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 Tunnel Boring Machines (TBMs) are extensively used to excavate underground spaces 
in civil and tunneling projects. An accurate evaluation of their penetration rate is the key 
factor for the TBM performance prediction. In this study, artificial intelligence methods 
are used to predict the TBM penetration rate in excavation operations in the Kerman 
tunnel and the Gavoshan water conveyance tunnels. The aim of this paper is to show the 
application of the Multivariate Linear Regression (MLR), Artificial Neural Network 
(ANN), and Support Vector Machine (SVM) for the TBM penetration rate prediction. 
The penetration rate parameter is considered as a dependent variable, and the Rock 
Quality Designation (RQD), Brazilian Tensile Strength (BTS), Uniaxial Compressive 
Strength (UCS), Density (D), Joint Angle (JA), Joint Spacing (JS), and Poisson's Ratio 
are considered as independent variables. The obtained results by the several proposed 
methods indicated a high accuracy between the predicted and measured penetration rates, 
but the support vector machine yields more precise and realistic outcomes. 
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1. Introduction 

TBM performance prediction is a critical factor 
that can significantly impact the project's 
completion timeline. Hence, the fundamental 
determinant in the decision to employ or abstain 
from mechanized excavation is the excavation 
technique. The utilization factor refers to the 
duration of time that a machine spends excavating 
an entire project in relation to the total time or daily 
operation time. This coefficient is influenced by 
various factors including ground condition, 
machine type, support facilities, project 
management, and employee experience. In light of 
the recent surge in urban population growth and 
city development, efficient and expeditious 
intercity transportation has become increasingly 
crucial. Consequently, tunneling operations have 
experienced a notable increase worldwide.[1]. In 
the recent years, Tunnel Boring Machines (TBMs) 
have been increasingly utilized in tunneling 

operations, particularly in the excavation of large 
tunnels with high operating speeds. However, the 
complexity of TBM excavation poses a significant 
risk of accidents during tunneling operations. 
Working in environments without natural light, the 
possibility of falling tunnel walls, exposure to 
various air pollutants, and risks of explosion and 
fire are all factors that contribute to this risk. 
Failure to properly identify and control these 
hazards in tunnels can result in irreparable 
accidents. Furthermore, these tunnels are situated 
in high uncertainty environments, which further 
increases the risk of hazards. The unknown ground 
conditions and limited space available, due to 
inadequate pre-implementation studies, errors in 
the design and calculation steps contribute to the 
likelihood of hazards. Following tunneling 
operations, stable environmental conditions often 
change, which not only significantly affects the 
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ground but also has consequences on its surface.  
The design and engineering of excavation 
operations necessitates a focus on minimizing risk 
and its associated effects through the 
implementation of high penetration rates. The 
achievement of a successful and optimal 
excavation operation is contingent upon a high 
penetration rate and the absence of any excavation-
related issues. The analysis of field information is 
a crucial component in reducing costs and 
enhancing excavation operations, and the 
development of tools for field information analysis 
represents a viable means of improving excavation 
operations. Over the course of approximately four 
decades, there has been a growing recognition of 
the need to optimize excavation operations through 
the application of meta-innovative algorithms, 
resulting in the proposal of models for estimating 
penetration rates. While these models utilize only a 
subset of factors that impact penetration rate 
prediction, they are widely employed. The TBM 
has demonstrated high efficiency in excavating 
underground structures such as water conveyance 
tunnels, owing to its high advancement rate, 
continuous boring process, and simultaneous lining 
installation. As such, the prediction of TBM 
performance is a critical factor in the success of 
tunneling projects During the early 19th century, 
the growing demand for subterranean 
transportation and the necessity of constructing 
new routes and lengthy tunnels led to the 
emergence and advancement of tunnel boring 
machines (TBMs). The efficacy of these machines 
is influenced by a range of factors including 
geological conditions, rock mass properties, tunnel 
route slope, and technical specifications of the 
TBM. The evaluation of TBM efficiency and geo-
technical characteristics of the site is predicated on 
the analysis of construction cost estimation and 
time scheduling for each tunneling project. TBMs 
offer numerous advantages for subterranean 
excavation projects. [4]. In urban areas, the 
implementation of this approach results in reduced 
damage zones and surface settlements. [5]. The 
prognostication models for TBM performance can 
be classified into two distinct categories: empirical 
models, which are the most commonly used, and 
theoretical or semi-theoretical models. Empirical 
models are typically developed by analyzing the 
performance of machines in previous tunneling 
projects. These models are primarily based on 
statistical analysis of rock and machine 
measurements, and are attractive as they consider 
both ground and excavation conditions to create an 
ideal model. However, these models are site-

