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 It is well-established that the response surface methodology (RSM) is commonly 
employed to establish the differences between the predicted values and those observed 
experimentally. This study mainly goals on the impact of four drilling factors including 
weight on the bit (WOB), the rotating rapidity of the bit, RPM, cutting angle β, and 
rock resistance on the penetration rate of the drilling tool. In this examination, three 
kinds of limestone rocks were considered. The planned assessments were carried out at 
three stages of the considered four input variables. The statistical analysis was realized 
using both RSM approach and analysis of variance (ANOVA). This analysis allowed 
us to develop the appropriate penetration model with a higher determination coefficient 
of 96.19%, which demonstrates the high correlation between the predicted and 
experimental data, and consequently, it can be concluded that the obtained model is 
highly suitable for the prediction of the penetration rate. Also from variance analysis, 
the results obtained show that rotational speed, RPM, and weight on the bit (WOB) 
parameters, as well as the nature of the rock, which is determined by the rock 
compressive resistance, having a significant effect on the penetration rate; however, the 
rake angle has little effect. Finally, the optimal parameters were determined to find the 
best possible penetration rate of the drilling tool. 
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1. Introduction 

Ever since the world recognized the vital 
demand for hydrocarbons in terms of utilization 
and substantial financial investment resources, oil 
exploration and exploitation have emerged as 
pivotal aspects in the advancement of technology 
and profit growth. Furthermore, it is widely 
acknowledged that the oil and gas sector is 
placing greater emphasis on optimizing the 
drilling process design to lower operational 
expenses while enhancing operational efficiency 
[1]. Rotary blasting hole drills are widely used on 
a global scale in surface mineral extraction for the 
purpose of waste removal. The accurate 
estimation of penetration rate for rotary drill rigs 
has significant significance within the context of 
rock drilling, particularly in the fields of geology 

and petroleum technology [2, 3]. The accurate 
estimation of the penetration rate has significant 
importance in the process of mine construction. 
The assessment of total drilling expenses may be 
accomplished by the use of predictive formulas 
[4]. Furthermore, the use of a prediction formula 
may be employed to determine the optimal 
drilling rig type that is most suitable for certain 
situations. Rotary tricone bits including tungsten 
carbide inserts are widely favored as the primary 
drilling tools for deep holes with substantial 
diameters in extensive surface mining processes 
[5]. The exploration rate has seen an upward trend 
over time as a result of the use of more powerful 
drills and improved management of operational 
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factors. This has subsequently led to a rise in 
mining output and a decrease in drilling expenses.  

In the contemporary day, the practice of deep 
drilling has significant importance, and is widely 
advocated within the oil and gas sector. 
Nevertheless, this technique is not without its 
drawbacks, mostly stemming from the 
considerable depth involved and the intricate 
process of tool replacement, compounded by the 
abnormalities encountered within the layers of the 
formation. This scenario mostly results in 
incongruous outcomes, therefore giving rise to 
various mechanical abnormalities that 
subsequently contribute to a reduction in the tool's 
depth of penetration. In this particular 
environment, there is a shared interest among 
industry experts and academics regarding the 
design and development of novel drilling 
techniques with the aim of enhancing drilling 
operation performances [6, 7]. Improving the 
efficiency of the drilling operation and achieving 
higher performance levels require the 
optimization of several drilling parameters. These 
parameters include the weight of the drill bit, the 
rotational speed of the drilling apparatus, the 
rock's resistance, and the properties of the drilling 
mud. This optimization primarily revolves around 
achieving the highest drilling rate while 
minimizing costs and the mass of the rock 
drillable indicator [8, 9]. Much awareness has 
been compensated to improve the quality of the 
drilling procedure. Garnier and Van Lingen [10] 
were interested in certain phenomena that could 
affect drilling processes. Response surface 
methodology (RSM) is one of the best ways to 
make it possible to understand and model such 
phenomena. RSM aims to explore the correlation 
systematically and efficiently between the input 
factors and response variables to optimize 
procedures, products or systems while minimizing 
the need for extensive experimentation and 
resources [11]. 

RSM is considered a crucial part of the 
experimental design to develop new processes and 
improve their performance. This methodology 
was also developed to improve products and 
systems to enhance the load component and 
reduce process response instability [12]. In 
general, RSM comprises a collection of statistical 
and mathematical techniques that prove highly 
effective for analyzing and addressing issues in 
which multiple factors impact the response 
variable. Its goal is to enhance this response [13, 
14]. The goal of RSM is to find the optimal 
empirical design with the fewest possible design 

