Document Type : Original Research Paper

Authors

1 Department of Earth Sciences., Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Petroleum and Mining Engineering., South Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of Geology., Payame Noor University, Tehran, Iran

Abstract

The aim is to use the Concentration-Volume (C-V) fractal model to identify high-quality parts of coal seams based on sulfur and ash concentrations. In the K1 and K7 coal seams in the North Kochakali coal deposit, 5 and 6 different populations of ash and sulfur content were obtained based on the results. According to this model, sulfur and ash concentrations below 1.81% and 33.1% for the K7 seam, and below 4.46% and 37.1% for the K1 seam, respective base on Russian standard for ash and high sulfur content of North Kochakali coals were considered as appropriate values. In order to identify the high-quality parts of K1 and K7 coal seams, plans at different depths were used based on the C-V fractal model. Plans at different depths suggests that the southern part of the K1 seam and the northern part of the K7 seam have the highest-quality based on sulfur and ash concentrations, which should be considered in the extraction operation. The logratio matrix was used to compare the results of the C-V fractal model with the geological data of pyrite veins and coal ash. This matrix indicates that sulfur content above 3.8% for the K7 seam and above 4.41% for the K1 seam have good and very good correlation with pyritic veins of geological data, respectively. There are good overall accuracy (OA) values in the correlation between parts of the seam with ash concentration above 37.1% and 45.7% for the K1 and K7 seams, respectively, and the coal ash obtained from the geological data.
 