specific and it is challenging to establish a 
universal model for predicting TBM performance. 
From a practical standpoint, this implies that such 
analyses aim to consider all aspects of rock 
properties and TBM parameters, as well as 
operational and geological constraints, either 
directly or indirectly. The model developed at the 
Norwegian Institute of Technology (NTNU) is 
widely recognized as one of the most frequently 
employed empirical models. The implementation 
of theoretical and semi-theoretical models involves 
the integration of theoretical principles and 
empirical equations. In the context of TBM 
performance parameters, theoretical and semi-
theoretical models are considered more reliable 
than empirical methods. These models possess the 
ability to analyze the forces acting on the cutters or 
the amount of specific energy required to excavate 
a unit volume of rock. Through analysis, these 
models facilitate the determination of intact rock 
and rock mass parameters, as well as machine 
parameters. The classification of TBMs has 
resulted in a notable model developed at the 
Colorado School of Mines (CSM), which has 
garnered considerable attention.  This particular 
model utilizes equations to calculate the advance 
rate and incorporates the thrust, torque, and 
penetration to attain the most efficient TBM 
cutterhead pattern. In the field of rock engineering, 
it is imperative to recognize the models that have 
been developed in accordance with rock mass 
classification systems.Two such models include 
the QTBM [12, 13] and the Rock Mass 
Excavability (RME) indicator [14, 15, 16, 17]. The 
current investigation was conducted with the 
explicit objective of identifying predictive targets 
and determining the optimal TBM selection. 
Furthermore, several scholars ([18, 19, 20, 21]) 
have made efforts to assess the boreability of rock 
formations by proposing empirical equations that 
rely mainly on the correlations between the 
characteristics of individual rocks and rock 
masses.Tarkoy (22) proposed a theoretical 
framework for forecasting the rate of rock 
penetration by leveraging their hardness as a 
predictive factor. Graham (23) introduced a 
predictive model for determining the penetration 
rate of rocks possessing compressive strength 
within the range of 140 to 200 MPa. Farmer and 
Glossop [24] undertook measurements of the Rate 
of Penetration (ROP) of TBMs in sedimentary rock 
formations. The penetration rate of TBMs was 
assessed by Cassinelli et al. [25], utilizing the Rock 
Structure Rating (RSR) as a metric. Lislerud et al. 
[26] presented a theoretical framework aimed at 
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improving the efficiency of TBMs in excavating 
lime, shale, gneiss, and basalt geological 
formations.According to Bamford [27], the rate of 
penetration of TBMs can be determined by several 
factors including the thrust, cone indentor index, 
and schmidt hammer hardness. Grima et al. [28] 
presented a pioneering approach for forecasting the 
performance of TBMs through the utilization of a 
neuro-fuzzy methodology. Delisio et al. [29] 
formulated a predictive model for the performance 
of TBMs in blocky rock.. Vergaraa and Saroglou 
[30] conducted an assessment of the performance 
of TBMs in ground conditions that were 
characterized by a mixture of different types of 

rock. The geological and mechanical properties of 
the rock mass were examined by Armetti et al. [31] 
in order to forecast the performance of the TBM. 
The study conducted by Kim et al. [32] examined 
the performance of TBMs by analyzing the 
correlation between the rock mass rating (RMR) 
and specific energy. Table 1 summarizes several 
proposed prediction models. In this study, several 
approaches are used to predict the performance of 
TBMs in two real Iranian water conveyance 
tunnels. TBM performance prediction using these 
methods was carried out in in other projects such 
as the Kerman tunnel,  and was not yet performed 
for the Gavoshan water conveyance tunnel. 

Table 1. TBM performance prediction models. 
Proposed predictive equations for TBM performance Researchers/models 
PR = 3.716-0.019 * HT, HT = HR * (HA)0.5 Tarkoy [22] 
PR = 624 Fn/σtB Farmer and glossop [24] 
PR = -0.0059RSR + 1.59 Cassinelli et al. [25] 
PR = ib * KS * Kd Lislerud et al. [26] 
PR = 0.5355 - 8.49 – 0.00344T – 0.000823N + 0.0137 Bamford [27] 
PR = σc-0.437- 0.047 RSR + 3.15 Innaurato [33] 
PR = 5 * QTBM-0.2 
QTBM-0.2  = RQD0 / Jn * Jr / Ja * Jw / SRF * 209 SIGMA/F10 * 20/CLI * q / 20 * σθ 

Barton [12] 

SP = 250 σ cm-0.66,  σ-0.66 =  σ c exp(RMR - 100/18) Ribacchi and Lembo-Fazio [34] 
ARA = 0.422RME – 11.61 Bieniawski et al. [15] 
ROP = 1.093 + 0.029 ∗ PSI − 0.003UCS + 0.437 ∗ Log (α) − 0.219 ∗ DPW Yagiz et al. [35] 
BI = 37.06 ∗ UCS0.26 ∗ Bi − 0.10 ∗ (0.84e − 0.05JV + e−0.09 ∗ sin(α + 30) Gong and Zhao [19] 
FPI = 0.222BRMR + 2.755 Hassanpour et al. [36] 
FPI = 9.273e0.008GSI Hassanpour et al. [36] 
FPI = 11.718Q0.098 Hassanpour et al. [36] 
FPI = 4.161 + 0.091 σc + 0.077RQD + 0.117 + JC + 1.077loga Khademi Hamidi et al. [37] 
FPI = 9.401 + 0.397loga + 0.011JC2 + (1.14 * 10-5)RQD3 + (1.14 * 10-5)σc4 Khademi Hamidi et al. [37] 
FPI = 1.828 σc0.313. RQD0.207.JC0.044.α 0.012 Khademi Hamidi et al. [37] 
FPI = exp(0.008UCS + 0.015RQD + 1.384 Hassanpour et al. [20] 
MFPI = 2.12e0.02.RMRm Vergaraa and Saroglou [30] 
FPI = 0.05 ∗ RMR² − 4.22 ∗ RMR + 137.9 Armetti et al.  [31] 
FPI = 0.08 ∗ GSI ² − 8.07 ∗ GSI + 265.8 Armetti et al.  [31] 
PR = -0.0025.UCS + BTS0.0209 - 0.3927.RQD + C0.3754 - 1.4123.E + P0.8865 - 1.5321.D - 0.2897.JA + JS2.5411 Afradi et al. [38] 
PR = -0.0025.UCS + BTS0.0224 - 0.3999.RQD + C0.3779 - 1.4186.E + P0.8898- 1.5398.D - 0.2811.JA + JS2.5497 Afradi et al. [38] 
PR = -0.0025.UCS + BTS0.0255 - 0.3956.RQD +C0.3798 - 1.4119.E + P0.8810 - 1.5306.D - 0.2802.JA + JS2.5422 Afradi et al. [38] 