repetitions. Its use in empirical design dates back 
to the late 1990s [15]. This technique has been 
used by numerous researchers such as Panagiotis 
et Angelos [16]. To explore how the process 
parameters of fiber laser percussion drilling affect 
the geometric characteristics of 1.0 mm thick 
Inconel 718, experimentations were conducted 
using RSM by Moradi and Mohazabpak [17]. The 
primary aim of this study is to formulate 
mathematical simulations for the expectation of 
propulsion force and cutting torque in the context 
of drilling operations. Salehnezhad et al. [18] 
utilized RSM to design and improve the properties 
of drilling mud. By utilizing the box-Behnken 
design within the framework of RSM, Zhang [19] 
conducted multiple laser drilling experiments. 
These experiments aimed to determine the certain 
energy of rock by varying three key empirical 
factors: laser power, irradiative time, and spot 
diameter. Alakbari et al. [20] introduced novel 
statistical empirical correlations for prediction 
through the application of RSM. RSM was 
employed to establish mathematical relationships 
between factors and responses, as well as to 
elucidate the interactions among variables. 
Surekha et al. [21] have tried to find the effect of 
aluminum powder on the electrical discharge 
machining (EDM) of EN-19 alloy steel. Through 
the use of surface response modeling, a 
connection has been made between the responses, 
on the one hand, and the procedure's operational 
factors, on the other. 

The selection of a PDC, polycrystalline 
diamond, drilling tool was made in the present 
research work due to its many benefits and 
extensive range of applications. The drilling 
exams were done in accordance with the empirical 
design. Hence, our research work was primarily 
centered on investigations undertaken within this 
particular environment. In the research work 
conducted by Capik and Batmunkh [22], 
experiments were conducted to examine the 
correlation between the rate of bitwear and 
various physical and mechanical features of rocks. 
The study also investigated the impact of drill 
ability, abrasive qualities, and fragility of rocks on 
the wear rate of the bit. The use of statistical 
analysis was employed to create equations that 
enable the estimation of the bit wear rate using 
rock characteristics as the basis for estimation. In 
their study, Modi et al. [23] highlighted that 
optimization represents one of the most effective 
techniques employed in the manufacturing 
industry to enhance product quality while 
reducing costs. Through the use of Taguchi's 
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technique, this study demonstrates an efficient 
way for the optimization of drilling parameters 
based on a single answer. In addition, the study 
investigates how the material removal rate (MRR) 
is affected by the input process parameters, 
notably spindle speed and tool diameter. To build 
a variety of structures in sectors such as aerospace 
and automotive, that require precise machining 
holes to meet with strict geometric tolerances, it is 
usual practice to drill a large number of holes. 
One group of researchers who have an interest in 
pursuing this line of inquiry is Aamir et al. [24]. 
Their work is centered on enhancing the 
performance of the drilling specifications and 
drilling procedures, and they make use of the 
empirical plan approaches, most notably the 
Taguchi approach, to do this. Venkateshwarlu et 
al. [25] used statistical methods to determine the 
importance and influence of machining factors. 
These methods included orthogonal arrays and 
ANOVA. In this study, drilling operations were 
conducted on titanium alloy under various 
machining conditions, encompassing wet and dry 
conditions with the utilization of a cryogenically 
treated drill. 

The literature review has shown the 
significance of using statistical analysis 
approaches in investigating the behavior of 
drilling operations. Additionally, the study 
demonstrated the efficacy of the experimental 
design approach, namely the surface response 
technique, in effectively addressing cost 
minimization and performance improvement 
issues with a high level of accuracy. Nevertheless, 
it is crucial to underscore that previous studies 
have not thoroughly examined all drilling 
parameters, specifically regarding the fluctuation 
of the cutting angle and its effects on the efficacy 
of other parameters, as well as its influence on the 
overall drilling process's quality. This highlights 
the significance of the current work and its ability 
to provide useful insights into comprehending the 
behavior of drilling parameters. Hence, the 
present research work was conducted with the aim 
of addressing this disparity, minimizing 
operational expenses, and enhancing overall 
efficiency. 

The present examination proposes to analyze 
the influences of different factors such as the 
weight on the bit (WOB), the rapidity of rotation, 

RPM, the angle cutting 훽, and the rock resistance 
(퐶푠) on the development of penetration rate, ROP, 
to reduce operational costs and increase the 
efficiency of the drilling operation. The 
optimization of drilling parameters was based on 
empirical data and processed and analyzed 
statistically to arrive at the method to improve 
(rationalize) the design of drilling procedures. The 
original goal of this study is to employ the 
response surface methodology of experimental 
design, RSM, to process and analyze the 
experimental data. This includes developing a 
model that establishes relations between drilling 
parameters through empirically derived formulas 
and determining the optimal penetration rate 
depending on the optimal amounts of the 
examined factors. 

2. Experimental Procedures 

An original experimental test rig was 
developed to simulate the real operating 
conditions of the drilling development. The 
specially designed vertical drilling rig was built 
on the one hand, to simulate the process of rotary 
drilling and, on the other hand, to measure the rate 
of penetration (ROP) parameter. The schematic 
diagram of the developed device is shown in 
Figure 1, and it is made up of the following parts: 

1. An electric motor is a source of rotary motion 
that reaches 1490 rpm and a power of 1.5 KW. 

2. A variable speed drive to give the desired speed 
factor. Three levels of speeds have been 
estimated (118 rpm, 135 rpm, and 152 rpm). 

3. A hydraulic cylinder is the source of the force 
exerted on the drilling tool against the rock; in 
this experiment, the chosen compression forces 
are 80 푘푔푓, 120 푘푔푓, and 160 푘푔푓. 