Keywords

Main Subjects

[1]. Nouri, R., Jafari, M., Arian, M., Feizi, F., & Afzal, P. (2013a). Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran). Geologica Carpathica, 64(5), 409-416.
[2]. Nouri, R., Jafari, M.R., Arian, M., Feizi, F., & Afzal, P. (2013b). Prospection for Copper Mineralization with Contribution of Remote Sensing, Geochemical and Mineralographical Data in Abhar 1:100,000 Sheet, NW Iran. Archives of Mining Sciences, 58(4), 1071-1084.
[3]. Nouri, R. & Arian, M. (2017). Multifractal modeling of the gold mineralization in the Takab area (NW Iran). Arabian Journal of Geosciences, 10(5), 105.
[4]. Mansouri, E., Feizi, F., Jafari Rad, A., & Arian, M. (2017). A comparative analysis of index overlay and topsis (based on AHP weight) for Iron Skarn Mineral prospectivity mapping, a case study in Sarvian Area, Markazi Province, Iran. Bulletin of the Mineral Research and Exploration, 155, 147-160.
[5]. Mansouri, E., Feizi, F., Jafari Rad, A., & Arian, M. (2018). Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran. Solid Earth, 9(2), 373-384.
[6]. Nabilou, M., Arian, M., Afzal, P., Adib, A., & Kazemi, A. (2018). Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, central Iran. Episodes Journal of International Geoscience, 41(3), 143-159.
[7]. Arian, M. (2012). Clustering of Diapiric Provinces in the Central Iran Basin. Carbonates and Evaporites, 27(1), 9-18.
[8]. Arian, M., Bagha, N., Khavari, R., & Noroozpour, H. (2012). Seismic Sources and Neo-Tectonics of Tehran Area (North Iran). Indian Journal of Science and Technology, 5(3), 2379-2383.
[9]. Arian, M. & Aram, Z. (2014). Relative Tectonic Activity Classification in the Kermanshah Area, Western Iran. Solid Earth, 5(2), 1277-1291.
[10]. Arian, M. (2015). Seismotectonic-Geologic Hazards Zoning of Iran. Earth Sciences Research Journal, 19(1), 7-13.
[11]. Ehsani, J. & Arian, M. (2015). Quantitative Analysis of Relative Tectonic Activity in the Jarahi-Hendijan Basin Area, Zagros Iran. Geosciences Journal, 19(4), 1-15.
[12]. Aram, Z. & Arian, M. (2016). Active Tectonics of the Gharasu River Basin in Zagros, Iran, Investigated by Calculation of Geomorphic Indices and Group Decision using Analytic Hierarchy Process (AHP) Software. Episodes, 39(1), 39-44.
[13]. Razaghian, G., Beitollahi, A., Pourkermani, M., & Arian, M. (2018). Determining seismotectonic provinces based on seismicity coefficients in Iran. Journal of Geodynamics, 119(20), 29-46.
[14]. Taesiri, V., Pourkermani, M., Sorbi, A., Almasian, M., & Arian, M. (2020). Morphotectonics of Alborz Province (Iran): A Case Study using GIS Method. Geotectonics, 54(5), 691-704.
[15]. Khavari, R., Arian, M., & Ghorashi, M. (2009). Neotectonics of the South Central Alborz Drainage Basin, in NW Tehran, N Iran. Journal of Applied Sciences, 9(23), 4115-4126.
[16]. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K., & Majidifard, M.R. (2009). Lithostratigraphy of the Upper Triassic–Middle Jurassic Shemshak Group of Northern Iran. In South Caspian to Central Iran Basins. Geological Society of London, Special Publication, 312(1), 129–60.
[17]. Salehi, M. A., Wilmsen, M., Zamanian, E., Baniasad, A., & Heubeck, C. (2022). Depositional and thermal history of a continental, coal-bearing Middle Jurassic succession from Iran: Hojedk Formation, northern Tabas Block. Geological Magazine, 160(2), 235-259.
[18]. Demirbas, A. & Karslioglu, S. (2004). Removal of organic sulfur from coal by wheat straw ash and potassium ferric hexacyanoferrat (II). Energy Exploration & Exploitation, 22(6), 429-439.
[19]. Ayhan, F.D., Abakay, H., & Saydut, A. (2005). Desulfurization and deashing of Hazro coal via a flotation method. Energy & Fuels, 19(3), 1003-1007.
[20]. Duz, M.Z., Tonbul, Y., Baysal, A., Akba, O., Saydut, A., & Hamamci, C. (2005). Pyrolysis kinetics and chemical composition of Hazro coal according to the particle size. Journal of Thermal Analysis and Calorimetry, 81 (2), 395-398.
[21]. Erdogan, S., Baysal A., Akba O., & Hamamci C. (2007). Interaction of metals with humic acid isolated from oxidized coal. Polish Journal of Environmental Studie, 16(5), 671-675.
[22]. Zhao, C.L. & Sun Y.Z. (2008). Rare earth elements of coal seam 5 from Gequan Mine,  Xingtai Coalfield. World Journal of Engineering, 5(1), 90-94.