 

2. Materials and Methods 

The application of statistical and artificial 
intelligence techniques presents a novel approach 
that can be easily customized to tackle a wide range 
of optimization problems with minimal 
adjustments. While algorithms modify a solution 
during the search process, population-based 
algorithms consider multiple solutions based on the 
solution being sought. Answer-based algorithms 
tend to concentrate on local search areas, whereas 

population-based algorithms can simultaneously 
explore different regions of the solution space. In 
this section, statistical and artificial intelligence 
approaches are employed due to their high 
analytical capability and dependable outcomes. It 
is noteworthy that these methods are being utilized 
for the first time for the tunnels presented herein. 
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2.1. Multivariate linear regression (MlR) 

Linear regression is a statistical technique that 
entails constructing a model of the association 
between a response variable and one or more 
explanatory variables in a linear fashion. The 
fundamental aim of regression analysis is to 
investigate the linear equation model between 
variables, pre-supposing that one or more 
explanatory variables, whose values are 
autonomous of other variables or subject to the 
researcher's control, can be instrumental in 
forecasting a response variable that is not reliant on 
explanatory and controlled variables [39]. Default 
regression is as follows [39]: 

A) Ratio of observations of independent 
variables: The requisite number of observations for 
a given test is contingent upon the specific 
regression model employed. In the case of standard 
or ideal regression, the number of observations 
ought to be twenty-fold the number of independent 
variables, whereas stepwise regression necessitates 
a greater number of observations. The minimum 
number of observations required, or alternatively, 
the minimum sample size, should be no less than 
five times the number of independent variables. 

 B) Outliers: The impact of remote observations 
on the regression model is significant and warrants 
their elimination or correction to mitigate this 
effect. Univariate throw points can be obtained 
through the construction of a distribution diagram 
or frequency table. In contrast, statistical 
techniques, such as the Mahalanobis distance, or 
graphical methods, such as residual distribution 
diagrams, can be employed to identify multivariate 
throw points.  

C) Multiplicity between independent and 
singular variables: Multiplicity refers to a robust 
correlation, approaching unity, among independent 
variables, whereas singularity arises when there is 
an exact correlation, equal to unity, among 
independent variables. These phenomena have 
implications for the interpretation of relationships 
between independent variables and the dependent 
variable, and can be assessed through examination 
of the correlation matrix, the square of multiple 
correlations, and the tolerance. In practice, many 
computer programs utilize default values for 
multiple alignments, and exclude variables that 
exhibit such issues from the model.  

D) Normality, linearity, homogeneity of 
variances, and residual independence: Through the 
utilization of residual distribution diagrams, an 
examination of the residuals can be conducted. It is 
posited that the disparity between the observed and 

predicted dependent variables conforms to a 
normal distribution. Furthermore, it is assumed that 
the residuals exhibit a linear relationship with the 
predicted dependent variable scores, and that the 
residual variance remains constant across all 
predicted scores. Insignificant deviations from the 
linearity assumption are deemed to be of minimal 
consequence. 

2.2. Artificial neural network (ANN) 

The Artificial Neural Network (ANN) is a 
computational model that replicates the structure 
and functions of biological neural networks, 
thereby facilitating information processing. ANNs 
consist of numerous interconnected neurons that 
collaborate to solve intricate problems [40]. 
Similar to humans, ANNs acquire knowledge from 
examples and are designed to execute specific tasks 
such as pattern recognition and information 
categorization during the learning process. ANNs 
comprise artificial neurons or nodes that imitate 
biological neurons, where weighted inputs are 
accumulated and processed through an activation 
operation to generate an output. The human brain 
contains approximately 1011 neurons, and ANNs 
are assessed using powerful prediction tools such 
as curve fitting, classification, and clustering. 
ANNs are extensively employed in high-frequency 
applications, and can vary in size from a few 
neurons to several thousand neurons, depending on 
the complexity of the problem [41].Artificial 
neural networks (ANNs) are characterized by the 
reception of inputs by neurons in a specific manner, 
whereby the neuron is activated if the inputs are 
sufficient. Conversely, if the activity of the neuron 
falls below a predetermined threshold, it remains 
inactive. The inputs collected by a neuron are 
subsequently transmitted to an excitation function 
that calculates a specific output, which is then 
conveyed to another layer of neurons or to the 
network output. ANNs represent a system that 
processes data with specific operational properties, 
akin to neural networks, and have been developed 
to generalize mathematical models of neural 
networks based on certain assumptions [42].  

