Document Type : Original Research Paper

Authors

1 Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran, Corresponding author

2 Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran

3 Faculty of Engineering, Malayer University, Malayer, Iran

Abstract

Mineral prospectivity mapping (MPM) is a multi-staged process aiming at delimiting exploration targets. Experts’ knowledge is an indispensable component of MPM, and might be required (i) while translating signature features of ore-forming processes into a suite of maps, namely evidence layers, (ii) while assigning weights to evidence layers, and (iii) while interpreting maps of mineral prospectivity. The latter is important as MPM integrates weighted evidence layers into a continuous map of mineral prospectivity. Although high values in prospectivity maps pertain to prospective zones, maps of mineral prospectivity are devoid of interpretation. One, therefore, should adopt a classification scheme to categorize or prioritize exploration targets from a map of mineral prospectivity. In addition to previous frameworks applied for interpreting maps of mineral prospectivity, this paper introduces an optimization-based framework, the Gray Wolf Optimizer (GWO) algorithm, for addressing this problem. In addition to GWO, we also used percentile maps of 85, 90, and 95% for interpreting the results of our prospectivity model. These methods were applied to a fuzzy-based map of mineral prospectivity derived for the Alut area, NW Iran. Overall, the map derived by the GWO has involved more Au occurrences, 66% of explored Au occurrences by GWO versus 33% by percentile maps; also introduces more targets as high-potential zones of Au mineralization that may be neglected by traditional methods like percentile maps.