4. A rock stabilizer is the reserve part to tie the 
rock so that the rock is fixed well to obtain 
better results. During the tests, three types of 
rocks were used. 

5. Cutter; the drilling rig used to perform 
experiments consists of a single cutter. The 
cutter is marked for three cutting angles of 3°, 
8°, and 45°.  

The characteristics of the used drill rig are 
summarized in Table 1. 
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Figure 1. The empirical setup. 

Table 1. Drill properties. 
Drilling characteristics  
Highest power of the engine 
Highest weight of the trephine 
Maximum rotational speed 
Diameter of the bit  

1.5 푘푤 
250 푘푔푓 
220 푟푝푚 
13 푚푚 

 
The bit used to perform the tests is of the PDC 

type. Figure 2 shows the applied forces on PDC 
drilling tool. The mode of destroying the rock 
using a PDC tool is presented in Figure 3. 

 
Figure 2. PDC drill tool and forces on tool [14]. 

 
Figure 3. Mode of destroying the rock using a PDC tool. 

1 

2 

3 

4 
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The cutting angle in the context of a PDC 
(Polycrystalline Diamond Compact) tool refers to 
the angle at which the cutting edge or face of the 
PDC cutter contacts the material being drilled, as 
demonstrated in Figure 3 [26]. Figure 4 

establishes the experimental cutting tool 
consisting of a single cutter and specifically 
designed to provide study data on the cutting 
angle. 

 

   
Figure 4. PDC (Polycrystalline Diamond Compact) drill tool was designed for this experiment. 

The study was conducted using three kinds of 
limestone and marble sampled from diverse 
locations in Algeria. The geometrical 
configuration of the used rocks is displayed in 
Figure 5. Throughout sample gathering, every 

block was checked to identify macroscopic faults, 
and consequently, guarantee the utilization of 
fracture-free samples. The bit penetration rate was 
performed for the three chosen rocks. The blocks 
have a size of about 30 cm, 30 cm × 4 cm. 

 

   
Rock A Rock B Rock C 

Figure 5. Used rocks (A) from El Ghedir Quarry, (B) from Hadjar Soud's quarry, and (C) from Felfla quarry. 

Table 2 presents the resistance of rocks to 
compression. The compressive strength is 
established by identifying a sample on the 
hydraulic press table and then applying a load 
until the sample is completely crushed. 
Thereafter, the endurance is then evaluated by 
applying the subsequent equation (Equation (1)) 
[27]: 

퐶푠 =
퐹
푆

; 푘푔푓
푐푚  (1) 

with: 퐶푠 is the compressive resistance, 퐹 is the 
force exerted on the rock, and 푆 is the surface. 

 
 

Table 2. Resistance of rocks to compression. 

Rocks Resistance to compression 
Rock A 1550 푘푔푓/푐푚  
Rock B 750 푘푔푓/푐푚  
Rock C 640 푘푔푓/푐푚  

 
During experiments, three levels were 

provided for each parameter. The quantities 
chosen for each study factor are given in Table 3. 
The choice of parameters was made according to 
the capabilities of the drilling rig as well as the 
behavior of the response after the preliminary 
tests. 
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Table 3. Factors and selected levels. 

Factors Unit Code 
levels 

1 2 3 

Angle de coupe 푑푒푔푟푒푒 훽 3 8 45 
Weight on the bit 푘푔푓 WOB 80 120 160 
Rotation speed 푟푝푚 RPM 118 135 152 

 

3. Test Planning according to RSM 

RSM is recognized as one of the primary 
approaches that can be used in experimental data 
processing. It serves, on the one hand, to 
determine the mathematical formulation that 
shows the relationship between input variables 
and studied responses [28]. For the response 
surface model, it is highly recognized that the 
variance analysis (ANOVA) is easier to perform. 
Additionally, depending on the RSM strategy, it is 
important to note that the fundamental drawback 
of the traditional empirical design approaches is 
the huge number of trials that are required 
whenever the number of operational variables 
increases. This is something that should be taken 
into consideration. In the course of our inquiry, 
we have taken an active part in the RSM 
approach, which is a way of empirical design that 
cuts down on the number of tests that are carried 
out as a result of using the traditional 
empirical design. The ability to collect important 
components in a short amount of time and at a 
relatively cheap cost is, as a result, the primary 
benefit of using this methodology. 

Firstly, it is necessary to define the different 
input quantities (factors) that affect the output (the 
response) and adopt a plan of experiments, then 
apply a regression assessment with the RSM 
quadratic model. Using ANOVA allows us to 
analyze statistically the individual input factors to 
determine the main factors that impact the 
response. Thereafter, the situation of the obtained 
RSM model can be determined to see if the RSM 
model needs filtering variables or not. Finally, we 
proceed to the optimization and validation of the 
expected performance characteristics [29, 30]. 
The quantity of interest 푌  as a function of the 
various factors is represented according to the 
following formula (Equation 2) [31]: 

푌 = 휑(훽, 푊푂퐵, 푅푃푀, 퐶푠) (2) 

with 휑 is the response function. 
The regression analysis process [32] is a 

statistical approach to finding the correlation 
between experimental data that depend on several 
measured factors, required to create an 

appropriate mathematical prototypical that 
verifies the connection between the different 
levels of each test factor and an object function 
[33, 34]. 