1. The processing of data occurs within fundamental 
units known as neurons. 

2. The exchange of information among neurons 
occurs through inter-neuronal communication. 

3. Each of these relationships possesses a distinct 
weight that is multiplied in the transmission of 
information from one neuron to another. 
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4. Every individual neuron performs a computation 
of its output by utilizing a mobility function, 
which is typically non-linear in nature, to process 
its inputs, which are aggregated information that 
have been weighted. Neural networks are 
comprised of a collection of small datasets, 
commonly referred to as neurons, units, or nodes. 
These neurons are interconnected through 
directional interfaces that possess their own 
weight, which represents the necessary network 
information required to solve a given problem. 
The applications of neural networks are vast and 
include data storage and review, shape grouping, 
general mapping of input to output sets, 
similarity grouping of shapes, and optimization 
and solution determination despite constraints. 
Each neuron in a neural network has a definite 
state that is dependent on the outcome it receives, 
and typically sends its response to other neurons. 
Neurons within the same layer generally behave 
similarly, with the primary determinant of a 

neuron's behavior being its excitation function 
and the weighing interfaces through which 
information is received or transmitted. In most 
cases, neurons within a layer have the same 
stimulation function and communication method 
[42]. 

2.3. Support Vector machine (SVM) 

The Support Vector Machine (SVM) is a 
powerful instrument in the domain of supervised 
learning, utilized for both classification and 
regression. Its efficacy exceeds that of its 
antecedents such as the perceptron neural 
networks. The SVM is not confined to 
classification, as it can also be employed as a 
regression methodology. The design parameters 
for case studies of the SVM are listed in Table 2 
[43, 44]. 

Table 2. SVM design parameters. 
Model Kernel Degree   C   

SVR   Radial basis function (RBF) 2 0.1 1000 0.5 
 

2.4. Evaluation criteria 

The coefficient of determination is a statistical 
measure utilized to assess the explanatory power of 
a model. It quantifies the proportion of variance in 
the dependent variable that can be accounted for by 
the independent variables, thereby, indicating the 
degree to which the model can explain the 
observed data. Specifically, it represents the total 
variation in the dependent variable as the sum of 
the variation explained by the regression and the 
variation not explained by the regression. This 
coefficient provides a probabilistic estimate of the 
correlation between two sets of data in the future, 
based on a defined mathematical model that 
conforms to existing data. 

The coefficient of determination serves as a 
criterion for evaluating the accuracy of the 
regression line in representing the variables, with a 
higher value indicating a better fit. It also reflects 
the correspondence between observed and 
predicted values, which can be evaluated through 
parsing and fitting methods. The coefficient of 
determination ranges from zero to one, with an 
optimal value of one indicating perfect agreement 
between simulated and observed values.In the 
present study, the coefficient of determination (R2) 
and root mean square error (RMSE) were 
employed as criteria for evaluating the accuracy 
and efficiency of the models. An R2 value of one 

and an RMSE value of zero were considered 
optimal for each criterion, respectively. 
Additionally, distribution diagrams and 
comparative graphs of observed and computed 
values were utilized to further analyze and compare 
the results. 

Rଶ =
∑ (Xi −  Xഥ)(Yi −  Yഥ)୒

୧ୀଵ

ට∑ (Xi − Xഥ)ଶ ∑ (Yi − Yഥ)ଶ୒
୧ୀଵ

୒
୧ୀଵ

 (1) 

RMSE = ඩ
1
N ෍(Xi − Yi)ଶ

୒

୧ୀଵ

 (2) 

At time step i, Xi and Yi represent the 
computational and observational values, 
respectively, while N denotes the total number of 
time steps. The mean values of computational and 
observational data are denoted by X  ̅ and Y ̅, 
respectively [44]. 

2.4.1. Q TBM model 

Through an analysis of the relationship between 
the Q classification system and TBM performance, 
utilizing field data from the excavation of 145 
tunnel projects exceeding a length of 1000 km 
across a diverse range of rock types, Barton [12] 
determined that the Q value may be infinite when 
estimating intrusion rate values, and that advance 
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should be utilized instead. However, it was found 
that this classification system requires correction, 
and parameters pertaining to the interaction 
between rock and machine must be taken into 
account in order to obtain accurate values for 

penetration and advance rates. As such, Barton [12] 
has proposed the QTBM equation, which involves 
a few modifications to the original Q equation, and 
includes equations for both penetration rate and 
advance rate, as follows. 

 

PR = 5*QTBM-0.2 (3) 

QTBM-0.2 = RQD0 / Jn * Jr / Ja * Jw / SRF * 209 SIGMA/F10 * 20/CLI * q/20 * σθ (4) 

AR = PR * U, AR = PR * Tm , U = Tm (5) 

 
The corrected value of Rock Quality 

Designation (RQD) along the axis of the tunnel is 
denoted as RQDo. The parameters Jn, Jr, Ja, Jw, 
and SRF remain unchanged, and are analogous to 
Q. However, Jr and Ja should be attributed to the 
category of joints that are most involved in tunnel 
excavation. F represents the average force applied 
to each disk in terms of tons of force, which is 
normalized to 20 tons of force. The Quartz content 
(Q) is expressed as a percentage, and the stress in 
the tunnel chest (σ_θ) is normalized to a depth of 
approximately 100 m and measured in 
megapascals. SIGMA denotes the compressive 
strength of the rock mass. The cutter life index 
(CLI) is imported from the Norwegian University 
of Science and Technology (NTNU) model. 
Penetration rate (PR) and advance rate (AR) are 
measured in meters per hour, while U represents 
the efficiency of the machine, and T denotes the 
time. The negative gradient is represented by m. In 
the Q TBM method, geological conditions have a 
greater impact than the characteristics of the 
device. The only parameter that reflects the 
device's characteristics in this method is the CLI, 
which is two-dimensional and affects both the 
material of the cutting tool and the geological 
characteristics of the excavation area. Hence, CLI 
cannot serve as a suitable benchmark for assessing 
the capabilities and performance of a machine. The 
method's independence from the technological 
features of the excavation process has rendered it 
largely autonomous from such conditions. The 
effectiveness of the support operation is also 
influenced by geological factors. Among these 
factors, the filling of joints is the only parameter 
that is somewhat less significant. This limitation is 
also present in the initial model of the tunneling in 
rock quality index. The parameters of the Q TBM 
method can be estimated through observation and 
equations or measured through simple 
experiments. However, the CLI parameter is the 
only factor that directly impacts the results, and 