Keywords

Main Subjects

[1]. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[2]. Afzal, P., Yousefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10(3), 705-715.
[3]. Yousefi, M., Kreuzer, O. P., Nykänen, V., and Hronsky, J. M. (2019). Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[4]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., and Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
[5]. Seyedrahimi-Niaraq, M. and Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[6]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., and Mihalasky, M. J. (2021). Data analysis methods for prospectivity modeling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[7]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., and Mihalasky, M. J. (2022). Information value-based geochemical anomaly modeling: A statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177.
[8]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., and Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[9]. Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, M., and Daneshvar Saein, L. (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling., Geopersia, 12(1), 191-199.
[10]. Yousefi, M. and Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[11]. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., and Yousefi, M. (2020). A fractal-based outranking approach for integrating geochemical, geological, and geophysical data. Bollettino Di Geofisica Teorica Ed Applicata, 61(4), 555-588.
[12]. Yousefi, M., Barak, S., Salimi, A., and Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018. doi: 10.22044/jme.2023.13160.2398.
[13]. Mohammadpour, M., Abedi, M., and Bahroudi, A. (2020). Mineral prospectivity mapping of porphyry Cu deposit using VIKOR method, Earth Observation and Geomatics Engineering, 4(2), 148-168.
[14]. Afzal, P., Yasrebi, A. B., Saein, L. D., and Panahi, S. (2017). Prospecting of Ni mineralization based on geochemical exploration in Iran. Journal of Geochemical Exploration, 181, 294-304.
[15]. Mokhtari, A. R., Rodsari, P. R., Fatehi, M., Shahrestani, S., and Pournik, P. (2014). Geochemical prospecting for Cu mineralization in an arid terrain-central Iran. Journal of African Earth Sciences, 100, 278-288.
[16]. Mahdiyanfar, H. and Seyedrahimi-Niaraq, M. (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modeling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), geochem2022-015.
[17]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., and Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran, Minerals, 12(6), 689.
[18]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., and Mokhtari, A. R. (2023). Application of geochemical structural methods to determine lead-contaminated areas related to mining activities. Journal of Analytical and Numerical Methods in Mining Engineering, 13(34), 41-55.
[19]. Barak, S., Imamalipour, A., and Abedi, M. (2023). Application of Fuzzy Gamma Operator for Mineral Prospectivity Mapping, Case Study: Sonajil Area. Journal of Mining and Environment, 14(3), 981-997. doi: 10.22044/jme.2023.12954.2352.
[20]. Derrac, J., García, S. and Molina, D. (2011). A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Journal of Swarm and Evolutionary Computation. 1, 3–18.
[21]. Cui, Z. H. and Gao, X. Z. (2012). Theory and applications of swarm intelligence. Journal of Neural Computing and Applications. 21, 205–206.
[22]. Faris, H., Aljarah, I., Al-Betar, M. A., and Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. Neural computing and applications, 30, 413-435.
[23] Parpinelli, R. S. and Lopes, H. S. (2011). New inspirations in swarm intelligence: a survey. Journal of International Journal of Bio-Inspired Computation, 3, 1–16.
[24] Leboucher, C., Chelouah, R., Siarry, P., and Le Ménec, S. (2012). A swarm intelligence method combined to evolutionary game theory applied to the resource’s allocation problem. International Journal of Swarm Intelligence Research (IJSIR), 3(2), 20-38.
[25]. Zhang, Z., Long, K., Wang, J., and Dressler, F. (2013). On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys & Tutorials, 16(1), 513-537.
[26]. Sulaiman, M. H., Mustaffa, Z., Mohamed, M. R., and Aliman, O. (2015). Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Applied Soft Computing, 32, 286-292.
[27]. Li, S. Y., Wang, S. M., Wang, P. F., Su, X. L., Zhang, X. S., and Dong, Z. H. (2018). An improved grey wolf optimizer algorithm for the inversion of geoelectrical data. Acta Geophysica, 66(4), 607-621.
[28]. Nadimi-Shahraki, M. H., Taghian, S., and Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.
[29]. Afzal, P., Ghasempour, R., Mokhtari, A. R., and Haroni, H. A. (2015). Application of concentration-number and concentration-volume fractal models to recognize mineralized zones in North Anomaly iron ore deposit, Central Iran. Archives of Mining Sciences, 60(3).
[30]. Mahdiyanfar, H. and Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[31]. Tolouei, K., Moosavi, E., Tabrizi, A. H. B., Afzal, P., and Bazzazi, A. A. (2020). Improving the performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms. J. Cent. South Univ, 27, 2479-2493.
[32]. Almasi, A., Yousefi, M., and Carranza, E. J. M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91, 1066-1080.