For the mathematical modeling of the studied 
problem, a non-linear quadratic prototypical is 
used to link the studied response to the factors. 
The mathematical function established on RSM 
approach has the form of a polynomial of the 
second degree (Equation 3): 

푌 = 푏 + 푏 푥 + 푏 푥 + 푏

≺

푥 푥 + 휀 (3) 

where 푥  and 푥  represent the coded factors 
(훽, 푊푂퐵, 푅푃푀, 퐶푠) , and 휀  is the deviation (i.e. 
the adjustment error for the regression model). 
푏 , 푏 , 푏 , 푏  are the coefficients of the 
mathematical model where 푏  is a constant or free 
term of the regression equation, 푏  is the 
coefficients of the linear terms, 푏  is the 
coefficients of quadratic terms and 푏  are the 
coefficients of the cross-product terms. Table 4 
brings together 27 runs associated with the four 
factors where each factor has three levels. 

Analysis of variance (ANOVA) is an effective 
method employed for analyzing experimental 
results. ANOVA is thus employed to identify the 
effect of input factors on the desired studied 
response and allows for providing an 
interpretation of the output data [26, 27]. The 
statistical magnitude of adjusted quadratic 
prototypes is determined by the 푝 and 퐹 quantities 
of the ANOVA. The 푝-value is the probability of 
obtaining the consequences detected in an 
examination (or additional maximum results), it 
should be ranged between 0 and 1. It is possible to 
evaluate the results obtained as follows: 

- If  푝 > 0.05, the factor is not meaningful. 
- If 푝 < 0.05, the factor is meaningful. 
The summation of squares (푆푆) is employed to 

approximate the square of the deviation from the 
average. The sum of squares is given in Equation 
4: 
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푆푆 =
푁

푁
(푦 − 푦)  (4) 

where: 
푦 = ∑ 푦  is the mean of the response, 

푦  is the mean of the response observed during 
the experiment, wherein the component 푓 
succeeds the 푖  level, 푁 is the overall quantity of 
tests, and 푁  is the level of every component 푓. 

The average squares are calculated through the 
relation presented in Equation 5: 

푀 =
푆푆
푑푓

 (5) 

푑  is the freedom degree. 
To verify the competence of the representation, 

we use the ratio 퐹 . The evaluated 퐹 -quantities 
must be greater than those acquired from Table 5. 
The F values can be calculated by the relation 
given by equation 6: 

퐹 =
푀푆
푀푆

 (6) 

where 푀푆  is the average square of errors. 
When the model's estimated 퐹  quantity is 

higher than its tabular 퐹  quantity, one may say 
with a degree of confidence of 95% that the model 
is acceptable. Assuming 푝  estimates are lower 
than 0.05 (or when there is an acceptable level of 
95%), the resulting models are regarded as 
statistically noteworthy. As a result, it has been 
shown that the words used in the model do in fact 
have a considerable impact on the answers. The 
quality of the fit may be quantified using a 
statistic known as the coefficient of perseverance, 
or 푅 , which can be characterized as the ratio of 
the explained variance to the overall variation. In 
other terms, if 푅  approximates to unity, data 
gained via the quadratic model is closer to the 

experimental data [35, 36]. It can be calculated as 
follows: 

푅 =
∑(푦 − 푦)
∑(푦 − 푦)  (7) 

The penultimate column of the ANOVA tables 
depicts the contribution of every input component 
(percentage, cont. %) to the total variation, thus 
showing the degree of impact on the studied 
response [37, 38]. The contribution parameter can 
be calculated as follows: 

퐶푂푁푇. % =
푆푆
푆푆

× 100 (8) 

4. Data Processing 

In this investigation, the experimental rig 
visualized in Figure 1 was employed to determine 
the penetration rate, ROP under the effect of 
several geometrical and mechanical parameters 
like the weight on the tool, WOB, rotational 
velocity, RPM, cutting angle ( 훽 ), and 
compressive strength of rocks (푅 ). 

Table 4 gives the main penetration rate, ROP 
results of the drilling tool obtained according to 
the planned experiments. It is worth noting that all 
planned experiments are performed in equal 
periods (i.e. 8 seconds for each test). During each 
test, the advancement (depth) of the tool in the 
rock is measured. Thereafter, the penetration rate, 
ROP is decided by the following expression: 

푅푂푃 =  퐿 푡⁄  (9) 
where 퐿 is the depth (micrometer depth), and 

푡  is the penetration time (the time identified 
during the tests is 8 seconds). 

The experimental results obtained were 
analyzed using the MINITAB17 software. The 
ANOVA results for the penetration rate, ROP, at 
the confidence level of 95% are visualized in 
Table 5. 
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Table 4. Penetration rate, ROP, results from the effects of input factors. 