[23]. Zhao C.L., Qin S.J., Yang Y.C., Li Y.H., & Lin M.Y. (2009). Concentration of gallium in the Permo-Carboniferous coals of China. Energy Exploration & Exploitation, 27(5), 333-343.
[24]. Shukla, A., Prasad, A.K., Mishra, S., Vinod, A., & Varma, A.K. (2023). Rapid Estimation of Sulfur Contentin High-Ash Indian Coal using Mid-Infrared FT-IR Data. Minerals, 13(5), 1-20.  
[25]. Calkins, W.H. (1994). The Chemical Forms of Sulfur in Coal. A Review. Fuel 1994, 73(4), 475–484.
[26]. GoldsWorthy, P., Eyre, D.J., & On, E. (2013). Value-in-Use (VIU) Assessment for Thermal and Metallurgical Coal. In The Coal Handbook: Towards Cleaner Production, Elsevier, Amsterdam, 496 P.
[27]. Zheng, B., Ding, Z., Huang, R., Zhu, J., Yu, X., Wang, A., Zhou, D., Mao, D., & Su, H. (1999). Issues of health and disease relating to coal use in Southwest China. International Journal of Coal Geology, 40(2-3), 119−132.
[28]. Wu, M., Shen, J., Qin, Y., Qin. Yo., Wang, X., & Zhu. S. (2022). Method of Identifying Total Sulfur Content in Coal: Geochemical and Geophysical Logging Data from the Upper Paleozoic in North China. ACS Omega, 7 (49), 45-56.
[29]. Yang, X., Ingham, D., Ma, L., Srinivasan, N., & Pourkashanian, M. (2017). Ash Deposition Propensity of Coals/Blends Combustion in Boilers: A Modeling Analysis based on Multi-Slagging Routes. Proc. Combust. Inst, 36(3), 41–50.
[30]. Yazdi, M., & Golzar, H. (2012). Geochemical properties and environmental impacts of the Mazino coal. European Chemical Bulletin, 1(5), 125-129.
[31]. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Freeman, San Fransisco, 468 P.
[32]. Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.
[33]. Agterberg, F.P., Cheng, Q., Brown, A., & Good, D. (1996). Multifractal modeling of fractures inthe Lac du Bonnet Batholith, Manitoba. Computers & Geosciences, 22(5), 497–507.
[34]. Costa, J.F. (1997). Development in Recoverable Reserves and Ore Body Modeling, WH Bryan Mining Geology Research Centre, University of Queensland, 333 P.
[35]. Turcotte, D.L. (1997). Fractals and Chaos in Geology and Geophysics, Cambridge Univ Press, Cambridge, 416 P.
[36]. Costa, J.F. & Dimitrakopoulos, R. (1998). A conditional fractal (fBm) simulation approach for orebody modelling. International journal of surface mining, reclamation and environment, 12(4), 197–202.
[37]. Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2), 167–175.
[38]. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province. Ore Geology Reviews, 32(2), 314–324.
[39]. Zuo, R., Cheng, Q., & Xia, Q. (2009). Application of fractal models to characterization of vertical
distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1), 37–43.
[40]. Afzal, P., FadakarAlghalandis, Y., Khakzad, A., Moarefvand, P., & Rashidnejad Omran, N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 6(7): 220–232.
[41]. Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., Afzal, P., & Sadeghi, B. (2012). Application of number–size (N–S) fractal model to quantify of the vertical distributions of Cu and Mo in Nowchun porphyry deposit (Kerman, SE Iran). Archives of Mining Sciences, 58(1), 89–105.
[42]. Zuo, R., Carranza, E.J.M., & Cheng, Q. (2012). Fractal/multifractal modelling of geochemical exploration data Journal of Geochemical Exploration, 122 (12), 33-41.
[43]. Afzal, P., Dadashzadeh Ahari, H., RashidnejadOmran, N., & Aliyari, F. (2013). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews. 55(6), 125–133.
[44]. Yasrebi, A.B., Afzal, P., Wetherelt, A., Foster, P.J., & Esfahanipour, R. (2013). Correlation between geology and concentration–volume fractal models: significance for Cu and Mo mineralised zones separation in Kahang porphyry deposit, Central Iran. Geologica Carpathica, 64(2), 153–163.
[45]. Zuo, R., Xia, Q., & Wang, H., 2013. Compositional data analysis in the study of integratedgeochemical anomalies associated with mineralization. Applied Geochemistry, 28(12), 202–221.
[46]. Cheng, Q.M. (1995). The perimeter–area fractal model and its application to geology. Mathematical Geosciences, 27(6), 69–82.
[47]. Afzal, p., Alhoseini, S.H., Tokhmechi, b., Kaveh Ahangaran, D., Yasrebi, A.B., Madani, N., & Wetherelt, A. (2014). Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. International Journal of Coal Geology, 127, 88–99.