[33]. Yousefi, M., Yousefi, S., and Kamkar Rouhani, A. G. (2023). Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting. International Journal of Mining and Geo-Engineering, 57-3,251-258.
[34]. Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen, K., Cook, N., and Skyttä, P. (2017). Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, Northern Finland. Natural Resources Research, 26(4), 571-584.
[35]. Ricou, L.E. (1974). Letude geologiqes de la region de neyriz (Zagros Iraniaen) et levolution structuraldes zagride. These Universite, Paris, 300.
[36]. Stampfli, G. M. and Borel, G. D. (2004). The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas. The Mediterranean region from crust to mantle (pp. 53-80). Springer, Berlin, Heidelberg.
[37]. Omrani, J. and Khabaznia, A, R. (2003). Geological map of Alut, Scale: 1000000, Geological survey and mineral Exploration of Iran.
[38]. Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences, 94(3), 401-419.
[39]. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., and Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725.
[40]. Alavi, M. (1980). Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, 8(3), 144-149.
[41]. Berberian, M. and King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265.
[42]. Gansser, Augusto (1981). The geodynamic history of the Himalaya. Zagros Hindu Kush Himalaya Geodynamic Evolution 3: 111-121.
[43]. Mohajjel, M., Fergusson, C. L., and Sahandi, M. R. (2003). Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), 397-412.
[44]. Mohajjel, M. and Fergusson, C. L. (2014). Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56(3), 263-287.
[45]. Stampfli, G. M. and Kozur, H. W. (2006). Europe from the Variscan to the Alpine cycles. Memoirs-Geological Society of London, 32, 57.
[46]. Berberian, Manuel (1981). Active faulting and tectonics of Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution 3: 33-69.
[47]. Hassanzadeh, J. and Wernicke, B. P. (2016). The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics, 35(3), 586-621.
[48]. Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., Shang, C. K., and Abedini, M. V. (2010). Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39(6), 668-683.
[49]. Azizi, H. and Stern, R. J. (2019). Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova, 31(5), 415-423.
[50]. Hunziker, D., Burg, J. P., Bouilhol, P., and von Quadt, A. (2015). Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics, 34(3), 571-593.
[51]. Morley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., and Kazemi, H. (2009). Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area. Geosphere, 5(4), 325-362.
[52]. Francois, T., Agard, P., Bernet, M., Meyer, B., Chung, S. L., Zarrinkoub, M. H., and Monie, P. (2014). Cenozoic exhumation of the internal Zagros: first constraints from low-temperature thermochronology and implications for the build-up of the Iranian plateau. Lithos, 206, 100-112.
[53]. Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R., and Chamberlain, C. P. (2010). Late Miocene climate variability and surface elevation in the central Andes. Earth and Planetary Science Letters, 290(1-2), 173-182.
[54]. Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T., and Hsü, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1), 119-181.
[55]. Vincent, S. J., Allen, M. B., Ismail-Zadeh, A. D., Flecker, R., Foland, K. A., and Simmons, M. D. (2005). Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geological Society of America Bulletin, 117(11-12), 1513-1533.
[56]. Ghazi, javad mehdipour, and Mohssen Moazzen (2015). Geodynamic evolution of the Sanandaj-Sirjan zone, Zagros orogen, Iran. Turkish Journal of Earth Sciences 24.5: 513-528.
[57]. Dilek, Y., Imamverdiyev, N., and Altunkaynak, Ş. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4-6), 536-578.
[58]. Maghsoudi, Abbas “Gold deposits and indices of Iran”, book, 2004.
[59]. Hosseini, S. A., Afzal, P., Sadeghi, B., Sharmad, T., Shahrokhi, S. V., and Farhadinejad, T. (2015). Prospection of Au mineralization based on stream sediments and lithogeochemical data using multifractal modeling in Alut 1: 100,000 sheet, NW Iran. Arabian Journal of Geosciences, 8(6), 3867-3879.
[60]. Mohammadpour, M., Abedi, M., Rahimopor, Gh., Jozanikohan, G., and Khalifiani, F. (2019). Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging, Journal of Geochemical Exploration, 200, 13-26. https://doi.org/10.1016/j.gexplo.2019.01.018.
[61]. Ahmadi, F. and Mohamadpour, M. (2018). Geochemical studies of stream sediment to determine the shear zone-related gold mineralization (Case study of Alut area in Kurdistan province). Iranian Journal of Environmental Geology, 12(44), 19-35.
[62]. Aliyari, Farhang, Ebrahim Rastad, and Mohammad Mohajjel (2012). Gold Deposits in the Sanandaj–Sirjan Zone: Orogenic Gold Deposits or Intrusion‐Related Gold Systems?  Resource Geology 62.3: 296-315.
[63]. Heidari, S. M., Afzal, P., and Sadeghi, B. (2022). Miocene tectonic-magmatic events and gold/poly-metal mineralizations in the Takab-Delijan belt, NW Iran. Geochemistry, 125944.
[64]. Rashidnezhad, O. N., Emami, M. H., Sabzehei, M., Pique, A., Rastad, E., Bellon, H., and Juteau, T. (2002). Metamorphic and magmatic events of the muteh gold mine (Northeast Golpayegan).