Table 5. Analysis of variance for penetration rate, ROP. 
Source  DF Adj SS Adj MS F-value P-value Cont.% Remarks 

Model 14 11.9980 0.857002 21.62 0.000   

Linear 4 0.7743 0.193581 4.88 0.014   

RPM 1 0.3422 0.342232 8.63 0.012 8,96 Substantial 
WOB 1 0.2270 0.227031 5.73 0.034 5,95 Substantial 
퐵 1 0.0474 0.047390 1.20 0.296 1,24 Unsubstantial 
퐶푠 1 0.5704 0.570373 14.39 0.003 14,94 Significant. 
Square 4 1.5125 0.378122 9.54 0.001   

RPM*RPM 1 0.3139 0.313931 7.92 0.016 8,22 Substantial 
WOB*WOB 1 0.2219 0.221934 5.60 0.036 5,81 Substantial 
퐵*퐵 1 0.2756 0.275633 6.95 0.022 7,22 Substantial 
퐶푠*퐶푠 1 0.5387 0.538743 13.59 0.003 14,11 Substantial 
Way Interaction 6 0.7908 0.131793 3.33 0.036   

RPM*WOB 1 0.1225 0.122500 3.09 0.104 3,21 Unsubstantial 
RPM*퐵 1 0.3875 0.387461 9.78 0.009 10,15 Substantial 
RPM*퐶푠 1 0.0064 0.006380 0.16 0.695 0,17 Unsubstantial 
WOB*퐵 1 0.1009 0.100855 2.54 0.137 2,64 Unsubstantial 
WOB*퐶푠 1 0.0137 0.013693 0.35 0.568 0,36 Unsubstantial 
퐵*퐶푠 1 0.1745 0.174486 4.40 0.058 4,57 Unsubstantial 
Error 12 0.4756 0.039637   12,46  

Lack-of-fit 10 0.4756 0.047564 * *   

Pure error 2 0.0000 0.000000     

Total 26 12.4737      

DF: degree of freedom; SS: summation of squares; MS: adjusted mean squares 
 

The conducted examination is based on the 
study of variances and significance degrees (푝-
value). The statistical analysis mainly indicates 
that the model used is well-fitted since the sum of 
squares due to the error ( 푆푆 = 0.47 ) can be 
considered very small compared to the total sum 
of squares (푆푆 = 12.47). The calculation of 
the determination coefficient 푅  is an index to 
find the quality of the fit of the obtained model. 

푅  is thus a coefficient indicating the degree of 
correspondence between the detected data and the 
quantities expected by the statistical model. If 푅  
approaches to unity, the experiments and 
predictions data are sufficiently correlated, and 
the predicted model is reliable. From this 
investigation, the obtained higher value of the 
determination coefficient (i.e. 푅 = 0.96 ) 
explains 96% of the variability in the response 

Runs 
Factors Response Runs Factors Response 

RPM 
(rpm) 

WOB 
(kgf) 

 
(°) 

Cs 
(kgf/cm2) 

ROP 
(mm/min)  RPM 

(rpm) 
WOB 
(kgf) 

 
(°) 

Cs 
(kgf/cm2) 

ROP 
(mm/min) 

1 135 160 8 640 2.82 15 118 80 8 750 1.19 
2 118 120 3 750 1.01 16 118 120 45 750 1.43 
3 135 120 45 1550 1.71 17 118 120 8 640 1.96 
4 135 80 8 640 1.86 18 135 120 8 750 1.51 
5 152 120 8 1550 1.67 19 135 80 3 750 0.95 
6 135 120 45 640 1.88 20 135 120 3 640 1.86 
7 135 120 8 750 1.51 21 152 160 8 750 2.91 
8 135 80 8 1550 0.48 22 152 120 8 640 2.53 
9 135 160 8 1550 1.56 23 135 80 45 750 1.60 
10 152 120 3 750 1.69 24 135 160 3 750 1.70 
11 135 120 3 1550 0.49 25 118 120 8 1550 0.81 
12 152 80 8 750 1.68 26 152 120 45 750 3.14 
13 135 120 8 750 1.51 27 135 160 45 750 2.96 
14 118 160 8 750 1.72       



Khettabi, et al. Journal of Mining & Environment, Vol. 15, No. 1, 2024 
 

63 

and shows clearly the high correlation between 
the predicted and experimental data, that is only 
4% represent the influence of other factors or 
other variables not included in the model. 

It is noteworthy that the majority of the terms 
of the model have a remarkable contribution to 
the evolution of the penetration rate, according to 
the percentage of the contribution (i.e. cont.%). 
Results obtained also indicate that the rock 
resistance factor represents the highest statistical 
significance with 4.5728% contribution, which 
reflects the influence of the rock nature on the 
response. Rotational speed also has a significant 
contribution to total ROP variations with 
2.7433%, while exerted weight explains 1.898% 
of the changes in response. 

The cutting angle 훽 makes a small contribution 
to the fluctuation of the response ROP with a 
percentage of 0.3799%. Furthermore, all the 
interactions between the different factors have a 
weak contribution to the variations of the 

response, except the interaction between RPM and 
훽 by 3.1065 %. 

