[1]. Nouri, R., Jafari, M., Arian, M., Feizi, F., & Afzal, P. (2013a). Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran). Geologica Carpathica, 64(5), 409-416.
[2]. Nouri, R., Jafari, M.R., Arian, M., Feizi, F., & Afzal, P. (2013b). Prospection for Copper Mineralization with Contribution of Remote Sensing, Geochemical and Mineralographical Data in Abhar 1:100,000 Sheet, NW Iran. Archives of Mining Sciences, 58(4), 1071-1084.
[3]. Nouri, R. & Arian, M. (2017). Multifractal modeling of the gold mineralization in the Takab area (NW Iran). Arabian Journal of Geosciences, 10(5), 105.
[4]. Mansouri, E., Feizi, F., Jafari Rad, A., & Arian, M. (2017). A comparative analysis of index overlay and topsis (based on AHP weight) for Iron Skarn Mineral prospectivity mapping, a case study in Sarvian Area, Markazi Province, Iran. Bulletin of the Mineral Research and Exploration, 155, 147-160.
[5]. Mansouri, E., Feizi, F., Jafari Rad, A., & Arian, M. (2018). Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran. Solid Earth, 9(2), 373-384.
[6]. Nabilou, M., Arian, M., Afzal, P., Adib, A., & Kazemi, A. (2018). Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, central Iran. Episodes Journal of International Geoscience, 41(3), 143-159.
[7]. Arian, M. (2012). Clustering of Diapiric Provinces in the Central Iran Basin. Carbonates and Evaporites, 27(1), 9-18.
[8]. Arian, M., Bagha, N., Khavari, R., & Noroozpour, H. (2012). Seismic Sources and Neo-Tectonics of Tehran Area (North Iran). Indian Journal of Science and Technology, 5(3), 2379-2383.
[9]. Arian, M. & Aram, Z. (2014). Relative Tectonic Activity Classification in the Kermanshah Area, Western Iran. Solid Earth, 5(2), 1277-1291.
[10]. Arian, M. (2015). Seismotectonic-Geologic Hazards Zoning of Iran. Earth Sciences Research Journal, 19(1), 7-13.
[11]. Ehsani, J. & Arian, M. (2015). Quantitative Analysis of Relative Tectonic Activity in the Jarahi-Hendijan Basin Area, Zagros Iran. Geosciences Journal, 19(4), 1-15.
[12]. Aram, Z. & Arian, M. (2016). Active Tectonics of the Gharasu River Basin in Zagros, Iran, Investigated by Calculation of Geomorphic Indices and Group Decision using Analytic Hierarchy Process (AHP) Software. Episodes, 39(1), 39-44.
[13]. Razaghian, G., Beitollahi, A., Pourkermani, M., & Arian, M. (2018). Determining seismotectonic provinces based on seismicity coefficients in Iran. Journal of Geodynamics, 119(20), 29-46.
[14]. Taesiri, V., Pourkermani, M., Sorbi, A., Almasian, M., & Arian, M. (2020). Morphotectonics of Alborz Province (Iran): A Case Study using GIS Method. Geotectonics, 54(5), 691-704.
[15]. Khavari, R., Arian, M., & Ghorashi, M. (2009). Neotectonics of the South Central Alborz Drainage Basin, in NW Tehran, N Iran. Journal of Applied Sciences, 9(23), 4115-4126.
[16]. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K., & Majidifard, M.R. (2009). Lithostratigraphy of the Upper Triassic–Middle Jurassic Shemshak Group of Northern Iran. In South Caspian to Central Iran Basins. Geological Society of London, Special Publication, 312(1), 129–60.
[17]. Salehi, M. A., Wilmsen, M., Zamanian, E., Baniasad, A., & Heubeck, C. (2022). Depositional and thermal history of a continental, coal-bearing Middle Jurassic succession from Iran: Hojedk Formation, northern Tabas Block. Geological Magazine, 160(2), 235-259.
[18]. Demirbas, A. & Karslioglu, S. (2004). Removal of organic sulfur from coal by wheat straw ash and potassium ferric hexacyanoferrat (II). Energy Exploration & Exploitation, 22(6), 429-439.
[19]. Ayhan, F.D., Abakay, H., & Saydut, A. (2005). Desulfurization and deashing of Hazro coal via a flotation method. Energy & Fuels, 19(3), 1003-1007.
[20]. Duz, M.Z., Tonbul, Y., Baysal, A., Akba, O., Saydut, A., & Hamamci, C. (2005). Pyrolysis kinetics and chemical composition of Hazro coal according to the particle size. Journal of Thermal Analysis and Calorimetry, 81 (2), 395-398.
[21]. Erdogan, S., Baysal A., Akba O., & Hamamci C. (2007). Interaction of metals with humic acid isolated from oxidized coal. Polish Journal of Environmental Studie, 16(5), 671-675.