complex experiments are required to accurately 
estimate it. Conversely, the factors in the Q TBM 
model do not necessitate complex experiments, 
except for the CLI. This index is applied in reverse, 
and approximating this factor within certain ranges 
will not cause significant changes in the outcome. 
Due to the extensive database based on the mass 
index of rock mass and its frequent use in mining 
and construction projects, accurate estimation of 
geological factors is possible using the Q TBM 
model. In projects with diverse seam structures, 
where only basic information and geological 
factors are available, and costly tests are not 
feasible, the Q TBM model is more appropriate. 
However, this method is also limited by the lower 
impact of excavating machine specifications and 
joint filling factor in their equations.  

2.5. Case studies 
A) Gavoshan water conveyance tunnel 

The Gavoshan water conveyance tunnel  with a 
length of 20.1394 kms is located in the south 
Kurdistan province. This tunnel was excavated  by 
blasting, roadheader,  and TBM. In terms of 
structural geological divisions, the northern half of 
the tunnel route is located in the Sanandaj-Sirjan 
zone, and its southern half is located between an 
ophiolite zone and the zagros thrust zone. The 
lithology of the tunnel route varies from 
sedimentary rocks including sandstone, shale, 
limestone, and conglomerate to igneous and 
metamorphic rocks including diabase, gabbro 
diorite, peridotite, and amphibolite [45]. Gavoshan 
water conveyance tunnel is located in the vicinity 
of Sanandaj-Sirjan and Zagros zones from the point 
of view of Iran's structural divisions. The route of 
Gavoshan water conveyance tunnel is generally 
divided into two north-south halves with different 
characteristics. The northern hemisphere is 
composed mainly of sedimentary rocks with an 
alternation of shale, sandstone, siltstone, 
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conglomerate and slightly modified sedimentary 
rocks belonging to the flysch facies. The southern 
half is composed of igneous rocks such as diabase, 
gabbro, diorite, andesite, ultrabasic, and split and 
basalt, which represent the remnants of the oceanic 
crust without any special rotation. Therefore, weak, 
loose and abandoned rocks in the northern half and 
strong and good quality rocks, except in the area of 

faults and crushed zones in the southern half of the 
tunnel route. The tunnel area is located in 
Sanandaj-Sirjan zone in terms of structural 
geology. Lithological diversity, discontinuities and 
numerous lithological contacts are the prominent 
features of Gavoshan water conveyance tunnel 
[45]. The location of the Gavoshan water 
conveyance tunnel is illustrated in Figure 1. 

 
Figure1. Location of the Gavoshan water conveyance tunnel [45]. 

B) Kerman water conveyance tunnel 

The Kerman water conveyance tunnel spans a 
total length of 37.9 km, consisting of a northern 
segment measuring 18.9 km and a southern 
segment measuring 19.0 km. The geological 
composition of the tunnel route is characterized by 
a diverse range of sedimentary rocks including 
sandstone and limestone as well as volcanic rocks 
such as tuff and volcanic ash. Additionally, a minor 
combination of diorite to granite and granodiorite 
is present along the route [46]. The studied area is 
part of the Cenozoic magmatic arc of Kerman. The 
extension of this strip is in the northwest-southeast 
direction, and its internal structure is very complex. 
The blocks of this area are separated from each 
other by faults that have continued their activity 
until the present time. The oldest deposits in this 

area are the Upper Cretaceous flysch, which can be 
seen in the north of the project area, and the 
youngest deposits are sediments of the present era. 
Sediments in the area include detrital sediments 
such as lime and calcareous conglomerate. In this 
area, two volcanic complexes with Eocene age 
have been identified, which due to their magmatic 
activities, large masses from granodiorite rocks to 
semi-deep andesitic dacites have been replaced 
along this area. These rocks can be divided into two 
main categories of prominent mountain-type 
granodiorites and semi-deep rocks of Mount Five. 
In the 10 km excavated route, the main route rocks 
are external and internal igneous type and include 
diorite, andesite, and basalt, which are 
lithologically rich in plagioclase feldspars [46]. 
The location of the Kerman water conveyance 
tunnel is illustrated in Figure 2. 
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Figure 2. Location of Kerman water conveyance tunnel [46]. 