The quadratic term of the compressive strength 
(퐶푠 ∗ 퐶푠) has also a significant contribution to the 
change in response with a percentage of 4.3186%. 
This is confirmed by the complementary finer 
analysis based on the P-value, which determines 
the degrees of the significance of the factors. 푃-
quantities less than 0.05 imply that the prototype 
terms are meaningful. The results presented in 
Table 5 show that 퐶푠, RPM, WOB, as well as the 
interaction of RPM and 훽  ( 푅푃푀 ∗ 훽 ) and the 
quadratic term of resistance to compression (퐶푠 ∗
퐶푠) are significant model terms, so they have a 
significant effect on the response (ROP). 

5. Final Equation in terms of Actual 
Parameters 

Equation 10 represents the quadratic model 
formula for the Rate of Penetration (ROP) 
response: 

 
푂푃 =  24.96 −   0.2451 푅푃푀 −  0.0577 푊푂퐵 −   0.0481 퐵 −  0.01114 퐶푠 +   0.000842 푅푃푀 ∗ 푅푃푀 

+  0.000128 푊푂퐵 ∗ 푊푂퐵 −  0.001378 퐵 ∗ 퐵 +  0.000004 퐶푠 ∗ 퐶푠 +  0.000257 푅푃푀
∗ 푊푂퐵 +  0.000748 푅푃푀 ∗ 퐵 +  0.000004 푅푃푀 ∗ 퐶푠 +  0.000162 푊푂퐵 ∗ 퐵 
+  0.000003 푊푂퐵 ∗ 퐶푠 +  0.000016 퐵 ∗ 퐶푠 

(10) 

 
The influence of different input parameters on 

the output response that describes the behavior of 
the drilling process according to the mathematical 
model based on RSM approach has been 
established, and the results are depicted in Figure 
6. Also a three-dimensional graphical 
representation of the interaction effect of two 
factors is drawn in Figure 7. 

It should be interpreting the contour plot to 
understand how changes in the two factors 
influence the response variable. Figure 6 shows 

and confirms that the interaction effect of WOB 
and RPM is the most influential on the 
development of ROP, where the areas of steep 
incline in the contour lines indicate that regions 
where small changes in the WOB and RPM are 
led to significant changes in the response ROP. It 
should be noted that all the effects of the 
interactions that contain the compressive 
resistance factor 퐶푠  influence disproportionately 
on the development of the response ROP. 
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Figure 6. Contour-plots of penetration rate, ROP. 

 
Figure 7. 3D plots of ROP response versus input variables. 

From Figure 7(a), it can be seen that the 
maximal penetration rate, ROP, is obtained with 
the combination of the highest values of weight, 
WOB and rotational speed, RPM. As drawn in 
Figure 7(b), the maximal ROP is achieved with a 
higher RPM value and middle cutting angle (퐵). 
Also results obtained in Figure 7(c) reveal that the 
maximal ROP can be gained with the lowest 

values of both RPM and rock resistance (퐶푠 ). 
Figures 7(d) and 7(e) depict that the maximal 
ROP values are determined with an association of 
lowest values of WOB and 퐵, and WOB and 퐶푠, 
respectively. Finally, the maximal ROP has also 
been achieved with the lowest values of both 퐵 
and 퐶푠  parameters, as displayed in Figure 7(f). 
Finally, the maximal ROP has also been achieved 
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with the lowest values of both 퐵  and 퐶푠 
parameters, as displayed in Figure 7(f). 

6. Results and Discussion 

As shown in the above sections, statistical data 
processing using ANOVA with a determination of 
the influence of each input variable and its 
interactions on the output response was done. 
Also the response surface plots obtained are 
generated taking into account the effect of two 

parameters simultaneously; the third term is 
considered constant. The optimization and 
modeling are performed using RSM outputs.  

Figure 8 displays the normal probability of the 
residuals of the obtained models. Results obtained 
show that the fit errors are distributed within 
reasonable proximity to the reference straight line. 
Also it is highly noticed that residuals have a 
normal distribution. 

 
Figure 8. Normal probability plot of the residuals for penetration rate, ROP. 

The adjustment evaluation of this model can be 
identified more precisely using the results 
obtained by calculating the percentage of error 
between the measured and the predicted value for 
each of the experiments carried out. 

Table 6 shows that the greatest adjustment 
error made (around 54.81% for an observed 
response of 0.49) corresponds to experiment 11. 
Also the error percentages of experiments 25 and 
8 reached 49.94 and 24.7725, respectively; they 
are considered relatively high. This was to be 
expected because it is impossible for the response 
predicted by the model to be perfectly fitted to all 
the values obtained during experiments. 
Nevertheless, 25 out of 27 experiments give well-
adjusted results with predicted responses with 

error percentages below 20% (Cetin et al., 2011), 
so the error percentages are within acceptable 
limits, confirming that the fit is very good. 