[22]. Zhao, C.L. & Sun Y.Z. (2008). Rare earth elements of coal seam 5 from Gequan Mine, Xingtai Coalfield. World Journal of Engineering, 5(1), 90-94.
[23]. Zhao C.L., Qin S.J., Yang Y.C., Li Y.H., & Lin M.Y. (2009). Concentration of gallium in the Permo-Carboniferous coals of China. Energy Exploration & Exploitation, 27(5), 333-343.
[24]. Shukla, A., Prasad, A.K., Mishra, S., Vinod, A., & Varma, A.K. (2023). Rapid Estimation of Sulfur Contentin High-Ash Indian Coal using Mid-Infrared FT-IR Data. Minerals, 13(5), 1-20.
[25]. Calkins, W.H. (1994). The Chemical Forms of Sulfur in Coal. A Review. Fuel 1994, 73(4), 475–484.
[26]. GoldsWorthy, P., Eyre, D.J., & On, E. (2013). Value-in-Use (VIU) Assessment for Thermal and Metallurgical Coal. In The Coal Handbook: Towards Cleaner Production, Elsevier, Amsterdam, 496 P.
[27]. Zheng, B., Ding, Z., Huang, R., Zhu, J., Yu, X., Wang, A., Zhou, D., Mao, D., & Su, H. (1999). Issues of health and disease relating to coal use in Southwest China. International Journal of Coal Geology, 40(2-3), 119−132.
[28]. Wu, M., Shen, J., Qin, Y., Qin. Yo., Wang, X., & Zhu. S. (2022). Method of Identifying Total Sulfur Content in Coal: Geochemical and Geophysical Logging Data from the Upper Paleozoic in North China. ACS Omega, 7 (49), 45-56.
[29]. Yang, X., Ingham, D., Ma, L., Srinivasan, N., & Pourkashanian, M. (2017). Ash Deposition Propensity of Coals/Blends Combustion in Boilers: A Modeling Analysis based on Multi-Slagging Routes. Proc. Combust. Inst, 36(3), 41–50.
[30]. Yazdi, M., & Golzar, H. (2012). Geochemical properties and environmental impacts of the Mazino coal. European Chemical Bulletin, 1(5), 125-129.
[31]. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Freeman, San Fransisco, 468 P.
[32]. Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.
[33]. Agterberg, F.P., Cheng, Q., Brown, A., & Good, D. (1996). Multifractal modeling of fractures inthe Lac du Bonnet Batholith, Manitoba. Computers & Geosciences, 22(5), 497–507.
[34]. Costa, J.F. (1997). Development in Recoverable Reserves and Ore Body Modeling, WH Bryan Mining Geology Research Centre, University of Queensland, 333 P.
[35]. Turcotte, D.L. (1997). Fractals and Chaos in Geology and Geophysics, Cambridge Univ Press, Cambridge, 416 P.
[36]. Costa, J.F. & Dimitrakopoulos, R. (1998). A conditional fractal (fBm) simulation approach for orebody modelling. International journal of surface mining, reclamation and environment, 12(4), 197–202.
[37]. Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2), 167–175.
[38]. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province. Ore Geology Reviews, 32(2), 314–324.
[39]. Zuo, R., Cheng, Q., & Xia, Q. (2009). Application of fractal models to characterization of vertical
distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1), 37–43.
[40]. Afzal, P., FadakarAlghalandis, Y., Khakzad, A., Moarefvand, P., & Rashidnejad Omran, N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 6(7): 220–232.
[41]. Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., Afzal, P., & Sadeghi, B. (2012). Application of number–size (N–S) fractal model to quantify of the vertical distributions of Cu and Mo in Nowchun porphyry deposit (Kerman, SE Iran). Archives of Mining Sciences, 58(1), 89–105.
[42]. Zuo, R., Carranza, E.J.M., & Cheng, Q. (2012). Fractal/multifractal modelling of geochemical exploration data Journal of Geochemical Exploration, 122 (12), 33-41.
[43]. Afzal, P., Dadashzadeh Ahari, H., RashidnejadOmran, N., & Aliyari, F. (2013). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews. 55(6), 125–133.
[44]. Yasrebi, A.B., Afzal, P., Wetherelt, A., Foster, P.J., & Esfahanipour, R. (2013). Correlation between geology and concentration–volume fractal models: significance for Cu and Mo mineralised zones separation in Kahang porphyry deposit, Central Iran. Geologica Carpathica, 64(2), 153–163.
[45]. Zuo, R., Xia, Q., & Wang, H., 2013. Compositional data analysis in the study of integratedgeochemical anomalies associated with mineralization. Applied Geochemistry, 28(12), 202–221.
[46]. Cheng, Q.M. (1995). The perimeter–area fractal model and its application to geology. Mathematical Geosciences, 27(6), 69–82.