[48]. Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. (Eds.), Proc of the Conference of the International Association for Mathematical Geology, 1, 87–92.
[49]. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., & Daneshvar Saein, L. (2012). Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration, 122(10),  9–19.
[50]. Afzal, P. & Hassanpour, Sh. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system,NW Iran. Arabian Journal of Geosciences, 6(3), 957–970.
[51]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P., & Yasrebi, A. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119, 139–149.
[52]. Mahdiyanfar, H. & Seyedrahimi Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment (JME), 14(3), 1019-1035.
[53]. Soltani, F., Afzal, P., & Asghari, O. (2014). Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. Journal of Geochemical Exploration, 140, 64-76.
[54]. Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., & Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10(3), 705-715.  
[55]. Kianersi, A., Adib, A., & Afzal, P. (2021). Detection of Effective Porosity and Permeability Zoning in an Iranian OilField Using Fractal Modeling. International Journal of Mining and Geo-Engineering, 55(1), 49-58.
[56]. Zissimos, A. M., Cohen, D. R., Christoforou, I. C., Sadeghi, B., & Rutherford, N. F. (2021). Controls on soil geochemistry fractal characteristics in Lemesos (Limassol), Cyprus. Journal of Geochemical Exploration, 220(29), 162-172.
[57]. Kianoush, P., Mohammadi, G., Hosseini, S. A., Keshavazr Faraj Khah, N., & Afzal, P. (2022). Compressional and Shear Interval Velocity Modeling to Determine Formation Pressures in an Oilfield of SW Iran. Journal of Mining and Environment, 13(3), 851-873.
[58]. Mahdizadeh, M., Afzal, P., Eftekhari, M., & Ahangari, K. (2022). Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran. Bulletin of Engineering Geology and the Environment, 81(1), 59.
[59]. Mirzaei, M., Adib, A., Afzal, P., Rahemi, E., & Mohammadi, G. (2022). Separation of geological ore and gangues zones based on multivariate fractal modeling in Jalal Abad iron ore deposit, Central Iran. Advanced Applied Geology, 12(3), 573-588.
[60]. Sim, B.L., Agterberg, F.P. & Beaudry, C. (1999). Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Computers & Geosciences, 25(9), 1023–1041.
[61]. Salarian,S., Asghari, O.,Abedi, M., & Alilou, S.K. (2019). Geostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran. Journal of Mining and Environment (JME), 10(4), 1061- 1081.
[62]. Khalajmasoumi, M., Lotfi, M., Afzal, P., Sadeghi, B., Memar Kochebagh, A., Khakzad, A., & Ziazarifi, A. (2015). Delineation of the radioactive elements based on the radiometric data using concentration–area fractal method in the Saghand area, Central Iran. Arabian Journal of Geosciences, 8(8), 6047–6062.
[63]. Seyedrahimi Niaraq, M., & Hekmatnejad, A. (2020). The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochim, 40(1), 78-88.
[64]. Yasrebi, A.B., Hezarkhani, A., & Afzal, P. (2017). Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection. Resources Policy, 53, 384-393.
[65]. Pazand, K. (2015). Rare earth element geochemistry of coals from the Mazino Coal Mine, Tabas Coalfield, Iran. Arabian Journal of Geosciences, 8(12), 59–69.
[66]. AliMolaei, M. & Aminzadeh, A. (2019). Geochemical properties of major and rare earth elements in the South Kouchek-Ali Coal Mine, Tabas. Journal of Economic Geology, 11(2), 321 – 337.
[67]. Aghanabati, S.A. (2004). Geology of Iran. Tehran, Geological Survey of Iran (in Persian), 586 P.
[68]. Mohamadi, A. (2014). Thermal Coal Project-Exploration in the South Kouchek-Ali Coal Mine, Tabas. Kavesh Kansar Engineering Company, Tehran, 230 P.
[69]. Seyed-Emami, K., Schairer, G., Fürsich, F.T., Wilmsen, M., & Majidifard, M.R. (2000). First record of ammonites from the Badamu Formation at the Shotori Mountains (CentralIran). Eclogae Geologiae Helvetiae, 93(2) 257–263
[70]. Geological Suvey of Iran, Iran DEM.
[71]. Geological Suvey of Iran, 1:100000 Robatkhan map.
[72]. Wood, G.H. & Kehn, M. (1976). Coal Resource Classification System of U.S. Geological Survey, USA 
[73]. Skochinsky, A. & Komarov, V. (1996). Mine ventilation, Mir publishers, Moscow, Russia.
[74]. Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using log ratiotransformedstream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167–185.