Figure 9 describes the regression model that 
allows us to estimate the correlation of the 
experimental data. This consists in finding the 
relation, making it possible to explain the 
behavior of the penetration rate, ROP, response 
measured as a function of the predicted response. 

The dispersion of the measured response is a 
measure of the correlation; if the dispersion is 
small, the regression analysis is appropriate to 
describe the variation of this response, and if the 
dispersion is high, the regression analysis is not 
appropriate. 
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Table 6. Percentage of errors between the measured and the predicted response. 

runs Actual 
ROP 

Predicted 
ROP 

Percentage 
of error Runs Actual 

ROP 
Predicted 

ROP 
Percentage 

of error 
1 2.82 2.5987 8.5158% 15 1.19 1.2533 5.0506 
2 1.01 1.0419 3.0617% 16 1.43 1.2713 12.4832 
3 1.71 1.6175 5.7187% 17 1.96 1.8324 6.9635 
4 1.86 1.7242 7.8761 18 1.51 1.4559 3.7159 
5 1.67 1.3991 19.3624 19 0.95 0.8969 5.9203 
6 1.88 2.3091 18.5829 20 1.86 1.6196 14.8431 
7 1.51 1.4559 3.7159 21 2.91 2.9043 0.1962 
8 0.48 0.3847 24.7725 22 2.53 2.5676 1.4644 
9 1.56 1.4776 5.5766 23 1.60 1.3881 15.2654 

10 1.69 1.6650 1.5015 24 1.70 1.7329 1.89 
11 0.49 0.3165 54.8183 25 0.81 0.5402 49.9444 
12 1.68 1.6539 1.5780 26 3.14 2.9624 5.9951 
13 1.51 1.4559 3.7159 27 2.96 2.7685 6.9171 
14 1.72 1.8046 4.6880     

 
Figure 9. Measured and predicted values of penetration rate, ROP. 

Results obtained reveal that the points that 
represent the measured response are almost 
coincident on the benchmark curve, which 
represents the predicted response, which reflects a 
great convergence between the two curves in 
terms of change of values. The comparison 
between the measured response and the response 
predicted by the model confirms that the fit is of 
very good quality. Therefore, we conclude that the 
model is suitable and useful for predicting the 
penetration rate, ROP, behavior.  

The comparison of the prior research serves 
the purpose of evaluating the scientific value of 
our study [7.20, 27.30]. This assessment is based 
on the data used, the methodologies adopted, and 
the results obtained. When comparing prior 
studies in the field of drilling, a consistent theme 
emerges; all these studies share a common 
primary objective, which is to effectively manage 

drilling operations with the goal of cost 
minimization. The approach I was employed to 
treat the research problem similar to that of 
previous studies. Upon juxtaposing the current 
study with prior research endeavors employing 
similar analysis and modeling techniques in the 
drilling field, it becomes evident that our study's 
model adaptation coefficient (푅 ) surpasses those 
obtained in the previous studies. This observation 
underscores the high quality of the results we 
have achieved, the model's efficiency, and its 
capacity for providing confident predictions. 

Given the precision of the obtained results, 
they are deemed reasonable and relatively 
realistic, making them applicable, especially in 
environments featuring rocks of a similar nature 
such as oil well drilling. Furthermore, the 
inclusion of additional factors such as the 
hydraulic parameters of the drilling process, 
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particularly the mud flow rate, may enhance 
ability the potential to significantly improve the 
comprehensive analysis of ROP behavior. 

7. Response Optimization 

The final step in our investigation is to find the 
optimal values for the studied problem, which are 
the values of weight, rotational speed, drill ability, 
as well as rake angle, leading to maximizing the 
feed rate. To find the maximum of a function of 
several variables, it must find any point canceling 
the partial derivatives. 

If we set 푦  the predicted response, and 
푥 , 푥 , 푥 , 푥  the four factors, we obtain the 
system of the following functions: 

휕푦
휕푥

(푥  푥  푥  푥 ) = 0 (11.1) 

휕푦
휕푥

(푥  푥  푥  푥 ) = 0 (11.2) 

휕푦
휕푥

(푥  푥  푥  푥 ) = 0 (11.3) 

휕푦
휕푥

(푥  푥  푥  푥 ) = 0 (11.4) 

The solutions of this system are the optimal 
values that lead to maximizing the ROP. Figure 
10 shows the results of solving the equations 
according to the RSM method using the 
MINITAB software. 

 
Figure 10. Response optimization plot for penetration rate in rotary drilling. 

The optimized penetration response area was 
plotted using the MINITAB software, as shown in 
Figure 10. The desirability function has been 
selected to find a suitable factor value. Figure 10 
displays that the objective optimization of the 
penetration rate was achieved with a rotation 
speed of 152 rpm, a bit weight of 160 푘푔푓 , an 
angle of cut 훽′ = 36.9394 ≈ 37°, and compressive 

strength of rocks 640 푘푔푓/푐푚 . It can be also 
possible to estimate the maximum penetration 
rate, gained for optimum conditions, at 4.5801 
mm. Particularly, the optimized response curve 
makes it possible to obtain an optimal penetration 
rate by redefining the values of the process 
parameters in the experimental interval. The 
optimization results are tabulated in Table 7. 

