thuro, K., Singer, J., Käsling, H., and Bauer, M. (2007). Determining abrasivity with the LCPC test. In: Proceedings of the 1st Canada – U.S. Rock Mechanics Symposium. ARMA-07-103.
[8]. Plinninger, R., Käsling, H., Thuro, K., and Spau, G. (2003). Testing conditions and geo-mechanical properties influencing the CERCHAR abrasiveness index (CAI) value. International Journal Rock Mechanics Mining Sciences 40 (2), 259–263.
[9]. Amoun, S., Sharifzadeh, M., Shahriar, K., and Rostami, J. (2015). Soil abrasiveness for EPB-TBM along Tehran metro tunnel line 7, Iran. In SEE Tunnel: Promoting Tunneling in South East European Region: 41st General Assembly and World Tunnel Congress of International Tunneling and Underground Space Association ITA-AITES. 22-28.
[10]. Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J., and Tarigh Azali, S. (2017). Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion. Tunneling and Underground Space Technology 61, 233–246.
[11]. Nilsen, B., Dahl, F., Raleigh, P., and Holzhäuser, J. (2007). The new test methodology for estimating the abrasiveness of soils for TBM tunneling. In: Proceedings of the Rapid Excavation and Tunneling Conference (RETC), 104–106.
[12]. Gwildis, U.G., Sass, I., Rostami, J., and Gilbert, M.B. (2010). Soil abrasion effects on TBM tunneling. In: ITA AITES World Tunnel Congress, Vancouver, British Columbia, Canada.
[13]. Shinouda, M.M., Frank, G., and Hauser, G. (2009). Planning and preparation for tunneling at Brightwater west. In: Proceedings Rapid Excavation and Tunneling Conference, Las Vegas, Nevada.
[14]. Moammeri, H. and Tarigh Azali, S. (2010). Taking Abrasive Action. World Tunneling, 24–27.
[15]. Tarigh Azali, S. and Moammeri, H. (2012). EPB-TBM tunneling in abrasive ground, Esfahan Metro Line 1. In: Phienwej, N., Boonyatee, T. (Eds.), ITA-AITES World Tunnel Congress (WTC), Bangkok, Thailand.
[16]. Grødal, C., Equey, S., Armada, S., and Espallargas, N. (2012). Effect of soil and rock composition on the wear process of cutter tool steel used in tunnel boring machines. In: Presented at the NordTrib Conference, Trondheim.
[17]. LCPC (1990). LCPC Abrasivemeter Standard. Normalisation Francaise, 18–579.
[18]. Alavi Gharahbagh, E., Rostami, J., and Palomino, A.M. (2011). New soil abrasion testing method for soft ground tunneling applications. Tunneling and Underground Space Technology Journal 26 (5), 604–613.
[19]. Rostami, J., Alavi Gharahbagh, E., Palomino, A.M., and Mosleh, M. (2012). Development of soil abrasivity testing for soft ground tunneling using shield machines. Tunneling and Underground Space Technology Journal (28), 245–256.
[20]. Barzegari, G., Uromeihy, A., and Zhao, J. (2013). A newly developed soil abrasion testing method for tunneling using shield machines. Quarterly Journal of Engineering Geology and Hydrogeology 46, 63–74.
[21]. Jakobsen, P.D. and Lohne, J. (2013). Challenges of methods and approaches for estimating soil abrasivity in soft ground TBM tunneling. Wear 308 (1–2), 166–173.
[22]. Kupferle, J., Rottger, A., Theisen, W., and Alber, M. (2016). The RUB Tunneling Device–A newly developed test method to analyze and determine the wear of excavation tools in soils. Tunneling and Underground Space Technology, 1-6.
[23]. Wei, Y., yang, Y., and Tao, M. (2018). Effects of gravel content and particle size on abrasivity of sandy gravel mixtures. Engineering geology, 26-35.
[24]. Wei, Y., Zheng, X., Su, F., Li, M., Li, F., and Yang, U. (2018). Evaluating of cutting tool wear of earth pressure balance shield in granular soil based on laboratory test. Testing and evaluation, 927-941.
[25]. Wei, Y., Yang, U., Tao, M., Wang, D., and Jie, Y. (2020). Earth pressure balance shield tunnel in sandy gravel deposits: a case study of applications of soil conditioning. Engineering geology and environment, 5013-5030.
[26]. ASTM D422-63, (2007). Standard test method for particle-size analysis of soils (With drawn 2016). ASTM International, West Conshohocken, PA.
[27]. Das, B. M. and Sobhan, K. (2002). Principles of geotechnical engineering, USA. Eds. Brooks/Cole-Thomson Learning Inc.
[28]. Hashemnejad, H., Ghafoori, M., Lashkaripour, G.R., and Tariq, A.S. (2012). Effect of geological parameters on soil Abrasivity using LCPC machine for predicting LAC. International Journal of Emerging Technology and Advanced Engineering (2), 71–75.
[29]. Hashemnejad, A., Ghafoori, M., and Tarigh, A.S. (2016). Utilizing water, mineralogy and sedimentary properties to predict LCPC abrasivity coefficient. Bulletin of Engineering Geology and the Environment 75, 841–851.