[1]. Abid, S. (2017). Stabilization of Soil Using Chemical Methods. International Journal of Recent Trends in Engineering and Research, 3(9), 104–121.
[2]. Al-Obaydi, M. A., Abdulnafaa, M. D., Atasoy, O. A., & Cabalar, A. F. (2022). Improvement in Field CBR Values of Subgrade Soil Using Construction-Demolition Materials. Transportation Infrastructure Geotechnology, 9(2), 185–205.
[3]. Aljuari, K. A., Fattah, M. Y., & Ali, H. E. (2021). Numerical Analysis of Treatment of Highly Expansive Soil by Partial Replacement with Crushed Concrete. IOP Conference Series: Earth and Environmental Science, 856(1).
[4]. Angurana, D. I., Yadav, J. S., & Khatri, V. N. K. (2023). Estimation of Uplift Capacity of Helical Pile Resting in Cohesionless Soil. Transportation Infrastructure Geotechnology.
[5]. Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2013). Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 25(8), 1077–1088.
[6]. Blayi, R. A., Sherwani, A. F. H., Ibrahim, H. H., Faraj, R. H., & Daraei, A. (2020). Strength improvement of expansive soil by utilizing waste glass powder. Case Studies in Construction Materials, 13, e00427.
[7]. Boger, Z., & Guterman, H. (1997). Knowledge extraction from artificial neural networks models. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 4, 3030–3035.
[8]. Cabalar, A. F., Zardikawi, O. A. A., & Abdulnafaa, M. D. (2019). Utilisation of construction and demolition materials with clay for road pavement subgrade. Road Materials and Pavement Design, 20(3), 702–714.
[9]. Cardoso, R., Silva, R. V., Brito, de J., & Dhir, R. (2016). Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, 131–145.
[10]. Chaudhary, V., Yadav, J. S., & Dutta, R. (2023). Geotechnical properties of bentonite mixed with nanosilica. Multiscale and Multidisciplinary Modeling, Experiments and Design, (2016).
[11]. Daraei, A., Herki, B. M. A., Sherwani, A. F. H., & Zare, S. (2018). Slope Stability in Swelling Soils Using Cement Grout: A Case Study. International Journal of Geosynthetics and Ground Engineering, 4(1), 0.
[12]. Daraei, A., Sherwani, A. F. H., Faraj, R. H., Mohammad, S., Kurdo, S., Zare, S., & Mahmoodzadeh, A. (2019). Stabilization of problematic soil by utilizing cementitious materials. Innovative Infrastructure Solutions, 4(1).
[13]. Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33(8), 454–459.
[14]. Dash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2004). Performance of different geosynthetic reinforcement materials in sand foundations. Geosynthetics International, 11(1), 35–42.
[15]. Debats, J. M., & Sims, M. (1997). Vibroflotation in reclamations in Hong Kong. Ground Improvement, 1(3), 127–145.
[16]. Dutta, R. K., Dutta, K., & Jeevanandham, S. (2015). Prediction of Deviator Stress of Sand Reinforced with Waste Plastic Strips Using Neural Network. International Journal of Geosynthetics and Ground Engineering, 1(2). https://doi.org/10.1007/s40891-015-0013-7
[17]. Dutta, R. K., & Yadav, J. S. (2021). The impact of alccofine inclusion on the engineering properties of bentonite. Cleaner Engineering and Technology, 5, 100301. https://doi.org/10.1016/j.clet.2021.100301
[18]. Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., Ebneabbasi, P., Fatehi Marji, M., & Guo, M. (2022). Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression. Mechanics of Advanced Materials and Structures, 29(27), 6966–6981.
[19]. Ganiron, T. U. J. (2015). Recycling Concrete Debris from Construction and Demolition Waste. International Journal of Advanced Science and Technology, 77, 7–24.
[20]. Garson, G. (1991). Interpreting neural-network connection weights. AI Expert 6(4):46–51, 1991.
[21]. Golewski, G. L. (2022). The Specificity of Shaping and Execution of Monolithic Pocket Foundations (PF) in Hall Buildings. Buildings, 12(2).
[22]. Golewski, G. L. (2023a). Combined Effect of Coal Fly Ash (CFA) and Nanosilica (nS) on the Strength Parameters and Microstructural Properties of Eco-Friendly Concrete. Energies, 16(1).
[23]. Golewski, G. L. (2023b). Concrete Composites Based on Quaternary Blended Cements with a Reduced Width of Initial Microcracks. Applied Sciences (Switzerland), 13(12).
[24]. Golewski, G. L. (2023c). Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement. AIMS Materials Science, 10(3), 390–404.
[25]. Golewski, G. L. (2023d). The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection—A Review. Buildings, 13(3).
[26]. Gupta, R., & Trivedi, A. (2009). Bearing capacity and settlement of footing resting on confined loose silty sands. Electronic Journal of Geotechnical Engineering, 14 A, 1–17.
[27]. Haeri, H., & Sarfarazi, V. (2016). The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks. Computers and Concrete, 18(2), 201–214.
[28]. Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2013). Simulating the bluntness of TBM Disc Cutters in Rocks using Displacement Discontinuity Method. 13th International Conference on Fracture 2013, ICF 2013, 2, 1414–1423.
[29]. Henzinger, C., & Heyer, D. (2018). Soil improvement using recycled aggregates from demolition waste. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(2), 74–81.
[30]. https://firagiel.com/web/technical-software/agiel-neural-network/. (n.d.).