Table 7. Response optimization parameters (global solution). 
Factors Code Optimization parameters Penetration rate (RMS model) 

Rotation speed RPM3 152 푟푝푚 

4.5801 Weight on the bit WOB3 160 푘푔푓 
Cutting angle 훽′ 37° 
Resistance of rocks to compression 퐶푠 640 푘푔푓/푐푚  
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8. Conclusions 

To our best knowledge, in the literature, there 
are no research works that treat and optimize the 
drilling process statistically via response surface 
methodology. Our investigation can be highly 
considered an original contribution to 
understanding the drilling process and optimizing 
the rate of penetration (ROP). The current 
research work was thus mainly focused on 
optimizing the penetration rate against variations 
in different functional parameters such as weight 
on the bit, bit rotational speed, formation type, 
and cutting angle during a drilling operation. The 
Response Surface Methodology (RSM) was 
adopted to optimize the penetration rate of the 
drilling tool. A mathematical model simulating 
the behavior of a drilling system has been 
developed. The study was based on a statistical 
regression analysis of experimental data. It was 
found that the model developed is reliable and in 
good agreement with experimental observations. 
Based on the RSM methodology, it can be 
concluded that: 

 The different parameters have a noticeable 
effect on the drilling penetration rate. It 
should be noted that the effect of the 
interaction of RPM and WOB is the factor 
that has the greatest influence on ROP 
compared to other factors. 

 Regarding the estimation of the different 
parameters of the model, it is interesting to 
note that the parameter of 퐶푠  has an 
important significant effect on the changes 
in the penetration rate, with values of 
4.5728%. 

 During this research work, the RSM 
methodology was successfully employed to 
optimize the rate of penetration (ROP). We 
have found interesting results with high 
performance and cost minimization. We 
have tried to find the optimal values that 
give a more efficient drilling operation (i.e. 
the best rate of penetration (ROP). The best 
ROP was thus obtained for the following 
operating input parameters: 

 훽′ , WOB3, RPM3, and 퐶푠 , with 훽′ ≈ 37° , 
RPM3 = 152 rpm, WOB3 = 160 푘푔푓, and 
퐶푠  = 640 푘푔푓/푐푚 . 

 The quadratic mathematical model was 
developed in confidence intervals of 
96.1863%, for the prediction of the 
penetration rate, ROP. The results show 

that the chosen model is well-adjusted, and 
therefore, it is very useful for determining 
the predicted response. 

It's important to note that the study was 
conducted on rocks of limestone and marble 
nature, and changing the rock type may yield 
different results. Hence, additional research is 
necessary to obtain further results, allowing for a 
more comprehensive evaluation of the impact of 
various parameters on the drilling process's 
performance. 
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  چکیده:

 ــ. اشــودیاســتفاده م یشده تجربمشاهده ریو مقاد شدهینیبشیپ ریمقاد نیتفاوت ب جادیا ي) معمولاً براRSMثابت شده است که روش سطح پاسخ (  یه خوبب  نی
را  يحفــار بــزار، و مقاومت سنگ بر نرخ نفــوذ اβبرش  هی، زاوRPM ت،ی)، سرعت چرخش بWOB( تیب يشامل وزن رو  يچهار عامل حفار  ریمطالعه عمدتاً تأث

در نظــر گرفتــه شــده  يورود ریشده در سه مرحله از چهار متغ يزیربرنامه يهایابیدر نظر گرفته شد. ارز  یسه نوع سنگ آهک  یبررس  نی. در ادهدیهدف قرار م
ل به ما اجازه داد تا مدل نفوذ مناســب بــا یو تحل هیتجز نی) انجام شد. اANOVA( انسیوار لیو تحل  RSMبا استفاده از روش    يآمار  لیو تحل  هیانجام شد. تجز

گرفت که مدل  جهیتوان نتیم جهیاست و در نت یشده و تجرب ینیبشیپ يهاداده نیبالا ب یکه نشان دهنده همبستگ میرا توسعه ده  %96.19بالاتر    نییتع بیضر
 يو وزن رو RPMکه سرعت چرخش،  دهدیآمده نشان مدستبه ج ینتا انس،یوار لیاز تحل نیمناسب است. نرخ نفوذ. همچن  اریبس  ینیبشیپ  يبه دست آمده برا

چنگک  هیحال، زاو نیبر نفوذ دارند. نرخ؛ با ا  یتوجهقابل  ریتأث  شود،یم  نییسنگ تع  يسنگ که توسط مقاومت فشار  تیماه  نی) و همچنWOB(  تیب  يپارامترها
 شد. نییتع ينرخ نفوذ ممکن ابزار حفار نیربهت افتنی يبرا نهیبه يپارامترها ت،یدارد. در نها یکم ریتاث

  .روش سطح پاسخ  نه،یبه يپارامترها ،يحفار يپارامترها ،یتجرب يداده ها ،يساز نهیبه کلمات کلیدي:

  

 

 

 


