[1]. Ghasemi, N. and Rohani, S., 2019. Optimization of cyanide removal from wastewaters using a new nano-adsorbent containing ZnO nanoparticles and MOF/Cu and evaluating its efficacy and prediction of experimental results with artificial neural networks. Journal of Molecular Liquids, 285, 252-269.
[2]. Han, B., Shen, Z., Wickramasinghe, S.R. 2005. Cyanide removal from industrial wastewaters using gas membranes. Journal of membrane science, 257(1), 171-181.
[3]. Logsdon, M.J., Hagelstein, K., Mudder, T. 1999. The management of cyanide in gold extraction: International Council on Metals and the Environment, Ottawa.
[4]. Lee, T. Y., Kwon, Y. S., and Kim, D. S. (2004). Oxidative treatment of cyanide in wastewater using hydrogen peroxide and homogeneous catalyst. Journal of Environmental Science and Health, Part A, 39(3), 787-801.
[5]. Amaouche, H., Chergui, S., Halet, F., Yeddou, A. R., Chergui, A., Nadjemi, B., and Ould-Dris, A. (2019). Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide catalyzed by copper oxide. Water Science and Technology, 80(1), 126-133.
[6]. Moussavi, G. and Khosravi, R., 2010. Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: Parametric experiments, kinetics and equilibrium analysis.
Journal of Hazardous Materials, 183(1-3), 724-730.
https://doi.org/10.1016/j.jhazmat.2010.07.086.
[7]. Gebresemati, M., Gabbiye, N., and Sahu, O. 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. Journal of applied research and Technology, 15(1), 27-35.
[8]. Osathaphan, K., Boonpitak, T., Laopirojana, T., and Sharma, V. K. 2008. Removal of cyanide and zinc–cyanide complex by an ion-exchange process. Water, air, and soil pollution, 194(1), 179-183.
[9]. Simsek, H., Kobya, M., Khan, E., and Bezbaruah, A. N. 2015. Removal of aqueous cyanide with strongly basic ion-exchange resin. Environmental technology, 36(13), 1612-1622.
[10]. Zhang, J., Liu, L., Liang, Y., Zhou, J., Xu, Y., Ruan, X., Lu, Y., Xu, Z., Qian, G. 2015. Enhanced precipitation of cyanide from electroplating wastewater via self-assembly of bimetal cyanide complex. Separation and Purification Technology, 150, 179-185.
[11]. Bodalo-Santoyo, A., Gómez-Carrasco, J. L., Gomez-Gomez, E., Maximo-Martin, F., and Hidalgo-Montesinos, A. M. 2003. Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination, 155(2), 101-108.
[12]. Vasquez Salazar, E. E. and Hurtado Bolanos, F. P. 2021. Cyanide compounds removal efficiency in a reverse osmosis system using a water supply from a co-precipitation chemical process. Desalination and Water Treatment, 229, 235-242.
[13]. Jaszczak, E., Polkowska, Z., Narkowicz, S., Namieśnik, J., 2017. Cyanides in the environment analysis problems and challenges. Environmental Science and Polluion Research, 24, 15929–15948.
[14]. Naeem, S., Zafar, U. 2009. Adsorption studies of cyanide (CN)- on alumina, PAKISTAN JOURNAL OF ANALYTICAL & ENVIRONMENTAL CHEMISTRY,10, 83–87.
[15]. Adhoum, N. and Monser, L. 2002. Removal of cyanide from aqueous solution using impregnated activated carbon. Chemical Engineering and Processing: Process Intensification, 41(1), 17-21.
[16]. Halet, F., Yeddou, A. R., Chergui, A., Chergui, S., Nadjemi, B., and Ould-Dris, A. 2015. Removal of cyanide from aqueous solutions by adsorption on activated carbon prepared from lignocellulosic by-products. Journal of Dispersion Science and Technology, 36(12), 1736-1741.
[17]. Wang, X., Wang, X., Tan, H., Hu, Z., Deng, S., and Li, Y. 2015. Removal of hydrogen cyanide by using activated carbon: the effect of adsorption condition and chemical modification. Journal of Biobased Materials and Bioenergy, 9(6), 545-552.
[18]. Depci, T. 2012. Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water. Chemical Engineering Journal, 181, 467-478.
[19]. Alonso-González, O., Nava-Alonso, F., and Uribe-Salas, A. 2009. Copper removal from cyanide solutions by acidification. Minerals Engineering, 22(4), 324-329.
[20]. Bae, M., Lee, H., Kim, S., and Yoo, K. 2019. Destruction of cyanide and removal of copper from waste printed circuit boards leach solution using electro-generated hypochlorite followed by magnetite adsorption. Metals, 9(9), 963.
[21]. Tyagi, M., Rana, A., Kumari, S., and Jagadevan, S. 2018. Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron: Optimization through response surface methodology, isotherm and kinetic studies. Journal of Cleaner Production, 178, 398-407.