[31]. Iqbal, M. R., Hashimoto, K., Tachibana, S., & Kawamoto, K. (2019). Geotechnical properties of sludge blended with crushed concrete and incineration ash. International Journal of GEOMATE, 16(57), 116–123.
[32]. Islam, A., Fahim Badhon, F., Abedin, Z., Islam, M. A., Badhon, F. F., & Abedin, M. Z. (2017). Relation between Effective Particle Size and Angle of Internal Friction of Cohesionless Soil. Architecture and Civil Engineering, (April 2020). Retrieved from https://www.researchgate.net/publication/340903320
[33]. Jain, A., & Chawda, A. (2016). Apraisal of Demolished Concrete Coarse and Fines for Stabilization of Clayey Soil. International Journal of Engineering Sciences & Research Technology, 5(9), 715–719.
[34]. Jain, R. K. (2013). A Study on Eco Friendly use of Recycled Rubber Tyres. Direct Research Journal of Engineering and Information Technology, 1(2), 23–37.
[35]. Karkush, M. O., & Yassin, S. (2019). Improvement of Geotechnical Properties of Cohesive Soil Using Crushed Concrete. Civil Engineering Journal, 5(10), 2110–2119.
[36]. Ladd, R. (1979). Preparing test specimens using undercompaction. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(3), 50.
[37]. Mullins, G., Winters, D., & Dapp, S. (2006). Predicting End Bearing Capacity of Post-Grouted Drilled Shaft in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(4), 478–487.
[38]. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2), 135–150. https://doi.org/10.1016/S0304-3800(02)00064-9
[39]. Ornek, M., Laman, M., Demir, A., & Yildiz, A. (2012). Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils and Foundations, 52(1), 69–80. https://doi.org/10.1016/j.sandf.2012.01.002
[40]. Sarfarazi, V., & Haeri, H. (2018). Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D). Structural Engineering and Mechanics, 68(5), 537–547.
[41]. Sarfarazi, V., Haeri, H., Ebneabbasi, P., Bagher Shemirani, A., & Hedayat, A. (2018). Determination of tensile strength of concrete using a novel apparatus. Construction and Building Materials, 166, 817–832.
[42]. Sethy, B. P., Patra, C., Das, B. M., & Sobhan, K. (2021). Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network. International Journal of Geotechnical Engineering, 15(10), 1252–1267.
[43]. Sharma, A., & Sharma, R. K. (2020). Strength and Drainage Characteristics of Poor Soils Stabilized with Construction Demolition Waste. Geotechnical and Geological Engineering, 38(5), 4753–4760. https://doi.org/10.1007/s10706-020-01324-3
[44]. Sharma, V., Kumar, A., & Kapoor, K. (2019). Sustainable deployment of crushed concrete debris and geotextile to improve the load carrying capacity of granular soil. Journal of Cleaner Production, 228, 124–134.
[45]. Soni, H., Saini, A., & Yadav, J. S. (2022). Behaviour of Square Footing Over Recycled Concrete Aggregate Resting on Loose Sand: Integrated Experimental and Numerical Analyses. International Journal of Geosynthetics and Ground Engineering, 8(5), 1–16.
[46]. Swarna, S., Tezeswi, T. P., & Kumar, S. (2022). Implementing construction waste management in India: An extended theory of planned behaviour approach. Environmental Technology and Innovation, 27(February), 102401.
[47]. Tabatabaie Shourijeh, P., Masoudi Rad, A., Heydari Bahman Bigloo, F., & Binesh, S. M. (2022). Application of recycled concrete aggregates for stabilization of clay reinforced with recycled tire polymer fibers and glass fibers. Construction and Building Materials, 355(May), 129172.
[48]. Thakur, A., & Dutta, R. K. (2021). Study of bearing capacity of skirted irregular pentagonal footings on different sands. Journal of Achievements in Materials and Manufacturing Engineering, 1(105), 5–17.
[49]. Verma, G., & Kumar, B. (2023). Artificial Neural Network Equations for Predicting the Modified Proctor Compaction Parameters of Fine-Grained Soil. Transportation Infrastructure Geotechnology, 10, 424–447.
[50]. Wang, L., Zhang, P., Golewski, G., & Guan, J. (2023). Editorial: Fabrication and properties of concrete containing industrial waste. Frontiers in Materials, 10(March), 2022–2023.
[51]. Yadav, J. S, Garg, A., & Tiwari, S. K. (2019). Strength and ductility behaviour of rubberised cemented clayey soil Authors. Proceedings of the Institution of Civil Engineers - Ground Improvement.
[52]. Yadav, Jitendra Singh. (2020). Feasibility study on utilisation of clay–waste tyre rubber mix as construction material. Proceedings of the Institution of Civil Engineers - Construction Materials, 1–13. https://doi.org/10.1680/jcoma.19.00114
[53]. Yadav, Jitendra Singh, & Tiwari, S. K. (2016). Behaviour of cement stabilized treated coir fibre-reinforced clay-pond ash mixtures. Journal of Building Engineering, 8, 131–140.
[54]. Zhang, G., Ding, Z., Zhang, R., Chen, C., Fu, G., Luo, X., Wang, Y., & Zhang, C. (2022). Combined Utilization of Construction and Demolition Waste and Propylene Fiber in Cement-Stabilized Soil. Buildings, 12(3). https://doi.org/10.3390/buildings12030350