[47]. Afzal, p., Alhoseini, S.H., Tokhmechi, b., Kaveh Ahangaran, D., Yasrebi, A.B., Madani, N., & Wetherelt, A. (2014). Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. International Journal of Coal Geology, 127, 88–99.
[48]. Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. (Eds.), Proc of the Conference of the International Association for Mathematical Geology, 1, 87–92.
[49]. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., & Daneshvar Saein, L. (2012). Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration, 122(10), 9–19.
[50]. Afzal, P. & Hassanpour, Sh. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system,NW Iran. Arabian Journal of Geosciences, 6(3), 957–970.
[51]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P., & Yasrebi, A. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119, 139–149.
[52]. Mahdiyanfar, H. & Seyedrahimi Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment (JME), 14(3), 1019-1035.
[53]. Soltani, F., Afzal, P., & Asghari, O. (2014). Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. Journal of Geochemical Exploration, 140, 64-76.
[54]. Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., & Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10(3), 705-715.
[55]. Kianersi, A., Adib, A., & Afzal, P. (2021). Detection of Effective Porosity and Permeability Zoning in an Iranian OilField Using Fractal Modeling. International Journal of Mining and Geo-Engineering, 55(1), 49-58.
[56]. Zissimos, A. M., Cohen, D. R., Christoforou, I. C., Sadeghi, B., & Rutherford, N. F. (2021). Controls on soil geochemistry fractal characteristics in Lemesos (Limassol), Cyprus. Journal of Geochemical Exploration, 220(29), 162-172.
[57]. Kianoush, P., Mohammadi, G., Hosseini, S. A., Keshavazr Faraj Khah, N., & Afzal, P. (2022). Compressional and Shear Interval Velocity Modeling to Determine Formation Pressures in an Oilfield of SW Iran. Journal of Mining and Environment, 13(3), 851-873.
[58]. Mahdizadeh, M., Afzal, P., Eftekhari, M., & Ahangari, K. (2022). Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran. Bulletin of Engineering Geology and the Environment, 81(1), 59.
[59]. Mirzaei, M., Adib, A., Afzal, P., Rahemi, E., & Mohammadi, G. (2022). Separation of geological ore and gangues zones based on multivariate fractal modeling in Jalal Abad iron ore deposit, Central Iran. Advanced Applied Geology, 12(3), 573-588.
[60]. Sim, B.L., Agterberg, F.P. & Beaudry, C. (1999). Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Computers & Geosciences, 25(9), 1023–1041.
[61]. Salarian,S., Asghari, O.,Abedi, M., & Alilou, S.K. (2019). Geostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran. Journal of Mining and Environment (JME), 10(4), 1061- 1081.
[62]. Khalajmasoumi, M., Lotfi, M., Afzal, P., Sadeghi, B., Memar Kochebagh, A., Khakzad, A., & Ziazarifi, A. (2015). Delineation of the radioactive elements based on the radiometric data using concentration–area fractal method in the Saghand area, Central Iran. Arabian Journal of Geosciences, 8(8), 6047–6062.
[63]. Seyedrahimi Niaraq, M., & Hekmatnejad, A. (2020). The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochim, 40(1), 78-88.
[64]. Yasrebi, A.B., Hezarkhani, A., & Afzal, P. (2017). Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection. Resources Policy, 53, 384-393.
[65]. Pazand, K. (2015). Rare earth element geochemistry of coals from the Mazino Coal Mine, Tabas Coalfield, Iran. Arabian Journal of Geosciences, 8(12), 59–69.
[66]. AliMolaei, M. & Aminzadeh, A. (2019). Geochemical properties of major and rare earth elements in the South Kouchek-Ali Coal Mine, Tabas. Journal of Economic Geology, 11(2), 321 – 337.
[67]. Aghanabati, S.A. (2004). Geology of Iran. Tehran, Geological Survey of Iran (in Persian), 586 P.
[68]. Mohamadi, A. (2014). Thermal Coal Project-Exploration in the South Kouchek-Ali Coal Mine, Tabas. Kavesh Kansar Engineering Company, Tehran, 230 P.
[69]. Seyed-Emami, K., Schairer, G., Fürsich, F.T., Wilmsen, M., & Majidifard, M.R. (2000). First record of ammonites from the Badamu Formation at the Shotori Mountains (CentralIran). Eclogae Geologiae Helvetiae, 93(2) 257–263
[70]. Geological Suvey of Iran, Iran DEM.
[71]. Geological Suvey of Iran, 1:100000 Robatkhan map.
[72]. Wood, G.H. & Kehn, M. (1976). Coal Resource Classification System of U.S. Geological Survey, USA
[73]. Skochinsky, A. & Komarov, V. (1996). Mine ventilation, Mir publishers, Moscow, Russia.
[74]. Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using log ratiotransformedstream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167–185.