 
2.6. TBM specifications 

The selection of the appropriate type of 
excavating machine is a crucial aspect in the 
implementation of mechanized tunnel excavation. 
The initial step involves the technical selection of 
at least two different types of full-length machines, 
which is based on an examination of the geological 
conditions and project schedule. The geological 
and geo-technical conditions of the surrounding 
rock, as well as the type of materials that comprise 
it, are significant factors that have always posed 
challenges in tunnel implementation. The presence 
of discontinuities, layer changes, permeability, and 
other related issues must be carefully considered 
during the pre-decision stage to ensure the 
appropriate selection of the machine. Additionally, 
the project schedule plays a critical role in 
determining the type of machine to be used. For 
instance, the selection of an open cross-section 

machine is influenced by the usual time required 
for concreting and final lining of the tunnel in each 
country, which is dependent on the level of 
manpower training and technology available. 
Therefore, it is imperative to carefully consider this 
aspect to ensure timely project execution. After the 
initial selection of the machine based on technical 
and executive criteria, economic considerations 
must also be taken into account. With the 
advancement of technology, tunnel excavating 
machines have made significant progress in the 
recent years, and are now categorized into two 
general types: soil excavating and rock excavating. 
Some machines are also classified as shielded or 
open. However, due to the rocky nature of the 
tunnel route, this report will only provide a brief 
introduction to tunnel excavating machines in rock. 
The specifications of the TBMs used for the two 
water conveyance tunnels are given in Tables 3 and 
4. 
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Table 3. Specifications of the TBM for the Gavoshan water conveyance tunnel [45].  
Parameter Value 

TBM type Open TBM hard rock (S112) from German Hernknscht Company 
Main drive 180 ton 
Disc cutters 7 double & 20 singles & 6 Scraper plate 
Advanced cylinders 4 * 1600 mm / 340 mm 

Table 4. TBM specifications for the Kerman water conveyance tunnel [47]. 
Parameter Value 

TBM type Double shield hard rock TBM 
Cutterhead diameter 4665 mm 
Number of disc cutters 27 
Center discs No./size/wear limit 1 to 8/432 mm/25 mm 

 
2.7. Database 

For the considered case studies, the input 
(dependent) and output (independent) variables 

through the analyses are listed in Table 5. For this 
step, the data of the two tunnels was merged. 
Descriptive statistics and parameters can be seen in 
Table 6. 

Table 5. Dependent and independent variables. 

Input 

Rock Quality Designation (RQD) (%), 
Brazilian Tensile Strength (BTS) (MPa), 
Uniaxial Compressive Strength (UCS) (MPa) 
Density (D) (gr/cm3), 
Joint Angle (JA) (deg.), 
Joint Spacing (JS) (m), 
Poisson's ratio 

Output Penetration Rate (PR) (m/h) 

Table 6. Descriptive statistics of the two studied areas. 
 RQD (%) BTS (MPa) UCS (MPa) D (gr/cm3) JA (deg.) JS (m) Poisson’s Ratio PR (m/h) 

Mean 53.53 10.86 104.50 2.45 28.69 0.67 0.27 1.21 
N 200 200 200 200 200 200 200 200 
Std. Deviation 18.08 2.57 39.19 .10 8.64 0.38 0.05 0.58 
Minimum 10 5.00 30.00 2.30 14 0.2 0.15 0.40 
Maximum 90 14.99 180.00 2.70 53 1.6 0.40 2.93 
Variance 326.96 6.61 1536.20 0.01 74.75 0.14 0.00 0.34 
Std. Error of mean 1.27 0.18 2.77 .00 0.61 0.02 0.00 0.04 
Harmonic mean 44.92 10.13 88.56 2.44 26.00 0.47 0.25 0.97 
Geometric mean 49.77 10.52 96.75 2.45 27.36 0.56 0.26 1.08 

 

2.8. Sensitivity analysis of parameters 

According to the conventional definition, 
sensitivity analysis involves examining the impact 
of output variables on the input variables of a 
statistical model. This systematic approach entails 
modifying the inputs of a statistical model to 
ascertain the extent to which varying values of an 
independent variable influence a specific 
dependent variable, given a set of assumptions. It 
is important to note that this technique is subject to 
certain limitations, as the parametric values and 

assumptions of each economic model are subject to 
change and error. Large-scale sensitivity analysis 
examines the potential impact of these changes and 
errors on the results of the model. Sensitivity 
analysis methods can be classified into three main 
groups: mathematical, statistical (probabilistic), 
and graphic. This classification helps to determine 
the appropriate method for a variety of models and 
their respective benefits. Mathematical methods 
are useful for both definite and probabilistic 
models, while statistical methods are commonly 
used for probabilistic models. Graphic methods, on 
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the other hand, can be used for any type of model. 
In the realm of system analysis, sensitivity analysis 
pertains to evaluating and approximating the 
degree of sensitivity exhibited by the predicted 
behavior of a system, or its output, in response to 
variations in the values of the independent 
variables, or its input. In this research work, we 
analyze the sensitivity of TBM parameters to 
demonstrate how these parameters are affected. 

 
 
 
 
 

3. Results of Analyses 
3.1. Prediction model for penetration rate by 
MLR 

In order to develop a predictive model for the 
penetration rate, a linear regression analysis was 
conducted on the available database. The resulting 
regression coefficients were presented in Table 7, 
and Equation 6 was derived to describe the linear 
relationship between the independent variables and 
the penetration rate. The distribution and fitting 
diagram between the measured and predicted 
penetration rates are depicted in Figures 3 and 4, 
respectively. 

 

PR = 1.006-0.001 * RQD - 0.001BTS - 0.004UCS - .0008D - 0.006JA + 0.100JS + 0.680P (6) 

 
Table 7. Regression coefficients of linear regression model. 

Model 
Unstandardized 

coefficients 
Standardized 
coefficients t Sig. 