[22]. Coronel, S., Endara, D., Lozada, A. B., Manangón-Perugachi, L. E., and de la Torre, E. 2021. Photocatalytic Study of Cyanide Oxidation Using Titanium Dioxide (TiO2)-Activated Carbon Composites in a Continuous Flow Photo-Reactor. Catalysts, 11(8), 924.
[23]. Samarghandi, M. R., Al-Musawi, T. J., Mohseni-Bandpi, A., and Zarrabi, M. 2015. Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. Journal of molecular liquids, 211, 431-441.
[24]. Mohseni-Bandpi, A., Al-Musawi, T. J., Ghahramani, E., Zarrabi, M., Mohebi, S., and Vahed, S. A. 2016. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. Journal of Molecular Liquids, 218, 615-624.
[25]. Noroozi, R., Al-Musawi, T. J., Kazemian, H., Kalhori, E. M., and Zarrabi, M. 2018. Removal of cyanide using surface-modified Linde Type-A zeolite nanoparticles as an efficient and eco-friendly material. Journal of Water Process Engineering, 21, 44-51.
[26]. Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G.N., Azimi, A.A., Ghadiri, S.K., 2010. Removal of petroleum aromatic hydrocarbons by surfactant‐ modified natural zeolite: the effect of surfactant. Clean Soil, Air, Water, 38(1), 77-83. https://doi.org/10.1002/clen.200900157.
[27]. Ashrafizadeh, S.N., Khorasani, Z., Gorjiara, M., 2008. Ammonia removal from aqueous solutions by Iranian natural zeolite. Separation Science and Technology, 43(4), 960-978. https://doi.org/10.1080/01496390701870614
[28]. Manyuchi, M. M., Sukdeo, N., and Stinner, W. 2022. Potential to remove heavy metals and cyanide from gold mining wastewater using biochar. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103110.
[30]. Bukhari, S. S., Behin, J., Kazemian, H., and Rohani, S. 2015. Synthesis of zeolite NA‐A using single mode microwave irradiation at atmospheric pressure: The effect of microwave power. The Canadian Journal of Chemical Engineering, 93(6), 1081-1090.
[31]. Larsen OFA and Woutersen S. 2004. Vibrational relaxation of the H2O bending mode in liquid water. J Chem Phys. 121, 12143–12145.
[32]. Taffarel, S. R. and Rubio, J. 2010. Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), 771-779.
[33]. Apha, A. 2005. Wpcf. Standard methods for the examination of water and wastewater. 20th Ed.,Washington, DC.
[34]. Eletta, O.A.A., Ajayi, O.A., Ogunleye, O.O., and Akpan, I.C., 2016. Adsorption of cyanide from aqueous solution using calcinated eggshells: Equilibrium and optimization studies. Journal of Environmental Chemical Engineering, 4(1), 1367-1375.
[35]. Deveci, H. A. C. I., Yazıcı, E. Y., Alp, I., and Uslu, T. U. N. C. A. Y. 2006. Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. International Journal of mineral processing, 79(3), 198-208.
[36]. Stavropoulos, G.G., Skodras, G.S., and Papadimitriou, K.G., 2015. Effect of solution chemistry on cyanide adsorption in activated carbon. Applied thermal engineering, 74,. 182-185. https://doi.org/10.1016/j.applthermaleng.2013.09.060.
[37]. Liu, G. J., Zhang, X. R., McWilliams, L., Talley, J. W., and Neal, C. R. 2008. Influence of ionic strength, electrolyte type, and NOM on As (V) adsorption onto TiO2. Journal of Environmental Science and Health Part A, 43(4), 430-436.
[38]. Li, C., Yu, Y., Zhang, Q., Zhong, H., and Wang, S. 2020. Removal of Ammonium from Aqueous Solutions using Zeolite Synthesized from Electrolytic Manganese Residue. International Journal of Chemical Engineering, 2020.
[39]. Freundlich, H. M. F. 1906. Over the adsorption in solution. J. Phys. chem, 57(385471), 1100-1107.
[40]. Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
[41]. Tempkin, M. I. and Pyzhev, V. J. A. P. C. 1940. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica URSS, 12(1), 327.
[42]. Weber, T. W. and Chakravorti, R. K. 1974. Pore and solid diffusion model for fixed bed adsorbents. AIChE Journal, 20, 228.
[43]. Lagergren, S. K. 1898. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
[44]. Ho, Y. S. and McKay, G. 1999. Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
[45]. Kumar, P.S. and Kirthika, K. 2009. Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. Journal of Engineering Science and Technology, 4(4), 351-363.
[46]. Yoon, Y. H. and Nelson, J. H. 1984. Application of gas adsorp-tion kinetics I. A theoretical model for respirator cartridge servicelife. American Industrial Hygiene Association Journal, 45(8), 509–516.