[65]. Kouhestani, H. (2005). Geology, mineralogy, geochemistry and fabrics of gold mineralization in Chah-Bagh shear zones at Muteh mining area (southwest of Delijan, Esfahan province): Unpublished MSc thesis, Tehran, Iran, University of Tarbiat Modares, 222 p.
[66]. Moritz, R., Ghazban, F., and Singer, B. S. (2006). Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, Western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen. Economic geology, 101(8), 1497-1524.
[67]. Rastgoo Moghaddam, G. R., Rastad, E., Rashid Nejad Omran, N., and Mohajel, M. O. H. A. M. M. A. D. (2008). Gold Mineralization in Ductile–Brittle and Brittle Shear Zones, Zartorosht Deposits, Sanandaj-Sirjan Zone, Southwest of Sabzevaran. Scientific Quarterly Journal of Geosciences, 17(68), 108-129.
[68]. Aliyari, F., Rastad, E., and Zengqian, H. (2007). Orogenic gold mineralization in the Qolqoleh Deposit, Northwestern Iran. Resource Geology, 57 (3), 269–282.
[69]. Aliyari, F., Rastad, E., and Chen, Y. (2008). Fluid inclusion characteristics of the Qolqoleh Gold Deposit, Northwestern Iran. 33rd international geological conference Oslo, Norway. Oral presentation, p. 112.
[70]. Aliyari, F., Rastad, E., and Arehart, G. B. (2009). Geology and geochemistry of D-O-C isotope systematics of the Qolqoleh Gold Deposit, Northwestern Iran: implications for ore genesis. Ore Geology Review, 36, 306–314.
[71]. Heidari, M., Rastad, E., Mohajjel, M., and Shamsa, M. J. (2006) Gold mineralization in ductile shear zone of Kervian (southwest of Saqez-Kordestan province), Geosciences, 58, 18–37.
[72]. Niroomand, S., Goldfarb, R. J., Moore, F., Mohajjel, M., and Marsh, E. E. (2011). The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran. Mineralium Deposita, 46(4), 409-428.
[73] Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., and Kargel, J. (2015). The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292-301.
[74]. Ninomiya, Y. (2003, March). Rock type mapping with indices defined for multispectral thermal infrared ASTER data: case studies. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II (Vol. 4886, pp. 123-132). SPIE.
[75]. Pour, A. B. and Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore geology reviews, 44, 1-9.
[76]. Testa, F. J., Villanueva, C., Cooke, D. R., and Zhang, L. (2018). Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sensing, 10(2), 203.
[77]. Alimohammadi, Masoumeh, Saeed Alirezaei, and Daniel J. Kontak. (2015). Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews 70: 290-304.
[78]. Pour, A. B. and Hashim, M. (2015). Regional geological mapping in tropical environments using landsat TM and SRTM remote sensing data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(2), 93.
[79]. Afzal, P., Ahari, H. D., Omran, N. R., and Aliyari, F.( 2013). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews, 55, 125-133.
[80]. Sun, T., Chen, F., Zhong, L., Liu, W., and Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26-49.
[81]. Wyborn, L. A. I., Heinrich, C., and Jaques, A. L. (1994). Australian Proterozoic mineral systems: Essential ingredients and mappable criteria: Australasian Institute of Mining and Metallurgy. In Darwin Conference, Abstract Series (Vol. 5, p. 94).
[82]. Kreuzer, O. P., Etheridge, M. A., Guj, P., McMahon, M. E., and Holden, D. J. (2008). Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103(4), 829-850.
[83]. Joly, A., Porwal, A., and McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349-383.
[84]. Hagemann, Steffen G., V. A. Lisitsin, and D. L. Huston (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76: 504-522.
[85]. Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., and Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore geology reviews, 13(1-5), 7-27.
[86]. Li, H., Wang, Q., Yang, L., Dong, C., Weng, W., and Deng, J. (2022). Alteration and mineralization patterns in orogenic gold deposits: Constraints from deposit observation and thermodynamic modeling. Chemical Geology, 607, 121012.
[87]. Hsu, T. H. and Pan, F. F. (2009). Application of Monte Carlo AHP in ranking dental quality attributes. Expert Systems with Applications, 36(2), 2310-2316.
[88]. Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J., and Jessell, M. (2018). Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization. Solid Earth, 9(2), 385-402.
[89]. Athens, Noah D., and Jef K. Caers (2019). A Monte Carlo-based framework for assessing the value of information and development risk in geothermal exploration. Applied Energy, 256: 113932.
[90]. Yousefi, M. and Gholami, R. (2010). Risk management and decision making in economic systems. First Edition, Jahad Daneshgahi press, Amirkabir University of Technology (in Persian).
[91]. Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis (2014). Grey wolf optimizer. Advances in engineering software, 69: 46-61.
[92]. Rodrigues, L. R. (2023). A chaotic grey wolf optimizer for constrained optimization problems. Expert Systems, 40(4), e12719.
[93]. Parsa, M. and Pour, A. B. (2021). A simulation-based framework for modulating the effects of subjectivity in greenfield mineral prospectivity mapping with geochemical and geological data. Journal of Geochemical Exploration, 229, 106838.
[94]. Zimmermann, H. J. (1991). Cognitive sciences, decision technology, and fuzzy sets. Information Sciences, 57, 287-295.
[95]. Porwal, A., Carranza, E. J. M., and Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1-25.