B Std. Error Beta 

1 

(Constant) 1.006 0.370  2.721 0.007 
RQD (%) -0.001 0.001 -0.022 -0.799 0.426 
BTS (MPa) -0.001 0.007 -0.004 -0.113 0.910 
UCS (MPa) -0.004 0.001 -0.249 -6.400 0.000 
D (g/cm3) -0.008 0.154 -0.001 -0.049 0.961 
JA -0.006 0.002 -0.085 -2.866 0.005 
JS (m) 0.100 0.043 0.065 2.319 0.021 
Poisson’s ratio 0.680 0.033 0.763 2.475 0.000 

 

 
Figure 3. Distribution diagram obtained by MLR. 
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Figure 4. Fitting diagram given by MLR. 

3.2. Prediction model for penetration rate by 
ANN 

The utilization of ANN has been employed in 
the database to predictive model for penetration 

rate. R2, RMSE, distribution diagram, and fitting 
diagram of TBM penetration rate have been 
presented in Figures 5 and 6. 

 
Figure 5. Distribution diagram obtained by ANN. 
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Figure 6. Fitting diagram obtained by ANN. 

3.3. Prediction model for penetration rate by 
SVM 

Figure 7 displays R2, RMSE, and Support 

Vector Machine (SVM) utilized for the prediction 
of penetration rate. Figure 8 presents fitting 
diagram of the measured values or target and the 
predicted values by the SVM predictive model. 

 
Figure 7. Distribution diagram obtained with SVM. 
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Figure 8. Fitting diagram by SVM. 

3.4. Estimation of penetration rate using Q 
TBM 

The determination coefficient, the root means 

square error, and Q TBM for predicting penetration 
rate are shown in Figure 9. Matching graph of 
measured values or target and the predicted values 
by Q TBM predictive model is shown in Figure 10. 

 
Figure 9. Distribution diagram obtained with Q TBM.   
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Figure 10. Fitting diagram by Q TBM. 

3.5. Comparison of achieved results with results 
of Q TBM 

In this part, the achieved results (predicted 
values) using MLR, ANN, and SVM are compared 
with the measured values (target). Moreover, these 
predicted values are also compared to the obtained 
values using the Q TBM model, the most 
extensively used TBM performance prediction 
model. Figure 11 and Table 8 show the superiority 
of the models obtained in this study compared to 
the Q TBM one. 

3.6. Sensitivity analysis 

Sensitivity analysis is a widely used method in 
various fields to assess the impact of changes in 
independent variables on a dependent variable, 
while holding a set of assumptions constant. This 
technique involves a thorough examination of the 
influence of diverse sources on a mathematical 
model, under both deterministic and stochastic 
conditions. It is commonly employed in disciplines 
that deal with one or more input variables and aim 

to measure the behavior of a function or relation 
based on them. The analysis is based on the 
constraints assumed for each of the independent or 
dependent variables, and is predicated on input 
variables that affect the output variable. Sensitivity 
analysis is also known as "if-then" analysis or 
simulation analysis, as it enables the prediction of 
the output of a decision based on a range of 
variables. In this study, we analyzed the sensitivity 
of the parameters. As you can see in Figures 12 and 
13, the UCS parameter has the most impact on 
modeling. Also the effect of the parameters is 
shown in Figure 12. 

Table 8. Model analysis. 
Model R2 RMSE 
MLR 0.90 0.17 
ANN 0.98 0.08 
SVM 0.99 0.01 

Q TBM  0.60 0.36 
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Figure 11. Comparison of achieved results with results of Q TBM. 

As can be seen, the SVM and ANN approaches yield the closest values to the actual values, respectively.  

 
Figure 12. Parameter sensitivity analysis diagram. 
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Figure 13. Impact of UCS on PR. 

3.7. Results and discussion of present work and 
previous model 

In this part, the previously developed models 
are examined and compared with the suggested 
models of this research work. Several researchers 
have been studied TBM performance. For instance, 
Mikaeil et al. [50] studied at prediction of TBM 
penetration rate with generalized regression neural 
network in hard rock condition. Bejari et al. [51] 
presented a model for simultaneous effects of joint 
spacing and joint orientation on the penetration rate 
of a single disc cutter. Frough et al. [52] evaluated 
the TBM utilization using rock mass rating system. 
Dehghani et al. [53] suggested the estimation of 
penetration rate of tunnel boring machines using 
Monte-Carlo simulation method. Moosazadeh et 
al. [54] studied at simulation of tunnel boring 
machine utilization. In this study, several 
approaches are used to predict the performance of 
TBMs in two real Iranian water conveyance 
tunnels and the achieved results compared to those 
models in which similar approaches applied. The 
aim of this paper is to show the application of the 
Multivariate Linear Regression (MLR), Artificial 
Neural Network (ANN), and Support Vector 
Machine (SVM) for the TBM penetration rate 
prediction. As shown in Table 9 and Figure 14, the 
findings of the previous models were examined 
with the obtained results of this research work, and 
it was found that the best model is in accordance 
with the TBM performance prediction using the 
SVM approach. The validation dataset serves as a 
means to impartially assess the performance of a 
model trained on the training dataset, while 

simultaneously adjusting the model's 
hyperparameters. However, it is important to note 
that the evaluation process becomes increasingly 
biased as the model's performance on the validation 
dataset is incorporated into the model's 
configuration. The purpose of the validation set is 
to assess the performance of a given model, 
primarily for frequent evaluations. As machine 
learning engineers, we utilize this dataset to refine 
the hyperparameters of the model. Consequently, 
the model may occasionally encounter this data, 
but it does not actively "learn" from it. Instead, we 
leverage the results obtained from the validation set 
to update higher-level hyperparameters. Thus, the 
validation set indirectly influences the model's 
behavior. It is worth mentioning that the validation 
set is also referred to as the development set, as it 
plays a crucial role during the developmental phase 
of the model. Validation the proposed the best 
model with data, which are not used in the ANN 
model, as can be seen in Figure 15. 

Table 9. Results of present work and previous 
models. 

Model R2 RMSE 
Yagiz [55] 0.66 0.21 
Zare Naghadehi et al. [56] 0.72 0.18 
Adokoet et al. [57] 0.66 0.22 
 New MLR model (This study) 0.90 0.17 
New ANN model (This study) 0.98 0.08 
New SVM model (This study) 0.99 0.01 
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Figure 14. Comparison of proposed models and previous models. 

 
Figure 15. Validation of the proposed best model with data that is not used in ANN model. 

Table 10. Validation Datasets that are not used in 
ANN model. 

Dataset R2 RMSE 
Dataset 1 0.65 0.21 
Dataset 2 0.72 0.36 
Dataset 3 0.40 0.14 
Dataset 4 0.32 0.46 
Dataset 5 0.57 0.12 
Dataset 6 0.94 0.04 

 

4. Conclusions 

The escalating global population has led to an 
imperative need for energy resources, thereby, 
rendering the construction of water conveyance 
tunnels via TBM tunneling method a crucial issue. 
This undertaking poses significant challenges in 
terms of the requisite construction investment, 
estimation of total excavation time, and project 
completion time. Tunnel boring machines have 
demonstrated remarkable efficiency in excavating 
tunnels, particularly water conveyance tunnels, 

Yagiz[55]Zare Naghadehi et
al. [56]Adokoet al. [57] New MLR model

(This study)
New ANN model

(This study)
New SVM model

(This study)
R2 0.660.720.660.90.980.99
RMSE 0.210.180.220.170.080.01
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owing to their high excavating speeds, integrated 
excavating, and simultaneous installation of a 
support system. Accurate prediction of the rate of 
penetration plays a pivotal role in determining the 
investment required and the completion time of the 
tunneling project. In this study, a database 
primarily established from machine parameters and 
field data for predicting the TBM penetration rate 
in the Kerman and Gavoshan water conveyance 
tunnels is presented. A Multivariate Linear 
Regression (MLR), an Artificial Neural Network 
(ANN), and a Support Vector Machine (SVM) 
were applied to the database. The results showed 
that the three applied methods are able to give 
results in good agreement with the real penetration 
rate values. The determination coefficient for 
MLR, ANN, and SVM approaches were found as 
0.90, 0.98, and 0.99, respectively, indicating SVM 
contributes to a more precise and realistic outcome 
as it is able to give a higher determination 
coefficient. Moreover, the QTBM model was 
applied to the database. The relationship between 
measured and predicted data showed all three 
approaches are capable to predict the performance 
of TBMs more accurate (R2 = 0.90, 0.98, 0.99) than 
the QTBM model (R2 = 0.60). 
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  چکیده:

ترده  طور  به)  TBM(  مقطع  تمام حفار  نیماش ـ اها  يحفار  يبرا  گسـ تفاده  معدنی و  یعمران  يهاپروژه در ینیرزمیز  يفضـ  عامل  نفوذ  نرخ قیدق یابیارز.  شـوندیم اسـ
 ــ  عملکرد  ینیبشیپ يبرا  يدیکل   تمام حفار  نیماش ــ نفوذ  نرخ  ینیبشیپ  يبرا  یمصــنوع  هوش  يهاروش از قیتحق نیا در. اســت)  TBM(  مقطع  تمام حفار  نیماش

 چند یخط  ونیرگرس  کاربرد  دادن نشان  مقاله نیا  هدف. است شده استفاده  گاوشان آب  انتقال  تونل و  کرمان آب  انتقال  تونل  در يحفار  اتیعمل در)  TBM(  مقطع
بکه  ،)MLR(  رهیمتغ ب شـ نوع  یعصـ ت بردار  نیماش ـ و)  ANN( یمصـ ت)  TBM( مقطع  تمام حفار  نیماش ـ نفوذ  نرخ  ینیبشیپ يبرا)  SVM(  بانیپشـ   نرخ پارامتر. اسـ

 یچگال  ،)UCS(  يمحور  تک يفشار  مقاومت  ،)BTS(  یلیبرز یکشش  مقاومت ،)RQD(  سنگ یفیک شاخص  و  شده  گرفته  نظر  در  وابسته  ریمتغ  کی عنوان به نفوذ
)D(،  ها  یوسـتگیناپ  نیب  هیزاو  )JA(،  ها  یوسـتگیناپ امتداد  نیب فاصـله  )JS(،  نشـان می  ج ینتا. شـده اسـت  گرفته نظر در مسـتقل  يرهایمتغ عنوان به پواسـون نسـبت  و

  .دارد ها روش ریسا به نسبت یخاص ینسب يبرتر بانیپشت بردار نیماش که تفاوت نیا با دارند ییبالا اریبس ییکارا ها روش دهد

  .بانیپشت بردار نیماشی، مصنوع  یعصب شبکه، رهیمتغ چند یخط ونیرگرس، مقطع تمام حفار نیماش کلمات کلیدي:

 

 

 

 


